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Abstract
Background: In eukaryotic cells, the genomic DNA is packed with histones to form the
nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important
role in the control of specific gene expression. Mounting evidence has established that histone
deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in
variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular
mechanisms of the anti-cancer effects of these inhibitors have yet to be understood.

Results: Here, we report that a key determinant for the susceptibility of cancer cells to histone
deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment.
Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is
often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as
valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and
apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-
dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate
treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from
butyrate-induced apoptotic cell death.

Conclusion: Our study demonstrates that although the primary target of histone deacetylase
inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that
determines their fate of survival.

Background
In eukaryotic cells, histones play an important role in
transcription control by packing the genomic DNA into
an array of nucleosomes and higher order chromatin
structure [1-3]. The amino-terminal tails of histones are
rich in positively charged lysine residues which form tight
contacts with the negatively charged DNA backbones,
restricting the accessibility of DNA for the binding of tran-
scription regulators [4,5]. This restrictive milieu needs to

be relieved to allow the regulation of chromatin structure
and function, and ultimately for gene activation to occur,
which often is achieved through acetylation of the histone
tails by histone acetyltransferases [6-9]. On the other
hand, deacetylation of the histone tails by histone
deacetylases (HDAC) restores the histone restriction,
resulting in gene repression.
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Malignant cells gain various phenotypic characteristics
during the development of cancer, which permit them to
proliferate abnormally and eventually invade surround-
ing tissues. Numerous studies have demonstrated the
importance of epigenetic alteration in cancer onset. This
has raised the possibility of controlling transcription as a
potential approach in cancer therapeutics [10]. Valproic
acid, a short-chain fatty acid, is a well established drug in
the treatment of epilepsy, migraine, cluster headaches and
for the control of a variety of seizures [11]. Butyrate, also
a short chain fatty acid, naturally produced by bacterial
fermentation in the colon, has been designated as the
most potent fatty acid in arresting cell proliferation [12].
Both compounds are classified as HDAC inhibitors
[13,14]. Many studies have shown that HDAC inhibitors
selectively induce cellular differentiation, growth arrest
and apoptosis in cancer cells, making these inhibitors a
promising new class of anticancer drugs [15-17]. How-
ever, the molecular mechanisms of the anticancer effects
of the HDAC inhibitors have yet to be understood.

Akt, also known as protein kinase B, is a serine/threonine
protein kinase and a key player in the regulation of apop-
tosis, proliferation and tumorigenesis [18-20]. Currently,
three mammalian isoforms have been identified, namely
Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ [21]. Akt1 is the
predominant isoform in most tissues while Akt2 is highly
expressed in skeletal muscle, heart, liver and kidney
[22,23]. Akt3 exhibits a more restricted pattern of distri-
bution, mostly found in testis and brain [24]. The phos-
phorylation of a conserved threonine residue (Thr308 in
Akt1, Thr309 in Akt2 and Thr305 in Akt3), upon growth fac-
tor stimulation, is required for Akt activation, while the
phosphorylation of a serine residue (Ser473 in Akt1, Ser474

in Akt2 and Ser474 in Akt3) is only required for maximal
Akt activity [21,24-26]. Constitutively active Akt can block
apoptosis induced by several diverse treatments, such as
growth factor withdrawal, UV irradiation, matrix detach-
ment and DNA damage [27-29].

Akt promotes cellular survival by directly phosphorylating
transcription factors that control the expression of pro-
survival or anti-apoptotic genes. For instance, the fork-
head family of transcription factors resides in the nucleus
where they induce the expression of pro-apoptotic genes
[30]. However, in the presence of active Akt, these tran-
scription factors are exported out of the nucleus and
sequestered in the cytoplasm by 14-3-3 proteins [25].
Cytoplasmic retention of these transcription factors acts as
a negative regulation of apoptotic machinery. In contrast,
NF-kB, a transcription factor involved in promoting cell
survival, is positively influenced by Akt that phosphor-
ylates and activates IKKα, leading to the destruction of I-
kB and the entry of NF-kB into the nucleus [31-33].

Direct phosphorylation of proteins involved in apoptosis
is another mechanism by which Akt promotes cellular sur-
vival. BAD, a member of the Bcl-2 family is sequestered by
14-3-3 proteins in the cytosol upon phosphorylation by
Akt [34]. This event prevents BAD from interacting with
pro-survival members of the Bcl-2 family at the mitochon-
drial membrane [24,25]. Akt prevents cytochrome release
by maintaining structural integrity of the mitochondria
and is also involved in post-mitochondrial events through
phosphorylation of caspase-9 [24,35-37]. Recent studies
demonstrated that Akt positively regulates the protein sta-
bility and transcriptional activity of coactivator p300
[38,39]. Since p300 contains an intrinsic histone acetyl-
transferase activity, it is possible that Akt also promotes
cellular survival through the regulation of chromatin
dynamics.

HDAC inhibitors have a range of anti-cancer activities
including the induction of apoptosis in transformed cul-
ture cells and in cancers. Some studies have observed a
decreased Akt activity following treatment with HDAC
inhibitors. Here we report that the induction of cancer cell
apoptosis by HDAC inhibitors, such as valproic acid and
butyrate, is achieved through inhibition of gene expres-
sion of Akt1 and Akt2, pro-survival factors involved in
many cell signalling pathways. In addition, valproic acid
and butyrate induce apoptotic cell death through the cas-
pase-dependent pathway.

Results
Valproic acid and butyrate repress Akt1 and Akt2 
expression and induce apoptosis in HeLa cells
HDAC inhibitor-induced growth arrest and apoptotic cell
death have been observed in a variety of solid and hema-
tological cancers, but the mechanisms of their action
remain obscure [17]. To understand the mechanism of
apoptotic cell death induced by HDAC inhibitors such as
valproic acid and butyrate, we employed HeLa cells
derived from a human cervical cancer [40]. As shown in
Fig. 1A, butyrate induced significant HeLa cell death after
16 hours of treatment (about 41%, P < 0.05) and more
significantly after 24 hours (about 63%, P < 0.005) as
determined by flow cytometry analysis of the subG1 pop-
ulations. Valproic acid was also able to induce significant
HeLa cell death after 24 hours of treatment (Fig. 1A), but
in a lesser degree (about 46%, P < 0.05).

Affymetrix microarray analysis of gene expression profiles
revealed that butyrate treatment down-regulated pro-
apoptotic BAD, BAX and BAK, genes associated with the
mitochondrial pathway, while genes associated with the
death receptor pathway, such as Fas, FasL, Trail and DR5,
were basically not affected by the treatment (data not
shown). However, Akt mRNA was reduced in the HeLa
cells following butyrate treatment (data not shown). Since
Page 2 of 11
(page number not for citation purposes)



Molecular Cancer 2006, 5:71 http://www.molecular-cancer.com/content/5/1/71
Akt is a key regulator of cellular survival, we studied the
effects of HDAC inhibitors on Akt expression by using
quantitative real-time RT-PCR analysis with specific prim-
ers and corresponding TaqMan probes for different Akt
isoforms. As shown in Fig. 1B, following 16 hours of
butyrate treatment, the levels of Akt1 and Akt2 mRNA
were reduced by about 70% and 50% respectively as com-
pared to untreated control cells. Valproic acid treatment
also reduced the levels of the Akt1 and Akt2 mRNA, but to
a lesser degree (Fig. 1B). Intriguingly, the level of Akt3
mRNA was basically unaffected by valproic acid or
butyrate treatment (Fig. 1B). Quantification of the relative
mRNA levels of different Akt isoforms showed a distinct
expression profile in the HeLa cervical cancer cells. Akt3 is
the most abundant of Akt isoforms, about 2 and 4 fold
more than Akt1 and Akt2 respectively (Fig. 1C), which is
not a normal Akt isoform expression pattern for cervical
epithelial cells.

Next, we examined whether the abundance of total Akt
protein is affected by valproic acid or butyrate treatment.
As shown in Fig. 2A, a decline in the abundance of Akt
protein was apparent following 16 hours of valproic acid
or butyrate treatment, which became more evident after
24 hours of treatment. On the other hand, the levels of
SRC protein were not affected by the treatments (Fig. 2A)
as previously reported [41]. Quantitative Western blot
analysis revealed that cells treated with butyrate exhibit a
more significant decrease in Akt protein than the valproic
acid treated cells; nearly 40% of Akt reduction was
observed after 24 hours of butyrate treatment compared
to 30% reduction after valproic acid treatment (Fig. 2A
and 2B). We also assessed the phosphorylation status of
Akt since its activity is regulated by phosphorylation

[20,25]. Western blot analysis using an antibody specific
for phosphorylated Ser473 residue in Akt demonstrated
that the phosphorylation level of Akt protein started to
decline after 16 hours of butyrate treatment, and again
valproic acid had a weaker effect (Fig. 2A). Quantification
of the Western blots verified that the levels of Akt phos-
phorylation were reduced by about 60% and 40% after 24
hours of butyrate and valproic acid treatment respectively,
as compared to untreated control cells (Fig. 2C). Taken
together, these data suggest that the down-regulation of
Akt activity by HDAC inhibitors, such as valproic acid and
butyrate, is achieved through inhibition of gene expres-
sion of Akt1 and Akt2.

Valproic acid and butyrate induce caspase-3 activation
Programmed cell death can be mediated through either
caspase-dependent or -independent mechanisms. To
determine the molecular pathway of cell apoptotic death
induced by HDAC inhibitors, such as valproic acid and
butyrate, we examined the active status of caspase-3 fol-
lowing the treatment of HeLa cells. Western blot analysis
with an antibody specifically against caspase-3 showed
that the HeLa cells contain an abundance of the precursor
caspase-3 (Fig. 3A). However, the cleaved or activated
form of caspase-3 was only observed following valproic
acid or butyrate treatment (Fig. 3A). Again, butyrate had a
stronger effect than valproic acid on inducing caspase-3
activity, correlating directly with its higher efficacy than
valproic acid on the deactivation of Akt and on the induc-
tion of cell apoptotic death (Fig. 1 and 2). Taken together,
these data suggest that apoptotic cell death induced by
HDAC inhibitors, such as valproic acid and butyrate, is
mediated through the caspase-dependent pathway.

Valproic acid and butyrate repress Akt expression and induce apoptosis in HeLa cellsFigure 1
Valproic acid and butyrate repress Akt expression and induce apoptosis in HeLa cells. (A) Cell death was measured by flow 
cytometry analysis of subG1 population following propidium iodide staining of permibilized HeLa cells after exposure to valp-
roic acid (VPA, 2 mM) or sodium butyrate (NaB, 5 mM) for 8, 16 or 24 hours. (B) Following 16 hours of valproic acid or 
butyrate treatment, the mRNA levels of Akt1, Akt2 and Akt3 in the HeLa cells were determined by quantitative real-time RT-
PCR analysis with a TaqMan probe protocol. 18S rRNA was used as an internal control. Results show fold variations of treated 
cells in comparison to untreated controls. Error bars represent standard deviations of three independent experiments. (C) 
The relative mRNA abundance of Akt1, Akt2 and Akt3 isoforms of the HeLa cells was assessed by quantitative RT-PCR and 
plotted as fold variations of Akt1. Error bars represent the standard deviations of three independent experiments.
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Valproic acid and butyrate activate both the caspase-8 
and caspase-9
Caspase-3 is an executor caspase that can be cleaved or
activated by either caspase-9, the initiator caspase of the
mitochondrial pathway, or caspase-8, the initiator caspase
of the death receptor pathway. Affymetrix microarray
analysis showed that butyrate treatment increased the
level of caspase-9 mRNA to a small extent (data not
shown). Quantitative real-time RT-PCR analysis con-
firmed that the capase-9 mRNA of the HeLa cells was
indeed increased to about 1.5 fold upon valproic acid or
butyrate treatment (Fig. 3B). Next, we assessed the enzy-
matic activity of caspase-9 by using a fluorescence based
assay in the presence or absence of LEHD-CHO, a specific
inhibitor for the caspase-9. As shown in Fig. 3C, valproic
acid or butyrate treatment induced the caspase-9 activity
and again butyrate induced activity of the caspase-9 more
robustly than valproic acid, about 9 fold versus 4 fold.

Caspase-8 can be activated by HDAC inhibitors through
the death receptors in several cancer cell lines [42-44]. To
determine the role of the death receptor pathway in
HDAC inhibitor induced HeLa cell death, we evaluated
the activity of caspase-8 in the HeLa cells by using a fluo-
rescence based assay. Following treatment with valproic
acid or butyrate, the activity of caspase-8 was increased to
about 2 and 5 fold respectively, but to a lesser degree in
comparison to the caspase-9 activity (Fig. 3D). Taken
together, our data suggest that the HDAC inhibitor-
induced apoptotic cell death is attained by activating both
the caspase-8 and caspase-9 activities.

Introduction of constitutively active Akt prevents butyrate-
induced apoptosis
To further determine the role of Akt in counteracting the
apoptosis induced by HDAC inhibitors, we employed an
ovarian cancer cell line stably integrated with an expres-
sion plasmid for a constitutively active Akt and a control
cell line stably integrated with an empty vector [38]. Flow
cytometry analysis revealed that butyrate was able to
induce significant apoptotic death in the control cells but
not in the cells expressing the constitutively active Akt
(Fig. 4A). Western blotting analysis demonstrated that the
levels of Akt protein and phosphorylated Akt were dimin-
ished by the treatment in the control cells, but not in the
cells expressing the constitutively active Akt (Fig. 4B). In
addition, following butyrate treatment the cleaved or acti-
vated form of caspase-3 was only observed in the control
cells but not in the cells expressing the constitutively
active Akt (Fig. 4B). Taken together, these data strongly
support the notion that the effect of butyrate on cellular
survival is determined by the cellular Akt activity of the
cells.

Valproic acid and butyrate do not affect the Akt activity 
and cellular survival of SiHa cells
To determine further the significance of Akt activity in
apoptotic cell death induced by HDAC inhibitors such as
valproic acid or butyrate, we screened several cancer cell
lines for their Akt activity and viability in response to the
treatments, and found strong correlation between the
ability of cells to maintain their Akt activity and to survive
valproic acid or butyrate treatment. One of the cell lines is

Deactivation of Akt by valproic acid and butyrateFigure 2
Deactivation of Akt by valproic acid and butyrate. (A) Equal amounts of whole cell extract (50 μg) were used to examine the 
levels of endogenous Akt and phospho-Akt in the HeLa cells treated with valproic acid (VPA, 2 mM) or sodium butyrate (NaB, 
5 mM) for 16 or 24 hours. The blot was then stripped and reprobed with a SRC antibody for protein loading controls. (B) 
Quantitative analysis of the Akt blots is expressed as fold variations compared to untreated control after being normalized to 
the loading controls. Error bars represent standard deviations of three independent experiments. (C) The quantification of 
phospho-Akt Western blots was performed as described for panel B.
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SiHa, derived from a human cervical cancer like HeLa cells
[45]. As shown in Fig. 5A, valproic acid or butyrate treat-
ment did not affect the cellular survival of the SiHa cells
as assessed by flow cytometry analysis. When Western blot

analysis of Akt protein was performed, we observed a
moderate increase in Akt protein in the SiHa cells follow-
ing valproic acid and butyrate treatment, rather than a
decrease as in the HeLa cells (Fig. 5B). In addition, the

Valproic acid and butyrate induce caspase activationFigure 3
Valproic acid and butyrate induce caspase activation. (A) Equal amounts of whole cell extracts (50 μg) were used for Western 
blot analysis of caspase-3 in HeLa cells upon treatment with valproic acid (VPA, 2 mM) or sodium butyrate (NaB, 5 mM) for 16 
or 24 hours. The blots were then stripped and reprobed with a β-actin antibody for protein loading controls. (B) The level of 
caspase-9 mRNA in the HeLa cells was examined by quantitative real-time RT-PCR analysis following valproic acid or butyrate 
treatment. Error bars represent standard deviations of three independent experiments. (C) and (D) Following 16 hours of val-
proic acid or butyrate treatment, the HeLa cells were harvested and assayed for caspase-9 and caspase-8 activities in parallel. 
Results show fold induction of the activities relative to untreated controls after background subtraction of zero time signals. 
Error bars represent the standard deviations of five independent experiments.
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phosphorylation status of Akt in the SiHa cells was not
reduced by the treatments (Fig. 5B). Next, we performed
quantitative real-time RT-PCR analysis to assess the
mRNA levels of Akt isoforms. As shown in Fig. 5C, both
valproic acid and butyrate decreased the levels of Akt1 and
Akt2 mRNA to a certain degree, but not significantly. In
contrast, the treatments increased the levels of Akt3
mRNA by over 50 fold in comparison to untreated control
(Fig. 5D), which is consistent with the augmented levels

of Akt protein as assessed by the Western blot analysis
(Fig. 5B).

Quantification of the relative levels of Akt isoforms
revealed a very different expression profile between the
HeLa and SiHa cells. Akt3 was the most abundant of Akt
isoforms in the HeLa cells (Fig. 6A). In contrast, the SiHa
cells contained an extremely low level of Akt3 mRNA
under normal growth conditions, whereas Akt1 mRNA
was the most abundant, about 4 fold more than Akt2 (Fig.
6B). The levels of total Akt mRNA and protein in the SiHa
cells were about 2 fold higher than those of HeLa cells
(Fig. 6A and data not shown). Intriguingly, treatment of
the SiHa cells with valproic acid or butyrate only increased
the level of Akt3 mRNA to that of untreated HeLa cells
(Fig. 6B). In addition, the level of caspase-9 mRNA was
also increased in the SiHa cells and the total caspase-9
mRNA of the SiHa cells was about 9 fold higher than that
of the HeLa cells (Fig. 6C and 6D). Therefore, we assessed
the enzymatic activity of caspase-9 by using a fluorescence
based assay. As shown in Fig. 6E, valproic acid or butyrate
treatment failed to induce the activity of caspase-9 in the
SiHa cells. However, the treatments resulted in a slight
increase of the caspase-8 activity but no caspase-3 activa-
tion (Fig. 6E and data not shown). Taken together, these
data indicate that the ability of cells to survive valproic
acid or butyrate treatment depends on their ability to
maintain the cellular activity of Akt.

Discussion
HDAC inhibitors, inducers of differentiation or apoptosis
of some cervical and ovarian cancer cells, have become a
new class of drugs for treatment of a variety of cancers
[17]. However, many questions concerning their mecha-
nisms of action and their therapeutic potentials for differ-
ent cancers are largely unanswered. These are intimate
related issues due to the heterogeneity of the genetic
lesion and epigenetic alteration of the cancer. The molec-
ular mechanisms of HDAC inhibitors as cancer therapeu-
tics may be highly dependent on the type or cause of the
cancer. Our study demonstrated that HDAC inhibitors,
such as valproic acid and butyrate, induce apoptosis in
HeLa cervical cancer cells by inhibition of gene expression
of Akt1 and Akt2. In addition, the apoptotic cell death
induced by valproic acid or butyrate is mediated through
the caspase-dependent pathways.

Inhibition of histone deacetylation and alteration of chro-
matin structure often lead to transcriptional activation.
Numerous studies have shown that, through its chroma-
tin remodeling activities, HDAC inhibitors are capable of
modulating gene transcription involved in various cellu-
lar processes such as cell cycle progression, differentiation
and apoptosis [15]. Gene silencing or abnormal expres-
sion is a hallmark of many forms of malignancy. The effi-

Constitutively active Akt counteracts butyrate-induced apop-tosisFigure 4
Constitutively active Akt counteracts butyrate-induced apop-
tosis. (A) Ovarian carcinoma A2780S cell lines stably inte-
grated with an expression plasmid for constitutively active 
Akt (A-caAkt) or an empty vector (A-vector) were used for 
flow cytometry analysis of cells stained with propidium iodide 
after 16 or 24 hours exposure to sodium butyrate (NaB, 5 
mM). The percentage of cells in the subG1 population is indi-
cated in the corresponding graphs. Untreated cells were 
used as controls. (B) Equal amounts of whole cell extracts 
(50 μg) were used for Western blot analysis of Akt, phos-
pho-Akt and casepase-3 levels in the A-caAkt and A-vector 
cells following butyrate treatments. The blot was then 
stripped and reprobed for loading control (Ctl) with a SRC 
antibody.
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cacy of HDAC inhibitors in cancer therapeutics may well
come from restoring silenced gene expression since tran-
scription is the primary target of HDAC inhibitors.
Increasing the expression of some pro-apoptotic proteins,
such as TRAIL and p21, has been shown to be one of the
molecular mechanisms by which the HDAC inhibitors
induce cancer cell death [46,47]. However, HDAC inhibi-
tor treatment can also result in gene repression [48]. Our
study demonstrates that indeed this may be an alternative
mechanism by which HDAC inhibitors induce cell apop-
totic death. Treatment of HeLa cells with HDAC inhibitors
such as valproic acid and butyrate leads to inhibition of
Akt1 and Akt2 expression, consequently to deactivation of
cellular Akt (Fig. 1 and 2).

The link between the action of HDAC inhibitors and the
down-regulation of Akt phosphorylation has been
reported previously [18,49,50]. In both 87MG and PC3
cells, treatment with HDAC inhibitors decreases the levels
of Akt phosphorylation [49]. We, for the first time, show
that the down-regulation of Akt activity is a consequence
of inhibition of Akt1 and Akt2 expression by valproic acid

and butyrate. It appears that these inhibitors repress Akt1
and Akt2 transcription thereby depleting the cellular Akt
protein. The negative effect of valproic acid or butyrate on
Akt expression could be mediated through a direct or indi-
rect mechanism, i.e. through inhibiting deacetylation of
nonhistone proteins, such as transcription regulators, or
gene activation of some negative regulators of Akt gene
transcription. Understanding the molecular basis by
which Akt gene expression is regulated will ultimately
help us to design better strategies to treat cancer.

The molecular basis for the action of HDAC inhibitors in
caner therapeutics is one of the important questions
remaining to be answered. If transcription is the primary
target of HDAC inhibitors, then normal cells should be
equally if not more susceptible toward the HDAC inhibi-
tors. Our study demonstrated that the key answer may
reside in the competency of signaling pathways to main-
tain the cellular activity of Akt in response to the treat-
ment. Being a key pro-survival factor, Akt is often
deregulated during tumorigenesis [19]. For example,
HeLa cells exhibit an abnormal expression pattern of Akt

SiHa cell survival is not affected by valproic acid and butyrateFigure 5
SiHa cell survival is not affected by valproic acid and butyrate. (A) Flow cytometry analysis of propidium iodide uptake of the 
SiHa cells following exposure to valproic acid (VPA, 2 mM) or sodium butyrate (NaB, 5 mM). Untreated SiHa cells were used 
as control and the time of treatments was for 16 or 24 hours. (B) Equal amounts of whole cell extracts (50 μg) were used for 
Western blot analysis of endogenous Akt and phospho-Akt of the SiHa cells following treatment with valproic acid or butyrate 
for 16 or 24 hours. The blot was then stripped and reprobed for loading control (Ctl) with a SRC antibody. (C) and (D) Fol-
lowing 16 hours of valproic acid or butyrate treatment, the mRNA levels of Akt1, Akt2 and Akt3 in the SiHa cells were exam-
ined by quantitative real-time RT-PCR analysis. 18S was used as an internal control. Results show fold variations of treated cells 
compared to untreated controls. Error bars represent standard deviations of three independent experiments.
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The Akt mRNA levels and caspase activities of the SiHa cellsFigure 6
The Akt mRNA levels and caspase activities of the SiHa cells. (A) The relative mRNA abundance of Akt1, Akt2 and Akt3 in the 
HeLa and SiHa cells were assessed by quantitative RT-PCR and plotted as fold variations of Akt1 mRNA level of the HeLa cells. 
18S was used as an internal control. Error bars represent standard deviations of three independent experiments. (B) The rela-
tive level of Akt3 mRNA following 16 hours of exposure to valproic acid (VPA, 2 mM) or sodium butyrate (NaB, 5 mM) was 
plotted as arbitrary units (A.U.) of the mRNA abundance. (C) The level of caspase-9 mRNA in the SiHa cells was examined by 
quantitative real-time RT-PCR analysis following valproic acid or butyrate treatment. Results are expressed as fold induction of 
the transcripts relative to untreated controls. Error bars represent standard deviations of three independent experiments. (D) 
The experimental set up was as in panel A except that the caspase-9 mRNA level in untreated SiHa cells was compared to 
untreated HeLa cells. (E) Following 16 hours of valproic acid or butyrate treatment, the SiHa cells were assayed for their cas-
pase-8 and caspase-9 activities. Results show fold induction of the activities relative to untreated controls after background 
subtraction of zero time signals. Error bars represent standard deviations of five independent experiments.
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isoforms, in which Akt3 is the most abundant of Akt iso-
forms (Fig. 1C). This deregulation of Akt may sensitize
cancer cells to HDAC inhibitors. Without Akt to mediate
its pro-survival activity, the cells may be more prone to
apoptosis.

The role of caspase in HDAC inhibitor-induced apoptosis
has been controversial or may be dependent on cellular
context. Some studies have established clear roles for the
death receptors and caspase-8 in this process
[42,43,47,51]. Our study demonstrated that valproic acid
and butyrate promote apoptosis in HeLa cervical cancer
cells through a caspase-dependent mechanism (Fig. 3).
Most intriguingly, the caspase-9 activity is more robustly
activated than caspase-8 upon the valproic acid or
butyrate treatment (Fig. 3). In addition, introduction of
constitutively active Akt blocks caspase-3 activation and
rescues cells from apoptotic death upon butyrate treat-
ment (Fig. 4). Akt directly regulates caspase-9 activity and
promotes cellular survival at post-mitochondrial level
[35,36]. It is likely that deactivation of Akt plays a primary
role in the activation of caspase-9 during the HeLa apop-
totic death induced by valproic acid or butyrate.

Apparently, apoptosis induced by HDAC inhibitors is
associated with various disarrays of different cell signaling
pathways. The precise molecular mechanisms involved in
the cancer therapeutics of HDAC inhibitors may depend
highly on the cellular context or the genetic lesion and
epigenetic background of the cancer. For targeted or cus-
tomized cancer therapy, it is essential to understand the
distinct mechanisms of apoptotic cell death induced by
HDAC inhibitors. Our study demonstrates that although
the primary target of HDAC inhibitors may be transcrip-
tion, it is the cellular environment, or the ability of cells to
maintain their survival protein networks that determines
their fate, to die or to survive in response to the treatment.

Methods
Cell culture and reagents
The cells were maintained in Dulbecco's Modified Eagle
Medium supplemented with 10% fetal bovine serum
(Invitrogen) at 37°C with 5% CO2. Valproic acid and
sodium butyrate were purchased from Sigma. Antibodies
against Akt, phosphor-Akt and caspase3 were obtained
from Cell Signalling.

Flow cytometry analysis
Following exposure to valproic acid (2 mM) or sodium
butyrate (5 mM) for 8, 16 or 24 hours, cells were detached
from tissue culture dishes by trypsinization, combined
with floating cells and fixed in 70% ethanol for 30 min-
utes at -20°C. After washing with phosphate-buffered
saline, the cells were incubated with 50 μg/ml of RNase A
and 50 μg/ml of propidium iodide for 30 minutes at

37°C. DNA contents of the cells were then profiled by flu-
orescence activated cell analyzer (Beckman Coulter) to
determine the distribution of cells in different phases of
the cell cycle [38].

Quantitative real-time RT-PCR
Total RNA was isolated using RNeasy Mini Kit (Qiagen)
and reverse transcribed using random primers and Super-
script II (Invitrogen). Serial dilution of the cDNA was used
to determine the appropriate concentration required for
the real-time PCR amplification which was carried out by
using TaqMan reporter assay with a 7500 Fast Real-Time
PCR System (Applied Biosystems). Gene specific primers
and TaqMan probes used for the amplification were
ordered from Applied Biosystems. Quantification of
mRNA levels was performed by using 18S rRNA as an
internal control.

Protein extraction and Western blot analysis
Following various treatments, cells were washed and har-
vested. The cell pellets were suspended and incubated for
30 minutes at 4°C in whole-cell extraction buffer consist-
ing of 10% glycerol, 50 mM Tris-HCl (pH 7.6), 400 mM
NaCl, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl
fluoride, and 1% Nonidet P-40. The lysates were then cen-
trifuged at 14,000 g for 10 minutes at 4°C. Protein con-
centrations were determined by Bradford assay (Bio-Rad)
using bovine serum albumin as standard. PerkinElmer
Life Sciences ECL system was used for the detection and
Scion Image software was used to quantify the Western
blots [41].

Caspase activity assay
Following various treatments, cells were assayed for cas-
pase activities by using fluorescent assay kits (Clontech)
and a microplate fluorometer (Molecular Devices). The
caspase-8 and caspase-9 activities were determined with
the same batch of lysates simultaneously and were meas-
ured from zero time to 2 hours as the manufacturer rec-
ommended. The specificity of the fluorescent signal was
determined by IETD-fmk and LEHD-CHO, the specific
inhibitors for the caspase-8 and caspase-9 respectively.
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