)
Molecular Cancer Bioted Cental

Research

CDDO-Imidazolide inhibits growth and survival of c-Myc-induced
mouse B cell and plasma cell neoplasms

Seong-Su Han!>, Liangping Peng!, Seung-Tae Chung!, Wendy DuBois!,
Sung-Ho Maeng?, Arthur L Shaffer3, Michael B Sporn* and Siegfried Janz*!

Address: 'Laboratory of Genetics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH),
Bethesda, MD, USA, 2Laboratory of Cellular Carcinogenesis and Tumor Promotion, CCR, NCI, NIH, Bethesda, MD, USA, 3Metabolism Branch,
CCR, NCI, NIH, Bethesda, MD, USA, 4Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA and >Markey Cancer Center,
Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA

Email: Seong-Su Han - hanse@mail.nih.gov; Liangping Peng - Ip232 @georgetown.edu; Seung-Tae Chung - chungs@mail.nih.gov;

Wendy DuBois - duboisw@dino.nci.nih.gov; Sung-Ho Maeng - true_vj@hotmail.com; Arthur L Shaffer - as275s@nih.gov;

Michael B Sporn - Michael.B.Sporn@Dartmouth.EDU; Siegfried Janz* - sj4s@nih.gov

* Corresponding author

Published: 07 June 2006 Received: 10 May 2006
Molecular Cancer 2006, 5:22  doi:10.1186/1476-4598-5-22 Accepted: 07 June 2006
This article is available from: http://www.molecular-cancer.com/content/5/1/22

© 2006 Han et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Gene-targeted iMycE mice that carry a His,-tagged mouse Myc(c-myc)cDNA,
MycHis, just 5' of the immunoglobulin heavy-chain enhancer, EL, are prone to B cell and plasma cell
neoplasms, such as lymphoblastic B-cell l[ymphoma (LBL) and plasmacytoma (PCT). Cell lines
derived from Myc-induced neoplasms of this sort may provide a good model system for the design
and testing of new approaches to prevent and treat MYC-driven B cell and plasma cell neoplasms
in human beings. To test this hypothesis, we used the LBL-derived cell line, iMycE#-1, and the newly
established PCT-derived cell line, iMycE-2, to evaluate the growth inhibitory and death inducing
potency of the cancer drug candidate, CDDO-imidazolide (CDDO-Im).

Methods: Morphological features and surface marker expression of iMycE-2 cells were evaluated
using cytological methods and FACS, respectively. mMRNA expression levels of the inserted MycHis
and normal Myc genes were determined by allele-specific RT-PCR and qPCR. Myc protein was
detected by immunoblotting. Cell cycle progression and apoptosis were analyzed by FACS. The
expression of 384 "pathway" genes was assessed with the help of Superarray® cDNA macroarrays
and verified, in part, by RT-PCR.

Results: Sub-micromolar concentrations of CDDO-Im caused growth arrest and apoptosis in
iMycB-1 and iMyct-2 cells. CDDO-Im-dependent growth inhibition and apoptosis were associated
in both cell lines with the up-regulation of 30 genes involved in apoptosis, cell cycling, NFxB
signaling, and stress and toxicity responses. Strongly induced (=10 fold) were genes encoding
caspase |4, heme oxygenase | (Hmoxl), flavin-containing monooxygenase 4 (Fmo4), and three
members of the cytochrome P450 subfamily 2 of mixed-function oxygenases (Cyp2a4, Cyp2b9,
Cyp2c29). CDDO-Im-dependent gene induction coincided with a decrease in Myc protein.

Conclusion: Growth arrest and killing of neoplastic mouse B cells and plasma cells by CDDO-Im,
a closely related derivative of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic
acid, appears to be caused, in part, by drug-induced stress responses and reduction of Myc.
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Background

2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO)
and closely related derivatives, such as CDDO-imida-
zolide (CDDO-Im) [1], are novel synthetic triterpenoids
that exhibit potent in vitro activity against a wide range of
human cancers including lung and ovarian carcinoma [2],
acute myeloid leukemia [3], cutaneous T-cell lymphoma
[3], chronic lymphocytic leukemia (CLL) [4] and multiple
myeloma (MM) [5]. CDDO's anti-neoplastic activity
involves a complex set of biochemical pathways that can
lead, depending on cell type and context, to induction of
cell differentiation and apoptosis [3,5-7], inhibition of
cell growth and proliferation [2], distortion of redox bal-
ance [8], enhancement of TGF-f signaling [9], and sup-
pression of inflammation [10]. The latter can also involve
the non-malignant bystander cells of neoplasia, such as
macrophages, in which treatment with CDDO results in
inhibition of inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) [11,12]. A newly emerging
aspect of tumor inhibition by CDDO with implications
for tumor invasion and metastasis is the repression of col-
lagenase [10].

Among CDDO's pleiotropic effects on cancer cells, induc-
tion of cell death has received the most attention. Killing
of cancer cells by CDDO has been associated with down-
regulation of ¢-FLIP (FLICE inhibitory protein), cleavage
of Bid (BH3 interacting death domain agonist), activation
of caspases 8 and 3, release of mitochondrial cytochrome
¢, change in PPAR-y (proximal proliferator-activated
receptor gamma) expression, and inhibition of NFxB
(nuclear factor-kappa B) [13-17]. CDDO has been shown
to activate extrinsic and intrinsic pathways of caspase-
dependent apoptosis. One theory postulates that CDDO-
induced production of reactive oxygen species is largely
responsible for down regulation of ¢-FLIP, which results
in activation of caspase 8 followed by cleavage of Bid and
disruption of mitochondria [13-15]. Activation of Bax
(Bcl-2 associated X protein) may enhance this response
[6,15]. An alternative theory has linked CDDO-induced
cell death to a caspase-independent distortion of intracel-
lular Ca2+* homeostasis. According to this view, CDDO
causes sustained elevation in cytoplasmic CaZ*, which
leads, in turn, to activation of Ca2+*-dependent enzymes
including apoptosis-mediating endonucleases [18].

B-lineage neoplasms that predictably develop in trans-
genic mice, such as the iMyct* [19] and iMycC®[20] gene-
insertion strains, may be helpful to elucidate the mecha-
nism by which CDDO-Im inhibits human B cell and
plasma cell tumors. To evaluate this possibility, we stud-
ied the effects of CDDO-Im in two cell lines, designated
iMycEr-1 and iMycEr-2. These lines were derived from a
lymphoblastic B-cell lymphoma and plasmacytoma,
respectively, that arose in two different iMycE* mice. Strain
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iMycEt comprises a model of a certain subset of the
human MYC- and mouse Myc-activating t(8;14)(q24;q32)
and T(12;15)(Igh-Myc) translocations [19]. Here we show
that the CDDO-Im-induced killing of the iMyct*-1 and-2
cells was associated with both down-regulation of Myc
protein and changes in the expression of genes that play
important roles in apoptosis, NFkB signaling, and stress
and toxicity responses. These results suggested that
iMycEu-derived cell lines provide a good pre-clinical
model system for the ongoing evaluation of the potential
utility of CDDO-Im in the prevention and treatment of
human B cell and plasma cell tumors.

Results

Features of iMycE/cells

Gene-targeted iMycE* mice contain a single-copy mouse
MycHis (c-myc) ¢cDNA that has been inserted in opposite
transcriptional orientation (5' to 5') just upstream of the
mouse immunoglobulin (Ig) heavy-chain intronic
enhancer Ep. The inserted cDNA also encodes a C-termi-
nal His, tag, which is useful to distinguish message and
protein encoded by MycHis and normal Myc [19]. We have
recently shown that heterozygous transgenic iMycE* mice
that carry one mutated and one normal Igh locus are
prone to mature B cell and plasma cell neoplasms includ-
ing IgM* lymphoblastic B-cell lymphoma (LBL), Bcl-6+
diffuse large B cell lymphoma, and Ig-secreting CD138+
plasmacytoma (PCT) [19]. To study the growth and sur-
vival requirements of iMycE* tumor cells in vitro, we
derived a cell line from a LBL, designated iMycE#-1, and a
PCT, designated iMycE+-2. The features of the iMycEH-1
cells, which over-express MycHis, as expected, have been
described in a previous publication [21]. The features of
the iMycE#-2 cells are described here.

Consistent with their origin from a PCT, the iMycE-2 cells
exhibited the typical cytological features of aberrant plas-
mablasts (Fig. 1A). FACS analysis using a panel of anti-
bodies to cell surface markers (Fig. 1B) showed that the
iMycEr-2 cells were positive for CD138 (syndecan 1),
whereas CD40, CD90 (Fas) and IgD were detectable at
lower levels. Expression of IgM showed a biphasic distri-
bution, a feature that is not uncommon among mouse
PCT lines that consist of small lymphoid, predominantly
diploid cells (IgMhigh) and large plasmacytoid, predomi-
nantly tetraploid and often bi-nucleated cells (IgMlow/-).
In agreement with the presence of surface Ig, Southern
blotting using JH and Jx probes revealed rearrangements
at the Ig heavy-chain and « light chain loci (not shown).
Western blotting of Myc using antibody that detects both
MycHis and normal Myc (Fig. 1C) demonstrated elevated
levels of Myc in iMycE+-2 cells (lane 4), comparable to the
levels in iMycE+-1 cells (lane 3) and a randomly chosen
primary LBL (lane 2). In contrast, MACS-purified B220+
splenocytes from young, tumor-free iMycE* mice, which
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Features of iMycE!-2 cells. A, Cytofuge specimen stained according to May-Griinwald-Giemsa. A bi-nucleated cell (arrow)
and a cell undergoing mitosis (arrowhead) adjoin neoplastic plasmablasts containing the typical paranuclear hof of neoplastic
plasmablasts and plasma cells (asterisk). B, B-cell surface marker expression determined by FACS (green lines) compared to
isotype controls (purple histograms). C, Western analysis of Myc protein using -actin as loading control. D, RT-PCR analysis
of Myc and MycHis mRNA compared to -actin message.
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were included as control (lane 1), contained low amounts
of Myc protein. Molecular cytogenetic studies of the
iMycEu-2 cells and the primary tumor from which these
cells were derived showed that, during the establishment
of the cell line, the iMycE#-2 cells had changed the mech-
anism of constitutive Myc expression: in the primary
tumor Myc was encoded by the MycHis transgene, whereas
in the cell line Myc was encoded by the normal Myc gene,
which was deregulated because of a T(12;15)(Igh-Myc)
translocation that was not present in the primary tumor
[22]. In accordance with this, allele-specific RT-PCR dem-
onstrated that unlike iMycFt-1 cells, iMycP-2 cells
expressed normal Myc (Fig. 1D). These studies established
that despite their common origin in the same mouse
strain, the iMycE#-1 and-2 cells comprise different types of
B cells (LBL versus PCT) that rely on different Myc genes
(Myctis versus rearranged, normal Myc) to drive cell
growth and proliferation.

CDDO-Im inhibits proliferation and survival of iMycE«-1
and-2 cells

The anti-proliferative effects of CDDO and CDDO-Im in
human cancer cell lines are well documented [2,3,11,16].
To evaluate the potency with which CDDO-Im inhibits
the proliferation of mouse iMycE#-1 and-2 cells, we
treated these cells for 24 hrs with a dose range of CDDO-
Im and followed up with the MTS assay. Although CDDO-
Im caused a significant reduction in the proliferation of
both cell lines, the iMycEt-1 cells were more susceptible
than the iMycEr-2 cells (Fig. 2A). Whereas 500 nM CDDO-
Im diminished the growth of iMycF#-1 cells by 85%, this
concentration was only marginally effective in iMycE+-2
cells. In these cells, growth reduction by ~80% required 5
UM CDDO-Im; i.e., approximately ten times the concen-
tration required for an equivalent reduction in the iMyct+-
1 cells.

Treatment with CDDO-Im resulted in a net decrease in
cell numbers (Fig. 2A), providing indirect evidence that
the compound induced cell death. To evaluate this fur-
ther, we determined cell cycle progression of iMycEt-1
and-2 cells using flow cytometry. We chose a CDDO-Im
dose of 400 nM for the iMyct#-1 cells and a dose of 1 uM
for the iMycEr-2 cells for this and all subsequent experi-
ments. The exposure time of the cells to the compound,
which was also kept constant in all subsequent experi-
ments, was 24 hrs. FACS analysis of propidium iodide-
stained cells for cellular DNA content (Fig. 2B) showed a
decreased proportion of CDDO-Im-treated cells in the S
and G2/M phases of the cell cycle (23% in iMycF#-1; 6%
in iMycEt-2) compared to untreated cells (59% in iMycE-
1; 61% in iMycEr-2). Furthermore, treated samples exhib-
ited an increase in cells with less than diploid DNA con-
tent (53% in iMycft-1; 82% in iMycFt-2) relative to
controls (11% iMycEt-1; 8% iMycF+-2).
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Since an increase in the sub-G0/G1 DNA content is usu-
ally associated with apoptosis, we used flow cytometry to
determine activated caspase 3 (death executioner, Fig. 2C)
and annexin V (indicator of apoptosis-associated cell
membrane damage, Fig. 2D) in iMycf-1 and-2 cells.
Treatment of iMycE#-1 cells with CDDO-Im resulted in a
7.5-fold increase in cleaved caspase-3 reactivity, from 2%
to 15%. The increase in iMyct#-2 cells was 3.8-fold: 15%
versus 57% (Fig. 2C). The corresponding elevation in
annexin V reactivity (annexin*AAD+) was 2.9-fold (44%
versus 15%) in the iMycEt-1 cells and 3-fold (21% versus
7%) in the iMycf-2 cells (Fig. 2D). The annexintAAD-
fraction (incipient apoptosis) and the annexin-AAD* frac-
tion (dead cells) displayed similar CDDO-Im-induced
increases (not shown). These results were confirmed by
fractionating genomic DNA on ethidium bromide-stained
agarose gels, which demonstrated the typical nucleosomal
DNA ladder in cells treated with CDDO-Im, but not in
untreated cells (Fig. 2E).

CDDO-Im causes loss of Myc in iMycE4-1 and-2 cells
Because Myc is crucial for growth and proliferation of nor-
mal and malignant B cells in humans and mice [23], we
evaluated whether Myc expression in iMycE* tumor cells
might be negatively affected by CDDO-Im. We treated
both cell lines with the compound followed by prepara-
tion of cell lysates and Western blotting for Myc, using
antibody that detects both MycHis and normal Myc (Fig.
3A top). Comparison of Myc and B-actin, which was
included to ascertain equal protein loading, showed that
CDDO-Im reduced Myc expression in both cell lines; by a
factor of ~3 in iMycE-1 and ~5 in iMycFt-2. To determine
whether down regulation of Myc protein was associated
with a drop in Myc message, we performed allele-specific
RT-PCR of MycHisand Myc mRNA. Treatment with CDDO-
Im resulted in a reduction of Myc transcripts in iMyct#-2
cells but did not affect MycHis levels in iMycE#-1 cells (Fig.
3A bottom). In contrast, the small amount of Myc mRNA
present in iMycFt-1 cells was abrogated by CDDO-Im.

These results were further validated by two independent
gPCR analyses that used allele-specific primers to distin-
guish Myctisand Myc in the case of the iMycE#-1 cells (Fig.
3B left), but only Myc primers in the case of the iMycE+-1
cells (Fig. 3B right). Consistent with the results in Fig. 3A,
the MycHis levels (white columns) in the iMycE#-1 cells
were largely unchanged upon treatment with CDDO-Im,
whereas the Myc levels (black columns) exhibited a signif-
icant reduction. Furthermore, the Myc levels in the iMycE!-
2 cells dropped sharply after exposure to CDDO-Im.
These findings indicated that CDDO-Im suppresses Myc
protein levels by a post-transcriptional mechanism in the
iMycEu-1 cells, but a more complicated mechanism that
involves transcriptional and post-transcriptional changes
in the iMycEr-2 cells. Regardless of the precise molecular
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Figure 2

CDDO-Im-dependent growth arrest and apoptosis in iMycE!-1 and-2 cells. A, MTS assay of cell proliferation, demon-
strating growth inhibition in iMycE4-1 and-2 cells by 2200 nM and =500 nM CDDO-Im, respectively. Low concentrations of
CDDO-Im (100-200 nM) caused growth promotion in iMycEt-2 cells by an unknown mechanism. B, Cell cycle arrest and
increased number of cells with sub-GO/G| DNA content, as determined by FACS. The percentage values shown above the his-
tograms indicate the fraction of cells with sub-G0/G1, GO/GI and S/M DNA content, respectively. C, FACS analysis of cells
containing activated caspase 3 upon treatment with CDDO-Im (green lines) or left untreated (purple histograms). D, FACS
analysis of CDDO-Im treated cells (open columns) and untreated cells (striped columns) undergoing apoptosis based on
annexin V and 7-AAD reactivity. E, Fragmentation of genomic DNA detected by electrophoresis in an agarose gel stained with

ethidium bromide.

mechanisms, the reduction in Myc may be an important
principle by which CDDO-Im inhibits iMycE* tumor cells.

CDDO-Im upregulates 30 genes in iMycE/-1 and-2 cells

c¢DNA macroarrays on nylon filter membranes provide a
useful screening tool to evaluate the expression of selected
pathway genes in mouse cancer cells. To that end, we pre-
pared RNA from iMycE#-1 and-2 cells that were either
treated with CDDO-Im or left untreated (control). RNA
samples were reverse transcribed in the presence of 32P-
dUTP and hybridized to the gene arrays. This was fol-
lowed by the determination of the individual gene expres-
sion levels and the effects of treatment with CDDO-Im.
All samples were evaluated on four different arrays, each
containing 96 genes involved in cell cycle regulation,
apoptosis, stress and toxicity responses, and NF«xB signal-

ing. These arrays were selected because previous work
indicated that CDDO-Im can cause growth inhibition
(cell cycle array) [2,11,16], cell killing (apoptosis array)
[3,4,6,7,13-18], anti-inflammatory effects (NFkB array)
[11,12,24] and redox imbalance (stress and toxicity array)

[8].

Using stringent criteria for array analysis (=2-fold expres-
sion change reproduced on three or more arrays), we
identified a total of 81 differentially expressed genes that
were discordantly regulated in CDDO-Im-treated iMycEH-
1 and-2 cells. The genes were either up or down in either
one of the cell lines, but unchanged in the other line
(Additional File 1). The distribution of these genes among
the four arrays is depicted in Fig. 4. In iMycEr-1 cells, 16
genes were up and 5 genes were down. In iMycEr-2 cells,
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28 genes were up and 32 genes were down. Thus, the
iMycFr-2 cells responded to CDDO-Im treatment with
approximately three times as many changes (60 genes)
than the iMycEt-1 cells did (21 genes). The distribution of
the differentially expressed genes among the four arrays
was even: 20 (25%) in the cell cycle array, 23 (28%) in the
apoptosis array, 16 (20%) in the NFxB array, and 22
(27%) in the stress and toxicity array. Up-regulated genes
(44/81, 54%) slightly outnumbered down-regulated
genes (37/81, 46%). In agreement with the RT-PCR and
qPCR data presented in Fig. 3, Myc was suppressed by
CDDO-Im on the cDNA arrays in the iMycE*-2 but not the
iMycEu-1 cells.

CDDO-Im-induced gene expression changes that
occurred concordantly in both cell lines were limited to
30 genes. Interestingly, all of these were up-regulated.
They are listed in Table 1 and their location on the array
membranes is indicated in Figure 5. Five of 30 genes
(underlined in Fig. 5 right) were present on two different
arrays, adding confidence to the analysis: Casp8, Crebl,
Gadd45a, Lta and Tnfrsf11a. Six of 30 genes exhibited a 10-
fold or higher increase upon exposure of cells to CDDO-
Im. Three of these belonged to the subfamily 2 of cyto-
chrome P450 mixed function oxygenases (Cyp2a5,
Cyp2b9, Cyp2c29) and the other three encoded flavin-con-
taining monooxygenase 4 (Fmo4), heme oxygenase 1
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details.

(Hmox1) and caspase 14 (Casp14), respectively. To verify
these observations with an independent method, we per-
formed RT-PCR using the primer pairs and reaction con-
ditions listed in Additional File 2. The CDDO-Im-
dependent elevation of all six genes was readily confirmed

(Fig. 6).

cDNA microarray analysis reveals additional gene
expression changes

The Mouse Lymphochip, a microarray of hematopoietic
mouse cDNA clones, provides a tool for extending the
above findings at the level of global gene expression [25].
To evaluate the CDDO-Im-dependent changes in the

iMycEt cell lines, RNA was obtained from treated and
untreated cells, labeled with Cy5-dUTP, and hybridized to
the cDNA microarray. An RNA control pool labeled with
Cy3-dUTP was co-hybridized to the same array and used
as a common denominator by which all samples were
compared to one another. Further information on micro-
array make-up and data interpretation is available on-line
[26].

The analysis of three independent RNA samples of iMycEH-
1 and-2 cells revealed two additional genes (not present
on the Superarrays) that were concordantly up-regulated
upon treatment with CDDO-Im:Hck (hemopoietic cell
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Table I: Concordantly up-regulated genes upon treatment with CDDO-Im

Gene symbol Gene name Gene function Cell line Array! Pos.2
iMyc-1  iMyc-2
Arc activity regulated cytoskeletal-associated protein CARD family 24 47 Apo Cl
Bcl2 B-cell leukemia/lymphoma 2 Bcl2 family 22 29 Apo c2
Biklk Bcl2-interacting killer-like (Bik) Bcl2 family 24 2.0 Apo B3
Casp8 caspase 8 caspase family 5.5 4.6 Apo H5
Tox Gl
Casp9 caspase 9 caspase family 10 6.5 Apo Bé6
Caspl4 caspase |4 caspase family 15 23 Apo C5
Crebl cAMP responsive element binding protein | transcription factor 2.1 28 Cycle  EI
NFxB  El
Csf2 colony stimulating factor 2 cytokine 34 5.9 NFkB Gl
Cyp2a4 cytochrome P450, family 2, subfamily a, polypeptide 5 oxidative/metabolic stress 25 20 Tox A3
Cyp2b9 cytochrome P450, family 2, subfamily b, polypeptide 9 oxidative/metabolic stress 14 14 Tox C3
Cyp2c29 cytochrome P450, family 2, subfamily ¢, polypeptide 29 oxidative/metabolic stress 14 434 Tox D3
Cyp4al0 cytochrome P450, family 4, subfamily a, polypeptide 10 oxidative/metabolic stress 4.9 45 Tox F3
Egrl early growth response | oxidative/metabolic stress 2.5 3.9 NFkB A2
Fmo4 flavin containing monooxygenase 4 oxidative/metabolic stress 286 145 Tox D5
Gadd45a growth arrest and DNA-damage-inducible 45 alpha ATM/p53 pathway 24 2 Apo E7
Tox F5
Gstm| glutathione S-transferase, mu | oxidative/metabolic stress 4.4 16 Tox Cé
Gstm3 glutathione S-transferase, mu 3 oxidative/metabolic stress 24 33 Tox Dé
Hmox | heme oxygenase (decycling) | oxidative/metabolic stress 10 12 Tox E6
Ifnal interferon alpha family, gene | cytokine 4.9 79 NFkB A3
Ifng interferon gamma inflammation 2.0 28 NFxB  C3
b interleukin | beta inflammation 4.0 Il NFkB A4
Ir2 interleukin | receptor, type Il inflammation 2.1 2.0 NFkB  C4
Lta lymphotoxin A TNF ligand family 4.1 65 Apo G7
NFkB  E5
Nol3 nucleolar protein 3 (apoptosis repressor with CARD domain)  apoptosis/necrosis 64 84 Apo E8
Scya3 chemokine (C-C motif) ligand 3 (Mip-I alpha) inflammation 5.5 25 Tox  HIO
Scybl0 chemokine (C-X-C motif) ligand 10 inflammation 2.7 4.3 Tox Bl
Tnfrsfl la tumor necrosis factor receptor superfamily, member | la TNF ligand family 27 102 Apo D9
(RANK)
NFkB  GIlI
Tnfrsf25 tumor necrosis factor (ligand) superfamily, member 6 (CD178, apoptosis/necrosis 9.6 37 Apo F9
CD95L, Fasl, gld)
Tnfsfé tumor necrosis factor (ligand) superfamily, member 6 TNF ligand family 12 82 Tox  HII
Ugtlal UDP-glucuronosyltransferase | family, member | DNA damage/repair 4.6 6.8 Tox CI2

IGEArray Q series mouse cDNA gene arrays (SuperArray Bioscience Corporation, Gaithersburg, MD) included the MM-001 cell cycle array
(Cycle), MM-002 apoptosis array (Apo), MM-012 stress and toxicity array (Tox) and MM-016 NF«B signaling array (NFxB).

2Array position, as indicated in Figure 3

kinase) and Spp1 (secreted phosphoprotein 1). It further
uncovered five genes that were concordantly down regu-
lated: Akt2 (thymoma viral proto-oncogene 2), Bat2
(HLA-B associated transcript 2), Pim1 (proviral integra-
tion site 1), Psmb9 (proteosome subunit, beta type 9) and
Sdcl (syndecan 1). One of these genes (Akt2) was
included (and also found to be reduced) on the Superar-
rays, but it failed to reach the confidence criteria for signif-
icant change. While a more detailed analysis of the
microarray results will be presented in a future publica-
tion, these results further strengthened the contention
that CDDO-Im causes numerous gene expression
changes, up and down, in the iMycE*-1 and-2 cells.

CDDO-Im decelerates pristane-induced plasmacytomas in
iMycE+ mice

The growth inhibiting effects of CDDO-Im in the cell lines
indicated that this compound might also inhibit de novo
development of Myc-driven B cell and plasma cell tumors
in vivo. To evaluate this, we primed congenic BALB/
c.iMycE* mice with a single i.p. injection of 0.2 ml pristane
to undergo inflammation-dependent plasmacytomagene-
sis in the peritoneal cavity [27]. While only 1 of 14 mice
(7.14%) treated with CDDO-Im developed PCT by day 30
of tumor induction, 3 of 11 mice (27.3%) treated with the
vehicle control harbored these tumors (Fig. 7 left). A small
CDDO-Im-dependent reduction in tumor incidence was
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Figure 5

CDDO-Im-induced up-regulation of genes in both iMycE!-1 and-2 cells. Shown are cDNA arrays containing 96 genes
involved in cell cycling (top row), apoptosis (2"d row), stress and toxicity responses (34 row) and NF«B signaling (bottom
row). CDDO-Im-treated and untreated samples are presented as pairs. Indicated by red squares are CDDO-Im-induced genes.
The corresponding controls are indicated by black squares to the left. Gene designations are given in the pink text box on the
right. Underlined genes were confirmed on two different arrays. Compare Table | for additional details.
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Verification of gene array results using RT-PCR.
Shown are ethidium bromide-stained PCR fragments of six
different genes found to be up-regulated 10-fold or more in
CDDO-Im-treated iMycE#-1 and-2 cells. The iMycEt-1 and-2
cells had been treated for 24 hrs with 0.4 upM and | uM
CDDO-Im, respectively. The fragments were compared to
those detected in untreated cells using the same assay condi-
tions. See Table | for further details and Additional File 2 for
PCR primers and reaction conditions.

also observed on day 60 post tumor induction: 9/14
(64.3%) mice in the CDDO-Im group versus 8/11
(72.3%) mice in the control group (Fig. 7 right). Although
none of these differences was statistically significant,
owing in large part to the small study groups in this pilot
experiment, the apparent deceleration of PCT on day 30
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Figure 7

CDDO-Im inhibits peritoneal plasmacytomas in
iMycE! gene-insertion mice. Mice were injected i.p. on
day | with 0.2 ml pristane and either treated with CDDO-Im
(100 pg per 50-ul i.p. injection, n = 14) or vehicle control (50
ul PEG 400, n = | I). Treatment commenced on day 7 and
continued three times per week throughout the observation
period (60 days). The diagnosis of plasmacytoma was estab-
lished on days 30 and 60 post pristane, using stained ascites
cell specimens. Tumor incidence was compared using 2 anal-
ysis, the results of which (probability values, p) are indicated
above the columns.

post-pristane suggested that CDDO-Im inhibits tumor
development in vivo.

Discussion

This study has demonstrated that CDDO-Im causes
growth arrest and apoptosis in the Myc-induced mouse B
lymphoma and plasmacytoma cell lines, iMycF#-1 and
iMycEu-2. As reported by other investigators for human
cancer cell lines, cell killing by CDDO-Im, which is gener-
ally more potent than the parental compound CDDO
[12], was fast (within 24 h) and efficient (at sub-micro-

Page 10 of 15

(page number not for citation purposes)



Molecular Cancer 2006, 5:22

molar concentrations). CDDO-Im-induced apoptosis
coincided with a decrease in Myc protein levels and a
striking induction of the transcription of genes that are
involved in drug metabolism and oxidative stress
responses. These genes included Hmox1 (heme oxygenase
1), Fmo4 (flavin-containing monooxygenase 4) and three
representatives of the cytochrome P450 subfamily 2 of
mixed-function oxygenases: Cyp2a4, Cyp2b9 and Cyp2c29.

The 10 to 12-fold elevation of Hmox1 in CDDO-Im-
treated iMycEt cells was consistent with previous reports
on the induction of this mouse gene under conditions of
chronic [28] or acute oxidative stress [29] and the up-reg-
ulation of human HMOX1 by oxidative stress [30,31].
Our finding was also in agreement with a recent study
showing that CDDO-Im induces oxidative stress in the
neoplastic plasma cells that comprise human MM [8]. In
MM, CDDO-Im treatment led to the depletion of glutath-
ione, increased production of reactive oxygen species, and
reduction in mitochondrial membrane potential, all indi-
cations of heightened oxidative stress. Co-treatment of
MM cells with reducing agents, such as N-acetyl-L-cysteine
and catalase, alleviated CDDO-Im-dependent oxidative
stress, coincident with the elevation of FLICE (Fas-associ-
ated death domain-like interleukin-1-converting enzyme)
and inhibition of caspase-8 activation [8]. Additional
study is warranted to decide whether CDDO-Im-mediated
killing of mouse iMycE+ tumor cells relies on a mechanism
similar to that operating in human MM.

Unlike induction of cytochrome P450 genes, which is
common in drug-exposed cells, the more than 100-fold
elevation in Fmo4 message in CDDO-Im-treated iMyct+
cells was surprising, because the flavin-containing
monooxygenase family of genes in humans, including
FMO4, is widely believed to be un-inducible by drugs. Fla-
vin-containing monooxygenase (FMO) proteins are
NADPH-dependent microsomal enzymes that catalyze
the oxygenation of compounds containing nucleophilic
heteroatoms (N-, S-, P- and others) using two-electron
transfer chemistry [32]. The broad substrate specificity of
FMOs, whose involvement in the metabolism of xenobi-
otics is increasingly recognized [33], suggests that CDDO-
Im might be a substrate of the FMO pathway. More work
is required to elucidate the molecular mechanism by
which Fmo4 is over-expressed in CDDO-Im-treated
iMycEt tumor cells and by which Fmo4 might contribute
to the catabolism of this compound.

CDDO-Im-treated iMyctH cells contained elevated levels
of mRNA encoding caspase 14, an obscure member of the
caspase family of proteins. Casp14 was up-regulated 15-
fold in iMycEr-1 cells and 23-fold in iMycEr-2 cells. Little
is known about circumstances that lead to increased
Casp14 expression in mice. Consistent with a possible

http://www.molecular-cancer.com/content/5/1/22

tumor-suppressing function in skin, Casp14 was recently
shown to be down-regulated in UV-induced skin carcino-
genesis [34]. In humans, caspase 14 is mainly found in
epidermal cells, in which it can be induced by epigallo-
catechin-3-gallate, the most abundant tumor-preventive
polyphenol in green tea [35]. Unlike human caspase 14,
which is a cytokine activator, mouse caspase 14 is a regu-
lator of apoptosis, resembling in enzyme activity and sub-
strate preference apical apoptotic caspases, such as caspase
8 [36]. Considering that activation of caspase 8 has been
associated with CDDO-induced killing in human tumor
cells [13-15,37], it is conceivable that caspase 14 plays a
similar role in apoptosis induction in mouse iMycE* cells.
However, this has not yet been shown.

The drop in Myc protein in both iMyctt cell lines sug-
gested that CDDO-Im-induced growth inhibition and
apoptosis is regulated, in part, at the level of Myc turnover.
Stabilization of Myc has been shown to be key in the
growth and survival of Myc-induced B-cell neoplasms in
Ep-Myc mice [38,39], a widely used transgenic model sys-
tem of the human endemic Burkitt lymphoma t(8;14)/
mouse plasmacytoma T(12;15) translocation [40]. The
precise mechanism by which CDDO-Im down-regulates
Myc in iMyctH cells remains to be elucidated. Given the
complexity of Myc protein regulation, this mechanism
may involve changes in the PI3K/Akt signaling cascade,
specifically in the mammalian target of rapamycin
(mTOR) and glycogen-3-synthase beta (G3K-3f3) [41-45]
components of this cascade. Changes in pathways that
include the S-phase kinase-associated protein 2 (Skp2)
[46,47] and F-box and WD-40 domain protein 7 (Fbxw?7)
[48] may also play a role.

Considering Myc's dual ability to activate and repress the
transcription of countless target genes [23,49], it is possi-
ble that the CDDO-Im-induced loss of Myc is responsible,
at least in part, for the observed gene expression changes
in the two iMycEt cell lines. According to this hypothesis,
the reduction of Myc would relieve the Myc-dependent
repression of negatively regulated targets (resulting in
their up-regulation) and diminish the activation of posi-
tively regulated targets (causing their down-regulation).
Of 32 concordantly up-regulated genes in CDDO-Im-
treated iMycE* cells (30 on the Superarray + 2 on the Lym-
phochip), 9 (28%) genes are known Myc targets: Crebl,
Bcl2, Casp8, Casp9, Gadd45a, Hmox1 and Ugtlal [50].
Likewise, one of the five (20%) concordantly down-regu-
lated genes detected on the Lymphochip is a validated
Myc target: Akt2. Additional studies are required to distin-
guish a simple association of gene expression change and
drop in Myc from a cause-and-effect relationship of Myc
levels and gene expression.
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Conclusion

CDDO-Im, the C,; imidazolide derivative of CDDO,
inhibits tumor cells by a complex mechanism that may
rely, in part, on induction of stress responses and down-
regulation of Myc. Due to the elusiveness of the cellular
targets of CDDO-Im, or its metabolites, the precise molec-
ular mechanism by which the compound affects tumor
cells has not yet been elucidated. CDDO-Im is thus at
present a promising yet orphan drug candidate for cancer
treatment and prevention [1]. A recent study on the col-
laboration of CDDO-Im with the proteasome inhibitor
PS-341 (bortezomib) in apoptosis induction in neoplastic
plasma cells has underscored the potential clinical utility
of CDDO-Im [5]. The present paper suggests that trans-
genic mouse models of plasma cell neoplasia, such as the
peritoneal PCT that can be readily induced in BALB/
c.iMycEt mice [27], may be helpful to further define the
mechanism by which CDDO-Im inhibits plasma cell
tumors in human beings.

Methods

CDDO-Im

CDDO-Im was synthesized by Dr. Tadashi Honda (Dart-
mouth College, Hanover, NH) [51] and provided by Dr.
Edward Sausville (Developmental Therapeutics Program,
NCI, Bethesda, MD) through the Rapid Access to Interven-
tion Development (RAID) Program. For biological exper-
iments with iMycEt-1 and-2 cells, the compound was
dissolved in DMSO and added to cells in vitro such that
the final DMSO concentration did not exceed 0.1% v/v.

Derivation and characterization of iMycE“-1 and-2 cells

The features and origin of iMyct#-1 cells have been
described elsewhere [21]. The iMycE®-2 cells were derived
from a spontaneous plasmacytoma that arose in an
iMycEt mouse on the mixed genetic background of segre-
gating C57BL/6 and 129/Sv] alleles. Strain iMycE* devel-
ops a high incidence of B cell and plasma cell tumors of
different histological types, with plasmacytomas being
relatively rare (~20% of tumors). Tissue samples obtained
at autopsy were processed for histopathology, which
established the diagnosis of plasmacytoma using criteria
described in the Bethesda classification of mouse B-cell
lineage lymphomas [52]. The iMycFt-2 cells were main-
tained in vitro at 37°C and 5% carbon dioxide in RPMI
1640 cell culture medium supplemented with 10% fetal
calf serum, 200 mM L-glutamine and 50 uM 2-mercap-
toethanol (Gibco-BRL, Rockville, MD). For cytological
analysis, cytofuge specimens were stained according to
May-Griinwald-Giemsa and inspected by microscopy. For
flow cytometry, single-cell suspensions were stained and
analyzed on a FACSort® using the CELLQuest™ software
(BD Pharmingen, San Diego, CA). Rat anti-mouse CD16/
CD32 was used to block Fcyll and Feylll receptors. Anti-
bodies to mouse CD138 (catalog number 553712), CD40
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(553787), Fas (CD90, 554255), IgD (553438) and IgM
(53519) were purchased from BD Biosciences.

Western blotting of Myc

Whole cell lysates were obtained by re-suspending pellets
of 107 cells at 4°C for 30 min in RIPA buffer (1% NP-40,
0.5% sodium deoxycholate, 0.1% SDS, 10 ng/ml PMSF,
0.03% aprotinin, 1 uM sodium orthovanadate). The
lysates were centrifuged for 6 min at 14,000 g and the
supernatants were stored at-70°C as whole cell extract.
Protein concentrations of extracts were determined using
the BCA kit (Bio-Rad, Richmond, CA). For Western blot-
ting, 40 g of extract was resolved electrophoretically in
denaturing 10% SDS-PAGE gels and transferred by elec-
troblotting to nitrocellulose membranes. Membranes
were probed with antibody to Myc (sc-764) from Santa
Cruz Biotechnology (Santa Cruz, CA) using titers from
1:1000 to 1:5000. The positions of the proteins were vis-
ualized with horseradish peroxidase-conjugated second-
ary antibody (Amersham, 1:5000) wusing the
chemiluminescence detection kit from Amersham. To
confirm equal loading, the membranes were stripped and
re-probed using an antibody specific for B-actin (sc-8432,
Santa Cruz Biotechnology).

Allele-specific RT-PCR of Myc and MycHis mRNA

For semi-quantitative determination of Myc and MycHis
mRNA, total RNA was isolated using TRIzol (Sigma, St.
Louis, MO, USA). The integrity of RNA was verified by
electrophoresis. Double stranded cDNA was synthesized
from 1 pg of total RNA, using the AMV Reverse Tran-
scriptase kit (Roche, Indianapolis, IN). A common 5'
primer for both MycHis and Myc (5'-TCT CCA CTC ACC
AGC ACA AC-3') was combined with a specific 3' primer
for MycHis (5'-CCT CGA GIT AGG TCA GIT TA-3') and
Myc (5'-ATG GTG ATG GTG ATG ATG AC-3') to distin-
guish the two messages. Thermal cycling conditions were
as follows: 95°C for 5 min (initial template denaturation)
followed by 20 cycles of amplification at 57°C (primer
annealing), 72°C (extension) and 95°C (melting), each
for 1 min. PCR amplification of Aktb cDNA was per-
formed for each sample as a control using the following
primer pair: 5'-GCA TTG TTA CCA ACT GGG AC-3' (for-
ward) and 5-AGG CAG CTC ATA GCT CIT CT-3'
(reverse). PCR products were analyzed by electrophoresis
in 1% agarose gel and visualized by staining with ethid-
ium bromide.

In some experiments, Myc and MycHis mRNA were deter-
mined using real-time, quantitative RT-PCR (qPCR) using
the SYBR Green I method on the Light Cycler (Roche)
with attendant software for analyzing fluorescence emis-
sion data. The reaction volume (20 pl) contained 100 ng
cDNA, the Light Cycler Fast Starter mix, 1 mM MgCl, and
primers. Thermal cycling conditions were as follows:
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95°C for 10 min (initial template denaturation) followed
by 40 cycles of amplification at 57°C (primer annealing),
72°C (extension) and 95°C (melting), each for 1 min.
PCR amplification of Gapd cDNA was performed as con-
trol.

Proliferation and cell cycle analysis

Proliferation was determined with the help of the "MTS"
Cell Titer 96 aqueous non-radioactive cell proliferation
assay from Promega (Madison, WI) following the manu-
facturer's protocol. Briefly, 3 x 10 iMyct* 1 or-2 cells were
re-suspended in 100 pl RPMI 1640 supplemented with
10% FBS, 100 U/ml penicillin, 100 pg/ml streptomycin
and 25 pg/ml LPS and placed into 96-well flat-bottom
microtiter plates (Costar, Cambridge). After incubation
for 20 hrs at 37°C and 5% CO,, 20 pul of MTS/PMS solu-
tion was added to each well. The cells were incubated for
another 4 hrs and the absorbance at 490 nm was meas-
ured using an ELISA reader. For cell cycle analysis, cells
were stained with 50 ug/ml propidium iodide in 0.1%
sodium citrate and 0.1% Triton X100 and then analyzed
on a Beckman Coulter FC500.

Apoptosis assays

Programmed cell death was evaluated with the assistance
of the DNA fragmentation assay and FACS analysis of pro-
pidium iodide (PI), annexin V, and caspase-3 reactivity.
For the detection of nucleosomal DNA fragmentation,
DNA was extracted using the Puregene kit (Gentra Sys-
tems, Minneapolis, MN) and fractionated by electro-
phoresis on 1.2% agarose gels containing ethidium
bromide. For the determination of cells with sub-G0/G1
DNA content, cells were re-suspended in PI/Rnase buffer
(BD Pharmingen, San Diego, CA) for 20 min at 37°C in
the dark, followed by FACS analysis. Annexin-V reactivity
was determined with a phycoerythrin (PE)-labeled anti-
body (BD Pharmingen) in cells co-stained with 7-AAD (7-
amino-actinomycin D). This distinguishes dying cells
(annexin*AAD-) from dead cells (annexin*tAAD*). Acti-
vated caspase 3 was determined with a FITC-labeled anti-
body from BD Pharmingen.

Gene expression profiling on cDNA macroarrays

The relative mRNA expression of genes involved in regu-
lation of apoptosis, cell cycle progression, NFkB signaling,
and cellular stress and toxicity responses was analyzed
with GEArray (SuperArray Inc., Bethesda, MD) according
to the manufacturer's protocol. Cells were treated for 24
hrs with 0.4 mM and 1 mM CDDO-Im, respectively, fol-
lowed by preparation of total RNA using TriReagent
(Sigma). Five ug from each sample were reverse tran-
scribed into 32P-labeled cDNA using MMLV reverse tran-
scriptase (Promega, Madison, WI) and 32P-dCTP (NEN,
Boston, MA). The resulting cDNA probes were hybridized
to gene-specific cDNA fragments spotted in quadrupli-
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cates on the GEArray membranes. After stringent washing
of the arrays, the signal of the hybridized spots was meas-
ured with a STORM Phosphorlmager (Molecular Dynam-
ics, Sunnyvale, CA) and normalized to the signal of the
housekeeping gene Gapd. Array results on six CDDO-Im
inducible genes were validated using semi-quantitative
RT-PCR.

Gene microarray hybridization and analysis

c¢DNA made from total RNA (50 pg) from iMycE#-1 and-2
cells was labeled with cyanine 5-conjugated dUTP (Cy5)
and cDNA made from pooled mouse cell line RNA (50
ug) was labeled with cyanine 3-conjugated dUTP (Cy3).
Microarray hybridizations were performed on Mouse
Lymphochip microarrays [53]. After washing, the slides
were scanned using an Axon GenePix 4.0 scanner (Axon
Instruments Inc., Union City, CA). After normalization,
those elements that failed to meet confidence criteria
based on signal intensity and spot quality were excluded
from analysis. In addition, data were discarded for any
gene for which measurements were missing on >30% of
the arrays or were not sequence-verified. The Cy5:Cy3
intensity ratios of the remaining spots were log, trans-
formed. To compare normal samples, hierarchical cluster
analysis was performed using the Gene Cluster and
Treeview programs [54].

Plasmacytoma induction in iMycE/ mice treated with
CDDO-Im

Transgenic iMyctt mice on the PCT-susceptible back-
ground of BALB/c were fed Purina Mouse Chow (PMI
Feeds, St Louis, MO) and acidified water ad libitum. All
experiments were performed in a conventional barrier-
protected colony under NCI Animal Study Protocol LG-
028. PCT were induced with a single i.p. injection of 0.2
ml pristane (Aldrich, Milwaukee, WI) on day 1. Beginning
on day 7 post-pristane and continuing throughout the
observation period of 60 days, primed mice of this sort (n
= 25) were treated with three weekly i.p. injections of
either 50 ul CDDO-Im solution (2 mg/ml polyethylene
glycol 400 [PEG 400]) (n = 14) or 50 ul vehicle control
(PEG 400, n = 11).

PCT were diagnosed on days 30 and 60 post pristane by
finding 10 or more hyperchromatic, enlarged, aberrant
plasma cells in cytofuged preparations of ascites cells. In
mice where there were less than 50 tumor cells per slide, a
confirmatory smear was obtained.
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