@,

BiolVled Central

Molecular Cancer

Review

Artificial neural networks for diagnosis and survival prediction in

colon cancer
Farid F Ahmed*

Address: Department of Radiation Oncology, Leo W Jenkins Cancer Center, The Brody School of Medicine at East Carolina University, Greenville,

NC 27858, USA

Email: Farid E Ahmed* - ahmedf@mail.ecu.edu
* Corresponding author

Published: 06 August 2005
Molecular Cancer 2005, 4:29  doi:10.1186/1476-4598-4-29

Received: 19 February 2005
Accepted: 06 August 2005

This article is available from: http://www.molecular-cancer.com/content/4/1/29

© 2005 Ahmed; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

ANNs are nonlinear regression computational devices that have been used for over 45 years in
classification and survival prediction in several biomedical systems, including colon cancer.
Described in this article is the theory behind the three-layer free forward artificial neural networks
with backpropagation error, which is widely used in biomedical fields, and a methodological
approach to its application for cancer research, as exemplified by colon cancer. Review of the
literature shows that applications of these networks have improved the accuracy of colon cancer
classification and survival prediction when compared to other statistical or clinicopathological
methods. Accuracy, however, must be exercised when designing, using and publishing biomedical
results employing machine-learning devices such as ANNs in worldwide literature in order to
enhance confidence in the quality and reliability of reported data.

| Introduction and Development of Artificial
Neural Networks

Artificial neural networks (ANNs) are regression devices
containing layers of computing nodes (crudely analogous
to the mammalian biological neurons) with remarkable
information processing characteristics. They are able to
detect nonlinearities that are not explicitly formulated as
inputs, making them capable of learning and adaptability.
They possess high parallelism, robustness, generalization
and noise tolerance, which make them capable of cluster-
ing, function approximation, forecasting and association,
and performing massively parallel multifactorial analyses
for modeling complex patterns, where there is little a priori
knowledge [1]. Artificial neural models possessing such
characteristics are desirable because: (a) nonlinearity

allows better fit to the data, (b) noise-insensitivity leads to
accurate prediction in the presence of uncertain data and
measurement errors, (c) high parallelism implies fast
processing and hardware failure-tolerance, (d) learning
and adaptability permits the system to update and/or
modify its internal structure in response to changing envi-
ronment, and (e) generalization enables application of
the model to unlearned data [2].

In the early 1940s, McCulloch and Pitts [3] explored the
competitive abilities of networks made up of theoretical
mathematical models when applied to the operation of
simple artificial neurons. When these early neurons were
combined, it was possible to construct networks capable
of computing any of the finite basic Boolean logical
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A three fully interconnected feedforward BP neural network
(FFNN), with a single hidden layer. From reference 2, with
permission.

functions, including symbolic logic. The system com-
prised of an artificial neuron and input (stimuli) was
referred to as "the Perceptron", which established a map-
ping between input activity and output signal. The next
important milestone was the development of the first
trainable network perceptron by Rosenblatt, 1959 [4] and
Widrow & Hoff, 1960 [5], initially as a linear model hav-
ing two layers of neurons or nodes (an input and an out-
put layer) and a single layer of interconnections with
variables (weights) that were adjustable during training.
Some models increased their computational capabilities
by adding additional optical filters and layers with fixed
random weights, or other layers with unchanging weights.
However, these single layers of trainable weights were lim-
ited to only solving linear problems. By 1974, Werbos [6]
expanded the network to have nonlinear capabilities,
modeling with two layers of weights that were trainable in
a general fashion, and that accomplished nonlinear dis-
crimination and functional approximation. These original
algorithms were named "back-error propagation, BP" and
the networks called multilayer perceptrons (MLPs). In BP,
the network error (i.e., difference between the predicted
and true outcome) constitutes two steps: forward activa-
tion to produce a solution, and a backward propagation
of the computed error to modify the weights (usually car-
ried out through fitting the weights of the model by a cer-
tain function, such as squared error or maximum
likelihood, using a gradient optimization method) [Fig-
ure 1]. Rumelhart and McClelland popularized ANNs in
1986 [7], and a variety of ANN paradigms have been
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developed over the last 46 years [2]. In fact, over 50 differ-
ent ANN types exist. Some applications may be solved
using different ANN types, whereas others may only be
solved by a specific ANN type. Some networks are capable
of solving perceptual problems, while others are more tai-
lored for data modeling and functional approximation
[8]. Within cancer research alone, ANNs have been
applied to image processing, outcome prediction, treat-
ment-response forecasting, diagnosis and staging [1] [Fig-
ure 2].

After demonstrating the utility of ANNs to various applied
problems, mathematicians established a theoretical basis
for the conceptual capabilities of the MLPs. They showed
by a general function approximation theorem that, with
appropriate internal parameters (or weights), a neural net-
work could approximate an arbitrary nonlinear function
[2]. Thus, ANNs should not be viewed as "black boxes",
but as tools that are capable of learning and outcome pre-
diction. Due to the fact that classification tasks, prediction
issues and decision support problems are considered
functional approximation problems, then ANNs could be
applied to problem solving in various domains, and a
major research effort has been dedicated to ways of adjust-
ing weights to the best-fitting functional approximations
and training parameters [8].

When an ANN is trained on a set of data, it builds a pre-
dictive model that reflects a minimization in error when
the network's prediction (its output) is compared with a
known or expected outcome. Training, which is analo-
gous to biological learning, is carried by a "teacher" pro-
gram that loads in training cases from a database and
adjusts the weights and thresholds value of the network to
minimize the error between the real-world outputs and
the network generated outputs for the training case
inputs. The network would then be validated with availa-
ble data, and performance measurements [e.g., the mean
squared error (MSE), the full range of sensitivity and spe-
cificity values (i.e., receiver operating characteristic, ROC,
plot associated with the continuous variable output, 0 to
1), and confidence and prediction intervals] can ascertain
the network's level of success in arriving at a meaningful
prediction unique to each input. Traditionally in medi-
cine, expert opinions have been developed from clini-
cians' experience and search of the literature. Today,
however, ANNs and multivariate analysis can be used to
analyze the multitude of data simultaneously and to learn
tends in population, thus expanding the "localized"
knowledge to a more "global" knowledge, which can be
accessed by other practitioners [8].
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Figure 2

Application of ANNs to problem solving: (a) pattern classification (i.e., assigning an unknown input pattern to any of prespeci-
fied classes based on properties that are characteristic to a given class); (b) clustering (i.e., clusters or classes are formed by
exploring the similarities or dissimilarities between the input patterns based on their inter-correlations); (c) functional approx-
imation or modeling (i.e., training an ANN on input-output data to approximate the underlying rule relating the inputs to out-
puts); (d) forecasting or predicting (i.e., training an ANN on samples for a time series [t(]) to t(n)] representing a certain
phenomenon at a given scenario and then using it for other scenarios to predict the behavior at a subsequent time [t(n + )],
and (e) association (i.e., developing a pattern by training an ANN to construct the corrupted or missing data).
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Figure 3
The activation, squashing, or sigmoid function f(x).

2 Theory and Performance Measures Behind the
Feedforward Artificial Neural Netwoks
(FFANN)

The feedforward BP MLP can be viewed basically as a set
of equations that are linked together through shared vari-
ables in a formation diagramed as a set of interconnected
nodes in a network capable of general functional approx-
imation that provides learning capabilities [9]. Variables
for inclusion in the final network architecture are usually
chosen by a sensitivity analysis method, which tests each
input variable by dropping it from the input list and deter-
mining the resulting loss of predictive accuracy. Only var-
iables that result in a significant loss of accuracy when
dropped are retained in the final network's architecture.
Classification tasks like tumor staging, diagnosis, or pre-
dicting survival can be performed by FFANNs [10].

FFANN is typically organized as a set of interconnected
layers of artificial intermediate (hidden) nodes depicted
as a row or collection of nodes, each receiving input from
other nodes, connected together to form the network (Fig-
ure 1). The MLP has an associated output activation level
known as a "squashing" or "activation" function; the most
popular is the sigmoid function [f(x)] expressed as:

f(x) = 1/[1 + eXP(X)] ceerereererereeeereceeee (1), where x
is the input to the squashing function (Figure 3). This sig-
moid function, which may have no biological signifi-
cance, can then be expressed as §; (the sum of the products
of the incoming activation levels with their associated
weights):
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Figure 4
Effect of hidden layer size on network generalization. From
reference 2; with permission.

is the

jir

n
Sj = 2\/\7]1 PN (2) , where W,
i=0

incoming weight for unit i; a;, is activation value of unit i;

and n, is the number of units that send connections to
unit j.

The majority of biomedical studies utilize three-layer net-
works (input, intermediate and output), in which layers
are fully connected (Figure 1). Each connection has an
associated weight (w) that corresponds to synaptic junc-
tions in biological systems. Equation (1) becomes:

1
a; e 3), where a;

M exp(-Y Wiijcai k) ( )ayer k, and
W; represents the weight associated with the connection
from the ith node of the kth layer to the jth node of layer
k + 1. In a three layer node ANN, there exist two types of
weights, and k = 1 or 2. Whereas a network with too few
hidden nodes would be incapable of differentiating
complex patterns, a network with too many hidden nodes

lead to poor generalization for untrained data (Figure 4)

[2].

The most popular approach to finding the optimal
number of hidden nodes (HN) is by trial and error. Other
statistical methods such as cross validation, bootstrapping
or pruning have been used. Livingstone & Manallack's
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Updating or adjusting the value of the weight along a single
connection. From reference 8; with permission.

[11] suggested that hidden node can be empirically
expressed as: HN = M-O/W ..., (4),
where M is the number of training examples; O, is the
number of outputs; and W, is the number of weights, and
HN is usually >3 to ensure good generalization and avoid
memorizing the training set. Thus, if there are 240
training cases and a single output, the network should not
have more than 80 weights. In a network with 10 inputs,
this corresponds to having a single hidden layer with 6
units [12].

In theory, there are some problems for which it may be
better to use a network with two hidden layers because the
overall number of nodes will be less than it would be in a
single-hidden layer net. However, for most biomedical
applications there is no substantial practical evidence that
more than one hidden layer will add meaningfully to the
predictive capabilities of a network. Therefore, for practi-
cality, most medical applications use a single hidden-layer
networks [12].

In an untrained ANN, the weights of all interconnections
are set to be small random numbers. The ANN is then
trained (i.e., presented with a training data set that pro-
vides inputs and desired outputs of the network). The
weights are continuously adjusted by algorithms such as
gradient descent computation et sequa, that seek to find a
minimum in the error surface so that the network com-
putes the desired output [13]. The amount of network
error (or mean square error, MSE) is expressed as:

P n
MSE = 1 2 Z(di,p - 31,3)2 ............................. (5), where
P p=1i=1

d; , is the desired output of output unit i for input pattern
p; P, is the total number of patterns in the data set; n, is
the number of output units, and the sum is taken over all
data patterns and all output units. The root mean square
(RMS) is the square root of the MSE.
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Gradient descent weigh training starts with inputting a
data pattern to the network in order to determine the acti-
vation values of the input nodes. This is followed by for-
ward propagation, in which the hidden layer updates its
activation value followed by updates to the output layer
(as depicted in equation 3). Next, the desired (known)
outputs are submitted to the network. A calculation is
then carried out to assign a value to the amount of error
associated with each output node. The formula for this
error value (9) is expressed as:

8 3= (dj- 2 5) f(X) (S5, 3) ovvvrevrvmeviriniiiin, (6), where
d;, is the desired output for output unit j; a; 5, is the actual
output for output unit j (layer 3); f(x), is the squashing
function; and §; ; is the incoming sum for output unit j in
equation (2).

After these error values become known, weights (from
unit i to j) on the incoming connections to each output
neuron can be updated according to the following
equation:

AW]L k = n6]/ k+1 ail Josorrereee et (7), ln WhiCh k
= 2 during updating the layer of weights on connections
that terminate at the output layer (see Figure 5).

As the BP ensues, an error value (8) is then calculated for
each hidden node as follows:

8, 2= (38, Wy 5) F(X) (S; 2) woovrrreerererreensernrins (8).

After the error values are known, weights on the incoming
connections to each hidden neuron can then be updated.
The updated equation (# 7) is used again, substituting k =
1 for weights on connections that start at the first layer.
The derivation of the above equations is based on the gra-
dient descent approach and uses the chain rule and inter-
connected structure of the network [6,8,13]. A general
function approximation theorem has been proven for a
three layer MLP, showing that they are capable of approx-
imating any nonlinear function in such a way that creating
the functional form and fitting the function are performed
at the same time (Figure 5), unlike nonlinear regression in
which a fit is forced to a prechosen function, giving the
ANN an advantage over traditional statistical multivariate
regression techniques [14].

Figure 6 is a graphical representation of an arbitrary non-
linear function approximation performed by an ANN. The
function computes a valuey = f(x) for every value of x. The
ANN is trained to input the value of x, and to output an
approximation of f(x). ANN weights are available, which
are capable of approximating any arbitrary nonlinear
function [8].
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Example of a nonlinear functional approximation configured
by ANN weights. (a) lllustration showing a function f(x). (b)
A neural network configuration to determine an approxima-
tion to f(x), given the input x. Modiefied from reference 8.
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ROC curve for validating cases from an ANN. Modified from
reference 0.

It should be noted that there has to be patterns (or predic-
tive factors) present in the training data for the ANN to
learn successfully; otherwise the network's performance
will be low. To measure how well a single output ANN
matches data with known outcome, performance metrics
include the MSE and RMS. The area under the ROC, or

http://www.molecular-cancer.com/content/4/1/29

AUROCC, [in which sensitivity can be blotted as a func-
tion of (1 - specificity)] (Figure 7) is an acceptable per-
formance measure to use with a single output
classification neural network [15]. AUROCC gives a defin-
itive measure of the classifier's discrimination ability that
is not dependent upon the choice of the decision thresh-
old. It is identical to the probability that given a positive
case and a negative case, the network output will be higher
for the positive case. Algorithms are available for calculat-
ing the AUROCC [15]. Although the AUROCC provides a
useful measure of discrimination (i.e., how well a predic-
tion model can rank patients), it does not, however, pro-
vide much insight into calibration (which refers to the
correspondence  between  predicted and actual
probabilities). Calibration curves, which are plots of
actual against predicted probabilities, are very useful for
visually determining accuracy, and can generally help a
physician make better inferences before he provides a pre-
dicted probability to a patient under evaluation [16].

Other measures of the network's performance include the
kappa value and the information given. Unlike the
AUROCC, these measures require an output threshold to
be chosen. Kappa is the actual improvement in classifica-
tion rate over the chance rate divided by the maximum
possible improvement over the chance rate. A value of 1
indicates perfect classification, and a value of 0 indicates
classification at the chance rate [12].

The information gain refers to the decrease in classifica-
tion uncertainty after having observed the network out-
put. Algorithms are available for finding the output
threshold that maximizes the information gain [17]. If the
relative costs of different types of misclassification (i.e.,
the cost of false negative or false positive) are known, then
an overall cost measure can be calculated. Alternatively,
the network can be tuned to output these values directly
[12].

When training an ANN, three non-overlapping sets of
data are used: (a) the training set, (b) the validation (or
testing) set, and (c) the verification set. The training set is
used for adjustment of weights during training, whereas
the testing set is used to decide when to stop training; oth-
erwise, the ANN will learn features in the training set that
are not present in the wider population of cases, a phe-
nomenon known as "fitting to noise" or "overfitting". The
performance measures should be made on both the
training and test sets. However, only if the testing set has
been used to set the network's weights or evaluate its
structure, will it reflect the network's performance on
future data; this practice of splitting the data into a train-
ing set and a test set is referred to as "cross validation"
[18]. Another method for estimating the error rate of a
prediction rule is "data splitting" [19]. Both cross
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Criteria for termination of training and selection of an opti-
mum ANN architecture. Modified from references 2 and 8.

validation and data splitting methods are suitable if there
is plenty of data available. For small data sets, the "boot-
strap" method is used. A drawback of the bootstrap is that
a large number of samples (20 < B samples < networks)
must be trained [20]. As seen in a classical training curve
(Figure 8) where RMS of the training and testing sets are
plotted as a function of the number of HNs or training
cycles, the RMS on the training set decreases as more train-
ing is carried, but the testing set has a minimum when
reached the RMS begins to increase. Training beyond the
inflection point results in overfitting. It is imperative to
not overfit the network during training, which can be
achieved by methods such as restricting the topology of
the network (i.e., decreasing the number of nodes), or
early stopping, or by using weight decay. If computation-
ally possible, one should consider the use of a Bayesian
approach that averages over several plausible networks
[21].

The time it takes to train a neural net increases exponen-
tially with the number of network inputs and the number
of network nodes, and polynomially with the number of
training examples. A network with 200 inputs trained on
a few thousand examples takes about four hours to train
on a computer. Therefore, it is important to include only
those inputs and examples that seem relevant to the task
at hand. This is not a significant problem for medical deci-
sion-making, as they are generally small. For example, a
typical medical net has 20 inputs and is generally trained
on ~350 samples [12]. An ANN-based system is
considered to have learned if it can: (a) handle imprecise,

http://www.molecular-cancer.com/content/4/1/29

fuzzy, noisy and probabilistic information without
noticeable adverse effect on response quality, and (b) gen-
eralize from the tasks it has learned to an unknown ones

[2].

It should be remembered that because the ANN has
undergone generalized learning, it becomes capable of
interpolating or extrapolating results from new incoming
data. However, it is important to ascertain that the incom-
ing data do not extend beyond the range of values used in
training. Data outside acceptable limits should either not
be processed or results flagged and viewed with caution.
For data within the range of network training, a measure
of confidence can be made by calculation of a confidence
or a prediction interval. It should be kept in mind that a
trained, tested and verified ANN does not provide a
unique solution because its final trained resting state
depends on several factors such as number of original ran-
domized starting weights, number of and order of presen-
tation of cases, and the number of testing cycles. Other
mathematical alternatives employed during training such
as the use of momentum, adjusting the learning constant,
"jogging" the weights, etc., may have implications. There-
fore, for a particular application such as cancer prediction,
a frequency distribution of the network versus the out-
come probability can be produced and a central tendency
such as mean, mode, measure of variance and nonpara-
metric predictive intervals (in case of skewed nonparamet-
ric distributions) are plotted, producing what is called
"prevalence-value accuracy" plots. Then it could be stated,
for example, that with 90% confidence, the probability of
the expected outcome will occur with such a range, having
a median value of such a number [22].

Rather than putting faith in "black box" systems, the
workings of a neural net set used in survival analysis on
censored data could be explained by exploring the interac-
tions between predictive values and survival rates, which
leads to useful insights into the roles played by different
prognostic variables in determining patient outcomes
[23]. In a performance measure approach dubbed a "sen-
sitivity analysis”, each input is varied and the
corresponding change in output is measured. The ratio of
change in output over input (3,/8,;) is then averaged over
all samples to produce a sensitivity parameter for each
input. The inputs can then be ranked according to sensi-
tivity. Sensitivity analysis, however, could be misleading
because y may not be a linear function of x. The sensitivity
measures are dependent on the particular example used to
train the network, and also on the initial weight setting of
the network [12].

Another performance measure approach known as "key
factor justification" has been used to explain individual
decisions. In that approach, each input to the ANN is
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reversed. If the output decision is consequently reversed,
then a key factor could accordingly be identified. If no sin-
gle key factor could be ascertained, then pairs of variables,
or triples, could be reversed together and the output is
observed. However, going beyond triples may require
excessive computational capabilities [24].

3 General Application and Improving
Performance of ANNs

ANNs have been applied to problem solving in various
fields including: (a) pattern classification, (b) clustering
(class separation), (c) functional approximation (mode-
ling), (d) forecasting, (e) association (e.g., image
completion), and (f) optimization (e.g., finding a solu-
tion that minimizes an objective function (see Figure 2)

[2]-

In the military and electronic arenas, ANN applications
include automatic target recognition, control of flying air-
crafts, engine combustion optimization, adaptive switch-
ing, circuits and fault detection in complex systems [8]. In
the financial field, a decision support role for ANNS to
predict stock market fluctuations and commodity trading
has been envisioned [8]. In the biological domain, ANN
application to samples' characterization, identification
and interaction include: interpreting pyrolysis mass
spectrometery, GC and HPLC data; pattern recognition of
DNA, RNA, protein structure and microscopic images;
prediction of microbial growth, biomass and shelf-life of
food products; and identification of microorganisms and
molecules [2]. In the medical and behavioral sciences,
image analysis has resulted in systems capable of diagno-
sis and prognosis of various diseases, (including cancer),
classification of cancer subtypes, predicting tumor sensi-
tivity to drugs, identification of potential biomarkers,
analysis of gene expression data, medical imaging and
radiological diagnosis, analysis of wave forms, outcome
prediction, identification of pathological specimens,
interpretation of laboratory data, evaluation of epidemio-
logic data, waveform analysis (including electroencepha-
lography, electromyogram, electrocardiogram and
Doppler ultrasound), length of stay in intensive care units
following various diseases/surgery, and predicting admis-
sion decisions in psychiatric wards [25-30].

The performance of an ANN depends on network param-
eters, the network weights and the type of transfer
functions used. A disadvantage of using FFANNSs is that
they require the initialization and adjustment of many
individual parameters to optimize their classification per-
formance. When optimized manually, these adjustments
can take days or even weeks to complete one set of exper-
iments for estimating one outcome on single database
[31]. The lengthy process of manually optimizing a feed-
forward BP ANN provided the incentive to develop an

http://www.molecular-cancer.com/content/4/1/29

automated system that could fine-tune the network
parameters without user supervision. A new stopping
criterion (i.e., the logarithmic sensitivity index) was intro-
duced that provided a balance between sensitivity and
specificity of the output classification. The network
automatically monitored the classification performance
to determine when was the best time to stop training after
no noticeable improvement in the performance measure
(either highest correct classification rate, lowest mean
squared error, or highest log-sensitivity index value)
occurred in the subsequent 500 epochs. Using these auto-
mated ANNSs, experiments performed on three medical
databases showed that the optimal network parameter set-
tings found by the automated system were similar to those
found manually, and that automated networks performed
equally well or better than the manually optimized ANNSs,
and the best classification performance was achieved
using the log-sensitivity index as a stopping criterion [31].

When using an ANN, three important issues needs to be
addressed that the solution to which will significantly
influence the overall performance of the ANN with regard
to two considerations: (a) recognition rate to new
patterns, and (b) generalization performance to new data
sets that have not been presented during network training
[32]. These issues are: (i) the selection of data patterns for
network training [33], (ii) the selection of an appropriate
and efficient training algorithm from a large number of
possible training algorithms found in the literature such
as BP and its many variants [34] and the second-order
algorithms [35], just to name a few. New training
algorithms with faster convergence properties and less
computational requirements are being developed, and
(iii) determination of network size. This is a more difficult
problem to solve. It is necessary to find a network struc-
ture small enough to meet certain performance specifica-
tions. In practice, this is carried by training a number of
networks with different sizes, and the smallest network
that can fulfill all or most of the required performance
requirements is selected. In an attempt to develop a sys-
tematic procedure for an automatic determination and/or
adaptation of the network architecture to an incremental
constructive training scheme, input-side and output-side
training could be separated in order to improve the input-
side training effectiveness and efficiency, and to obtain
better generalization performance capabilities. Two prun-
ing methods for improving the input-side redundant con-
nections were also developed that resulted in smaller
networks without degrading or compromising their per-
formance. Moreover, numerical simulations demon-
strated the potential and advantages of the proposed data
pattern selection/training and size determination
strategies when compared to other existing techniques in
the literature [32].
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4 Applications of ANNs to Colon Cancer
Diagnosis

Microarray data are becoming powerful tools in clinical
diagnosis, particularly for tumor classification because
they simultaneously record gene expression levels of
thousands of genes. These data are characterized by high
dimensionality because a large number of gene expression
input vastly exceeds the number of sampling, which may
lead to overfitting. This situation necessitates dimension-
ality reduction through either using a reduction algo-
rithm, or selecting a small set of genes as input to the
classifier in a supervised way [36], or by employing cross
validation to avoid overfitting [37].

Both unsupervised clustering methods and supervised
methods have been used for classification [38]. I have
employed colon cancer as an example to show how super-
vised ANNs have an advantage over clustering methods
(which were shown to be incapable of detecting subtle dif-
ferences between biological classes) in classification if
some prior knowledge of the classes is available.

There is an important subtle distinction between sporadic
colon adenomas and cancers (SACs) and inflammatory
bowl disease-related dysplasia or cancer (IBDNs) because
SACs can be managed by polypectomy alone, whereas
IBDNs require a life-threatening subtotal colectomy. A
microarray study was conducted to evaluate the ability of
ANN and hierarchical cluster analysis to discriminate
between these types of cancer based on hybridizing 8064
¢DNA clones to mRNAs derived from 39 colon neoplastic
specimens [1]. GeneFinder software was used to select
1192 clones that showed significantly different mean
square expression levels between IBDNs and SACs (P =
0.001). A BP FFNN, with two hidden layers and 1192
inputs (representing the selected genes) was constructed,
and the output was set at 0 for IBDNs and 1 for SACs using
the software program MatLab (Math Works, Inc., Nattick,
MA). The ANN was learned using a training set of 5 IBDN's
and 22 SACs. The test set comprised the remaining data
samples consisting of 3 IBDNs and 9 SACs. ANN approx-
imations were evaluated using regression analysis that
compared expected output (Target) with ANN output fol-
lowing training, and unpaired 2-sided Student t-test was
also used to evaluate the statistical differences between the
net defined IBDNs versus SACs (i.e, 0 vs. 1). Hierarchial
clustering was performed using the program Cluster
(Stanford University, Palo Alto, CA). Whereas the network
correctly diagnosed 12 of 12-blinded samples, hierarchial
analysis failed, probably because of noise in the database.
Only by using an iterative process to reduce the number of
clones used for diagnosis to 97, could cluster analysis sep-
arate the two types of lesions. Even with this reduced
clone set, ANN still retained its capacity for correct diag-
nosis of the two types of colon cancer [1].

http://www.molecular-cancer.com/content/4/1/29

Another microarray study employed a combination selec-
tion method in conjunction with ensemble neural net-
work to analyze cancer data, including that of the colon.
The principle of the method was based on the assumption
that combining various feature selection mechanisms to
chose top-ranked genes will avail more information, and
by using an ensemble combining the output of several
ANN s into an aggregate output, features can be analyzed
more effectively due to the stability of the networks and
robustness of the answers [39]. The authors employed the
public database of Alon et al [40] containing 62 samples
(40 colon tumors and 22 normal tissue samples). They
chose 2,000, out of ~6,500 expressed genes, based on
their confidence in the measured expression level to
assemble networks consisting of 100 members. No fresh
samples were available for testing the network ensemble.
Nevertheless, using this ensemble, the predictive accuracy
of adopting leave-one-out cross validation (LOOCV) and
10-fold cross validation was 91.94% and 90.32%, respec-
tively, as compared to 85.48% obtained by using various
boosting algorithms in combination with LOOCV.
However, a drawback of the ANNs ensemble approach is
the increased computational complexity and the addi-
tional time needed to perform the analysis [39].

5 Application of FFNN to Predicting Survival in
Colon Cancer

It is currently difficult to predict when and if a particular
patient will die after surgical and adjuvant chemothera-
peutic treatment of colon cancer, especially at the
intermediate Dukes; B and C stages, using available tech-
niques based on histopathological TNM staging and
employing univariate and multivariate regression analysis
[41].

A 5-year follow-up data from 334 patients treated for
colorectal cancer (CRC) were used to train 284 patients
and validate 50 patients using 6 FFNN with BP, contain-
ing from 2 to 15 hidden units designed to predict death
within 9, 12, 15, 18, 21 and 24 months using the logistic
activation function with continuous output on the inter-
val 0, 1. Furthermore, the trained 12-months ANN was
then applied to 2-years follow up on patients from a sec-
ond institution. The network predictions of which indi-
vidual patients would die within 12 months were also
compared with those of two consulting surgeons [42].
Results showed that all 6 ANNs were able to achieve an
overall predictive accuracy of death at 95% CI = 80% at
the first institution, with a mean sensitivity and specificity
of 60% and 88%, respectively. Furthermore, the trained
12-months ANN achieved an overall predictive accuracy
for death of 90% (95% CI 84-96) when applied to death
from the second institution, compared with an overall
accuracy of 79% (71 - 87) and 75% (66 - 84) for CRC
surgeons. Thus, ANNs predicted outcome for CRC death
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more accurately than clinicopathological methods. More-
over, once trained in one institution, ANNs were able to
accurately predict outcome for patients from an unrelated
institution [42].

In another study to predict a 5-year survival after primary
treatment of colon carcinoma in the National Cancer Data
Base (NCDB), UK, 37,500 cases treated between the years
1985 and 1993, and not used in model development,
were analyzed by an ANN model and compared with a
standard Cox parametric logistic regression [10]. A FFNN
with two hidden layers that contained 4 and 3 hidden
neurons, respectively, and one output layer was selected.
Eleven input variables were chosen by a sensitivity
analysis method (including race; sex; age; tumor location,
size, behavior; histopathology; surgery, chemo or
radiation therapy, hormonal or other cancer-directed
therapy) and only the variables that resulted in significant
loss of accuracy when dropped were retained in the final
network architecture, Training of the network was accom-
plished by using a standard second order conjugate gradi-
ent descent method. A validation set representing 25% of
randomly chosen data was employed for validation. The
area under the ROC curve was used to measure the overall
predictive accuracy of the network. The ANN yielded a
ROC area of 87.6%. At sensitivity to mortality of 95%, the
specificity was 41%. The logistic regression yielded a ROC
area of 82%, and sensitivity to mortality of 95% gave a
specificity of only 27%. Thus, the ANN found a strong pat-
tern in the database predictive of 5-year survival status,
whereas the logistic regression produced somewhat less
accurate, but good results [10]. In another study by the
same group of investigators [43] aiming at predicting 5-
year survival associated with CRC using the same ANN
and Cox regression and ROC to compare data, the logistic
regression model gave a result of 66% and the ANN gave
78%, indicating that the neural network approach was
more superior compared to regression analysis in predict-
ing colon cancer survival.

A fourth study compared ANNs to TNM staging to predict
5-year survival of patients with CRC, using the area under
the ROC as a measure of accuracy. Variables for patient
care evaluation (PCE) database used for analysis included:
age, race, gender, signs and symptoms (e.g., changes in
bowel habits, obstruction, jaundice, occult blood, and
others), diagnostic and extent-of-disease tests (e.g.,
endoscopy, radiography, barium enema, colonoscopy,
CT, biopsy, CEA antigen, X-ray, liver function tests and
others), and histoipathological parameters. A test set of
5,007 training cases, and a validating set of 3,005 cases
was used. A FFNN BP composed of an input, a hidden and
an output layer was used. The ANNs prediction of 5-year
survival was significantly more accurate than the TNM
staging (ANN 0.815 versus TNM 0.737, p < 0.001).

http://www.molecular-cancer.com/content/4/1/29

Adding commonly collected demographic and anatomic
variable to the TNM variables further increased the accu-
racy of the ANN (0.869). Thus, the ANNs were signifi-
cantly more accurate than the TNM staging system when
both used the TNM prognostic factors alone, and prog-
nostic factors added to ANN further increased the predic-
tive prognostic accuracy [44].

6 Conclusion

There are advantages and disadvantages to FFANNs when
applied to biomedical decision-making. Advantages
include: (a) requirement for less formal statistical training
to develop, (b) having a better discriminating power than
other regression models, (c) can be developed using mul-
tiple different training algorithms, (d) their parallel nature
enable them to accept a certain amount of inaccurate data
without a serious effect on predictive accuracy (i.e., grace-
ful degradation), (e) having the ability to accurately detect
complex nonlinear relationships between independent
and dependent variables, and all possible interactions
between variables, as they make no assumptions about
those variables, (f) reduce the number of false positives
without significantly increasing the number of false nega-
tives, and (g) they may allow for individual case predic-
tion. On the other hand, disadvantages include: (a)
considered as "black box" methods, one cannot exactly
understand what interactions are being modeled in their
hidden layers as compared to "white box" statistical mod-
els, (b) have limited abilities to identify possible causal
relationships, (c) model development is empirical; thus,
providing low decision insight, and many methodologi-
cal issues remain to be solved, (d) models prone to
overfitting, (e) require lengthy development and time to
optimize, (f) they are more difficult to use in the field
because of computational requirements, and (g) there is
conflicting evidence as to whether or not they are better
than traditional regression statistical models for either
data classification, or for predicting outcome [21,45,46].

Despite their theoretical advantages, ANNs do not univer-
sally outperform standard regression techniques for sev-
eral reasons: (a) because from a practical point of view,
only a limited amount of data that may be related to the
outcome of interest can be collected, and these data are
mostly based on studies in which a standard regression
model was used, and therefore only factors that were sig-
nificant in a regression models are collected in subsequent
studies. Therefore, nonlinear functions, or those that
involve interaction with other variables may not have
emerged as "significant" in the regression analysis and
therefore are not reflected in the literature as important
prognostic factors, (b) all variables and outcomes are
measured with error(s). A nonlinear relation when meas-
ured with an error may well be adequately represented by
a linear model, (c) there exist data barriers beyond which
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mathematical models are unable to make predictions in
biological systems, and (d) regression models are superior
to ANNs when drawing inferences and interpretations
based on outputs [47]. In addition to insight into the dis-
ease process, regression models provide explicit informa-
tion regarding the relative importance of each
independent variable. This information can be valuable in
planning subsequent interventions, in eliminating unnec-
essary tests or procedures that are unrelated to the out-
come of interest, and in determining which are the most
critical data to store in the database [47].

Although the representation of a complex risk structure by
nonlinear machine-learning methods such as ANN or
classification and regression tree (CART) could provide as
insight into the underlying nature of a disease, ease of
interpretation is not a typical feature of the network repre-
sentation of a complex relationship. However, a suitable
network approach could outperform other approaches,
provided that the underlying disease has sufficient com-
plex interactions because the ability to represent arbitrary
relationships is a well known property of neural networks.
However, one of the main problems in using ANNs to
provide support for therapy decisions is the need for a
high level of trust in the predictions of such a model on
the part of both the physician and the patient under
examination. This need requires that a good generaliza-
tion capability must be convincingly demonstrated. In a
clinical context with a small data set, the key to good gen-
eralization lies in optimized complexity reduction tech-
niques. Thus, improvement in these techniques will play
an important role in increasing confidence in the applica-
tion of ANNSs to the clinical setting [48].

From earlier analysis on colon cancer, it is evident that
FFANN enhanced diagnosis and prognosis when com-
pared to other statistical methods, and increased survival
prediction when compared to logistic regression or clin-
icopathological staging. However, the uncritical use of
ANNs for prognostic and diagnostic classification of can-
cer, including colon cancer, can lead to the following mis-
takes: (1) the reported error rates for some ANNs may
underestimate the true misclassification probabilities; for
example, by not showing the cross validation error rates in
the learning, validation and/or test sets, and in some cases
by having a too small size of the test set; (2) fitting of bio-
logically implausible functions to describe the probability
of class membership when overfitting occurs, as overfit-
ting generally occurs if the ratio between the number of
observations and the number of parameters is smaller
than two; (3) incorrectly and/or failure to report or
describe the complexity of the network (i.e., number of
parameters, the number of hidden layers and hidden units
to calculate the number of fitted weights, etc.) will not
allow the reader to judge the magnitude of overfitting, (4)

http://www.molecular-cancer.com/content/4/1/29

use of inadequate statistical competitors or statistical
methods to compare the performance of the networks. A
fair comparison of the performance of FFNNs and statisti-
cal methods must be based on tools of similar flexibility
like nearest-neighbor methods, generalized additive
models, CART or logistic regression models with quad-
ratic terms and multiplicative interaction terms, which is
not usually carried out; (5) inefficient comparison with
statistical methods without proving the significance of the
differences between the observed misclassification rates,
and (6) naive application of ANNs to survival data such as
omitting censored cases (which lead to bias), and using
the number of the time interval as an additional input
unit, which causes the estimated survival probabilities not
to depend on the length of the time intervals [45]. Avoid-
ing the above mistakes when reporting the results of
ANNs is a good science, as this will improve the confi-
dence in the reliability of data reported in the scientific lit-
erature by using an unsupervised method such as ANN for
data analysis, whose use has nevertheless been steadily on
the rise?
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