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Abstract
Background: The consecutive acquisition of genetic alterations characterizes neoplastic
processes. As a consequence of these alterations, molecular interactions are reprogrammed in the
context of highly connected and regulated cellular networks. The recent identification of the
collection of somatically mutated genes in breast tumors (breast cancer somatic "mutome") allows
the comprehensive study of its function and organization in complex networks.

Results: We analyzed functional genomic data (loss of heterozygosity, copy number variation and
gene expression in breast tumors) and protein binary interactions from public repositories to
identify potential novel components of neoplastic processes, the functional relationships between
them, and to examine their coordinated function in breast cancer pathogenesis. This analysis
identified candidate tumor suppressors and oncogenes, and new genes whose expression level
predicts survival rate in breast cancer patients. Mutome network modeling using different types of
pathological and healthy functional relationships unveils functional modules significantly enriched in
genes or proteins (genes/proteins) with related biological process Gene Ontology terms and
containing known breast cancer-related genes/proteins.

Conclusion: This study presents a comprehensive analysis of the breast somatic mutome,
highlighting those genes with a higher probability of playing a determinant role in tumorigenesis and
better defining molecular interactions related to the neoplastic process.

Background
Recent landmark work has described the genetic land-
scape of the breast and colorectal cancer genomes by iden-
tifying the collection of somatically mutated genes (cancer
somatic mutome) that contributes to the neoplastic proc-
ess in these cancer types [1]. Most of these genes were not
previously identified as linked to human cancer and some
of them encode uncharacterized proteins. A larger set of

"passenger" mutations or mutations present at a fre-
quency that is too low to determine their relationship
with cancer were also identified, prompting further
genetic and molecular characterization.

Most biological processes involve groups of genes and
proteins that behave in a coordinated way to perform a
cellular function [2]. The coordinated task of genes/pro-
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teins can be represented by different types of functional
relationships (e.g. gene co-expression, genetic interac-
tions, protein binary interactions, protein complex mem-
bership) [3]. Network modeling has been used to predict
new gene/protein functions and to define pathway com-
ponents or modulators of particular processes [reviewed
in [4-6]]. The application of similar approaches has also
identified new genes responsible for human diseases
[7,8].

Defining biological processes at the systems-level will
help to understand cancer cellular networks. The applica-
tion of an integrative "omic" approach to the breast cancer
somatic mutome is encouraged by the identification of
uncharacterized genes/proteins and because the complete
wiring diagram of functional associations has yet to be
determined. The aim of this study is therefore to compre-
hensively describe the status of candidate breast cancer
tumor suppressors and oncogenes at different molecular
levels (from gene to protein), to predict new functional
relationships between them and to provide new hypothe-
ses regarding their coordinated molecular function in the
neoplastic process. This study is focused on the somatic
mutome described by Sjoblom et al. [1], which contains
validated (contributing to the neoplastic process) and
non-validated (i.e. harboring putative "passenger" muta-
tions or mutations present at a frequency that is too low
to determine their relationship with the neoplastic proc-
ess) gene sets (total 672), combined with previously
known somatically mutated breast cancer genes compiled
in the COSMIC database [9].

Results
Loss of heterozigosity analysis
To investigate the role of somatically mutated breast can-
cer genes as classical tumor suppressors or oncogenes, we
first examined genomic loss of heterozigosity (LOH)
using a whole-genome SNP genotyping data set [10]. This
data set has a resolution of one SNP every ~210 genomic
kilo-bases and contains information from 42 breast
tumors (20 non basal-like, 18 basal-like and 4 BRCA1
tumors) and matched healthy breast tissue samples.

When all breast tumors were considered, mutated genes in
the validated set showed LOH ranging from 4% to a max-
imum of 76% (TP53)(Additional file 1). As was expected,
other genes showing relatively high percentages of LOH in
breast tumors were BRCA1 (52%) and MRE11A (50%).
Remarkably, of the validated genes only CDH5 was previ-
ously described in detail as showing LOH [11], which
might be explained by the unbiased approach used to
identify the breast cancer somatic mutome, or by the inex-
istence of LOH as a second-hit genetic mechanism com-
mon to this set of genes. The detection of ~33% of LOH at
the TMPRSS6 locus supports its role as a tumor suppressor

suggested by a previous observation that TMPRSS6 nucle-
otide variants conferred a risk of breast cancer [12]. How-
ever, LOH should be interpreted with caution as it shows
a high correlation with chromosome location (e.g. com-
plete LOH of chromosome 17). LOH results do not signif-
icantly vary between basal-like and non basal-like tumor
subtypes except for the isodisomy of chromosomes 14, 17
and X [10].

For a comprehensive understanding of LOH results, we
integrated gene expression data available for the same
healthy and tumor samples used for SNP genotyping, and
combined it with a larger expression data set containing
basal-like and other tumor subtypes [13] (Fig. 1). Approx-
imately 50% of mutome genes showed differential expres-
sion between healthy and tumor tissue samples. Careful
examination of LOH identified 20 genes in the validated
set mapping to 12 critical regions (relatively close
genomic boundaries of LOH). Expression analysis sup-
ports the supposition that 10 of these genes may act as
tumor suppressors, as they show down-regulation in
breast tumors (Fig. 1C, LOH column and down-regulated
genes in tumors). In addition to these genes, a few others
showed concordant results between LOH and expression
analyses but cannot be mapped to critical regions
(CENTG1, MAGEE1, PRPS1, SYNE2 and TP53). Although
not completely clear from LOH, the integration of expres-
sion data also supports the role of ICAM5 as a tumor sup-
pressor proposed by the identification of nucleotide
variants that confer a risk of breast cancer [14]. The
present LOH analysis suggests the loss of the ICAM5 locus
in non basal-like tumors (15%) but not in BRCA1 or
basal-like (< 5%) tumors, and its expression appears sig-
nificantly down-regulated in three distinct types of tumors
when compared to healthy tissues [luminal A, luminal B
and tumors showing human epidermal growth factor
receptor 2 positivity (HER-2+) and estrogen receptor neg-
ativity (ER-)]. Collectively, the integration of LOH and
expression analyses suggests the hypothesis of the exist-
ence of at least ~10 tumor suppressor genes in the breast
cancer somatic mutome.

Copy number analysis
Using the same data set described above, genes in the val-
idated set showed copy numbers (CNs) ranging from 1.60
to 3.37 across basal-like and non basal-like tumors (Addi-
tional file 2). As expected for tumors with relatively higher
levels of genomic instability, broader margins of CN vari-
ation were observed in BRCA1 tumors, ranging from 0.57
to 3.82. Examination of gene expression and critical
regions with CN > 2 identified nine candidate oncogenes
(Fig. 1C, CN > 2 column and up-regulated genes in
tumors). Notably, one of these genes, GAB1, was previ-
ously suggested to act as an oncogene in cellular transfor-
mation [15]. CN analysis also identified critical regions of
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Integration of LOH, CN and expression data to better define candidate tumor suppressors and oncogenes for the breast can-cer neoplastic processFigure 1
Integration of LOH, CN and expression data to better define candidate tumor suppressors and oncogenes for the breast can-
cer neoplastic process. Examples of LOH and CN analyses: (A) LOH analysis for HSA1 shows three critical regions (defined by 
close boundaries of LOH) indicated by pink lines across tumor samples; (B) CN analyses indicate GAB1 locus genomic amplifi-
cation in HSA4, and SORL1 and TECTA loci genomic loss in HSA11; and (C) Integration of LOH and CN, and differential expres-
sion in tumors relative to healthy tissues indicate candidate tumor suppressors (down-regulated in tumors, green) and 
oncogenes (up-regulated in tumors, red) in four different types of breast tumors as indicated by numbers in brackets.
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genomic loss that were not evident in the LOH analysis,
such as the SORL1 and TECTA loci that showed loss and
expression down-regulation particularly in basal-like
tumors (Fig. 1B and 1C). Thus, eight additional genes
showed CN < 2 in a critical region and concordant down-
regulation in tumors, which suggests their role as tumor
suppressors (Fig. 1C, CN < 2 column and down-regulated
genes in tumors).

In addition to the particular genes mentioned above, the
correlation of LOH, CN and expression data identified
four concordant gene clusters (i.e. close located loci).
First, the amplification and over-expression of ABCB10
and NUP133 genes at chromosome 1 in basal-like and
luminal A and B tumors. Remarkably, the amplification of
ATP-binding cassette (ABC) transporter genes is commonly
found in cancer cell lines as a probable mechanism of
drug resistance [16] and nuclear pore (NUP) subunits
have been found over-expressed in breast tumors [17].
Second, the loss and down-regulation of COL7A1,
DNASE1L3, FLNB and RNU3IP2 at chromosome 3, partic-
ularly in basal-like and luminal B tumors. Third, the loss
and down-regulation of AEGP, GSN, NUP214 and
SPTAN1 at chromosome 9, particularly in luminal A and
B tumors. Finally, the loss and down-regulation of SORL1
and TECTA at chromosome 11, particularly in basal-like
tumors. These genomic mutome clusters suggest that, in
addition to point mutations, large-scale alterations of
these regions might constitute a mechanism contributing
to the neoplastic process.

Expression analysis
To further determine the level of functional association
among somatically mutated breast cancer genes, we inves-
tigated their co-expression in a large breast tumor data set
containing 98 primary tumors [18]. A total of 878 probes
corresponding to 680 (mutome plus benchmark) genes
gave rise to 385,003 pair-wise comparisons. A higher
number of these pairs than expected by chance show sig-
nificant co-expression measured by the Pearson's correla-
tion coefficient (PCC) (15,994 significant pairs applying a
false discovery rate (FDR) of 0.01). Considering absolute
PCC values, four clusters of high expression correlation
were observed (Fig. 2). According to the presence of
benchmark genes, co-expression clusters could be classi-
fied as ETV6-NTKR3, TP53 or RB1-related. Since gene
pairs that encode functionally related proteins tend to
show higher expression correlation than pairs of unre-
lated genes, functional associations can be predicted
based on profiling comparison. Thus, two genes in the
RB1-related cluster encode known physical interactors of
pRb (ATF2 and CUTL1, included in the non-validated set)
[19,20]. Similarly, the presence of ABCB10 and NUP133,
and candidate tumor suppressors LRRFIP1 and RNU3IP2

in the RB1-related cluster, further support their functional
association in breast cancer.

Next, we examined whether gene expression levels have
prognostic value and how this correlates with genomic
and expression alterations in breast tumors. We used a
data set containing information from 113 patients [13]
and performed Kaplan-Meier analyses using the Cox-
Mantel log-rank test. Cox's regression models were
adjusted and non-adjusted for tumor grade and ER status.
This analysis identified four validated genes whose expres-
sion levels predict survival (non-adjusted P values < 0.001
and adjusted P values < 0.05; genes ABCA3, DBN1, SP110
and SPTAN1 with adjusted hazard ratios (HR) of 0.58,
2.86, 0.59 and 0.20, respectively) (Fig. 3). Two other vali-
dated genes were identified with a lower significance level
(non-adjusted P values < 0.01 and adjusted P values < 0.1;
C22orf19 and RASGRF2 withHR of 2.29 and 0.36, respec-
tively) and 17 genes in the non-validated set show associ-
ation (adjusted P values < 0.05) (Additional file 3).
Analysis of an independent data set containing informa-
tion from 295 patients [21] supports the observation that
high expression ratios of DBN1 predict poor survival
(adjusted P value of 0.03 and HR of 3.81) and indicates
the same tendency as previously noted for low expression
ratios of ABCA3, SP110 and SPTAN1 (non-adjusted HR of
0.31, 0.34 and 0.64, respectively), although this now
appears non-significant when adjusted for tumor grade
and ER status (adjusted HR of 0.61, 0.25 and 1.19). In the
non-validated set, only WFDC1 expression remained
associated with survival in the multivariate analysis of the
independent data (adjusted P values of 0.001 and 0.03,
and HR of 3.99 and 7.63 for two different microarray
probes).

Interactome analysis
To evaluate functional associations between proteins, we
mapped mutome gene products on the human interac-
tome network [22-24]. Since similar Gene Ontology (GO)
annotations are more likely to be present in pairs of inter-
acting proteins than in pairs of unrelated proteins, func-
tional predictions can be formulated based on
annotations of neighbor proteins in the network. In par-
ticular, the examination of GO annotations provides func-
tional assignment of uncharacterized gene products (Fig.
4A), such as the VEPH1 protein that was identified in a
large-scale interactome mapping study of the TGF-beta
signaling pathway [25].

An examination of binary protein interactions also high-
lights the possible need for more detailed mutational
analyses of specific cellular components. Thus, an associ-
ation between the breast and colorectal mutomes identi-
fied by Sjoblom et al. [1] is revealed by examining
interactions between proteins of the extracellular matrix
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and cytoskeleton functional module (Fig. 4B). In this
module, four out of nine proteins included were found to
be mutated in breast tumors and three were found to be
mutated in colorectal tumors by Sjoblom et al. [1].

Next, we investigated the existence of coordinated molec-
ular tasks by examining the level of connectivity between
mutome gene products in the interactome network. We
compared the size (number of nodes and edges) of the
largest component generated by direct interactions
between mutome validated proteins and compared it to
equivalent randomly selected sets of 100 proteins. The
results showed that mutome gene products are highly
connected, more so than expected by chance (interac-
tions/node, empirical P value < 0.05), thus supporting the
theory that they are involved in related molecular path-
ways or functions. However, this observation is partially
dependent on the presence of p53 and BRCA1, which
exhibit extremely high connectivity. Without taking into

account p53 and BRCA1, the level of connectivity of the
validated mutome is still moderately high with respect to
equivalent, randomly selected protein sets (empirical P
value < 0.15). These results suggest greater centrality of the
breast somatic mutome proteins and are consistent with
earlier observations involving previously known human
cancer proteins [26].

When only direct interactions are considered between val-
idated and benchmark gene products, examination of the
largest network component supports a critical role for
three transcription factors or co-activators: MYOD1,
NCOA6 and TCF1. These proteins appear included in a
module with high connectivity that contains five mem-
bers of the benchmark set (Fig. 5A). Notably among these
genes, NCOA6 maps to a critical region of CN > 2 (Fig.
1C). This gene was previously identified as amplified in
breast tumors [27] and in this study appeared particularly
over-expressed in basal-like tumors.

Gene co-expression analysis in breast tumorsFigure 2
Gene co-expression analysis in breast tumors. Clustering of microarray probes (297 × 297) representing mutome (validated 
and non-validated) [1] and benchmark (literature) [9] genes according to absolute PCC values. Clusters are named according 
to the benchmark(s) gene(s) present in each of them (i.e. RB1, ETV6-NTKR3 or TP53-related). Boxes contain validated mutome 
genes present in each cluster. Non-validated gene names are not shown.
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When non-validated gene products are included in the
interactome analysis, a large component with 127 edges
and 94 nodes is revealed (Fig. 5B). Eight non-validated
gene products occupy critical positions in this compo-
nent, connecting validated and/or benchmark proteins:
BCAR1 (breast cancer anti-estrogen resistance 1) links
ADAM12 and GSN, therefore mediating extracellular
matrix and cytoskeleton remodeling; and three gene prod-
ucts show a high degree of connectivity (between 5–10
interactions; PIK3R1, PLCG1 and POU2F1), which sug-
gests a central role in the transmission of molecular infor-
mation within this component. PIK3R1 and PLCG1 are
involved in intracellular signaling cascades and their dif-
ferential regulation is known to be involved in tumorigen-

esis [28,29], while POU2F1 interacts with several known
breast cancer-associated proteins (i.e. BRCA1, BARD1 and
PARP1) [30,31]. Together, these observations suggest a
coordinated function between validated and non-vali-
dated gene products in the breast cancer neoplastic proc-
ess.

Clustering analysis has previously proved useful for the
identification of functionally related genes or proteins
[32]. To further examine the higher-level organization of
the breast cancer mutome, we identified densely intercon-
nected regions of the interactome harboring a higher pro-
portion of mutome gene products than expected by
chance. One such cluster shows enrichment in functional

Gene expression analysis and breast cancer survivalFigure 3
Gene expression analysis and breast cancer survival. Kaplan-Meier survival curves based upon categorized expression in ter-
tiles are shown for three validated genes in the Hu et al. [13] data set.
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Human interactome network analysis, functional prediction and breast and colorectal cancer mutome associationFigure 4
Human interactome network analysis, functional prediction and breast and colorectal cancer mutome association. (A) Pre-
dicted interactions for uncharacterized validated mutome gene products. Functional assignment is based on GO term annota-
tions. Protein interactions and node types are indicated as shown in the insets. (B) Breast and colorectal cancer mutome 
association through extracellular matrix and cytoskeleton constituents.
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Human interactome network analysis, direct interactions between mutome gene productsFigure 5
Human interactome network analysis, direct interactions between mutome gene products. (A) Left panel, direct interactions 
between validated mutome and/or benchmark gene products. Right panel, interactions centered on SPTAN1, whose expres-
sion level predicts survival (Fig. 3). Grey nodes represent non-mutome/benchmark proteins. (B) Network generated by direct 
protein interactions between validated and non-validated mutome and/or benchmark gene products (top left inset). An image 
of the largest component of this network is shown, with critical nodes that connect benchmark or mutome proteins indicated 
by arrows. (C) Clusters or densely connected regions in the interactome network that contain more mutome gene products 
than expected by chance: cluster A shows enrichment in annotations of the TGF-beta and insulin signaling pathways and of 
DNA transcriptional activity; cluster B shows enrichment for centrosome-related tasks and DNA transcriptional activity.
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annotations of the TGF-beta and insulin signaling path-
ways as well as DNA transcriptional activity (Fig. 5C, clus-
ter A). Another cluster shows enrichment for centrosome-
related tasks and DNA transcriptional activity (Fig. 5C,
cluster B). Cluster enrichment therefore points to known
critical functional modules involved in breast tumorigen-
esis.

Mutome network modeling
To generate a network model containing relevant biologi-
cal information for the breast cancer neoplastic process,
we integrated different types of functional relationships
identified through the genomic (i.e. LOH, CN and expres-
sion) and proteomic (i.e. interactome) analyses explained
above. Thus, using network modeling we connected two
nodes when their corresponding genes showed similar
LOH, CN or expression profiles across breast tumors (see
Methods), or when their corresponding encoded gene
products were directly connected in the interactome net-
work. The breast cancer mutome network contains 648
nodes and 8,371 edges, and shows a high degree of con-
nectivity that further supports the existence of biologically
related functions (Fig. 6 and Additional file 4).

Cluster analysis of this network identifies underlying
molecular mechanisms of breast cancer. Analysis of
densely connected sub-graphs and their GO terms identi-
fied functional modules enriched for apoptosis, cell divi-
sion, cell differentiation, G-protein coupled receptor
protein signaling pathway, intracellular signaling cascade,
regulation of transcription, regulation of translation and
signaling transduction (Fig. 6). Some benchmark genes/
proteins can be located in these modules, supporting their
role in the neoplastic process. These observations support
the theory that the network modeled here represents a
framework for a more in-depth experimental study of
genes/proteins related to breast cancer somatic altera-
tions.

Discussion
Although issues of specificity and sensitivity in the detec-
tion of the mutome will probably be addressed in the
future, particularly regarding germline genomic CN varia-
tion [33] and the likelihood of detecting sequence
changes as presented by Sjoblom et al. [1], by examining
functional genomic (LOH, CN and gene expression) data
in breast tumors, this study supports newly identified
tumor suppressors and oncogenes. Through the examina-
tion of protein binary interactions, this study further pro-
vides new hypotheses regarding the functional
associations of these gene products. Finally, the integra-
tion of pathological and healthy functional relationships
generated a mutome network model that provides a
framework for studying the coordinated molecular func-
tion of mutome genes/proteins.

The apparent discrepancy between cancer genomic and
expression changes for some genes, such as genomic CN >
2 and expression down-regulation, is not exceptional and
has been observed previously [34]. Autoregulation of gene
expression, dosage compensation, epistatic modifica-
tions, or merely issues such as the sensitivity and specifi-
city of LOH/CN and expression analyses can explain these
apparent discrepancies. As is to be expected, the propor-
tion of down-regulated genes is higher in CN < 2 than in
CN > 2 regions, while the proportion of up-regulated
genes is higher in CN > 2 than in CN < 2 regions (Fig. 1C).
Nonetheless, experimental investigation of these genes/
proteins is required to demonstrate their role as tumor
suppressors or oncogenes.

The integrative study also serves as an indication of new
prognosis markers. For the mutome genes, the integrative
analysis of genomic copy number and expression data
strongly indicates that DBN1 is a candidate oncogene
that, when highly expressed in tumors with respect to
healthy tissues, predicts poor survival in breast cancer
patients (Fig. 3). Low expression ratios of ABCA3 and low
or medium expression ratios of SPTAN1 may also predict
poor survival. ABCA3 was previously identified as an ER-
regulated gene [35], which supports its involvement in
breast tumorigenesis, and SPTAN1 was involved in chem-
otherapy resistance in ovarian cancer [36], which makes
this gene a potential target for cancer treatment. Finally,
the interactome analysis of molecular pathways provides
new hypotheses for the identification of genes potentially
associated with survival outcome. SPTAN1 interacts with
GRIND2 and SLC9A2, both of which interact with the
product of the ABL1 proto-oncogene. Activated ABL1
kinase promotes invasion of breast cancer cells [37]. Since
low expression ratios of SPTAN1 predict poor survival,
SPTAN1 could therefore act as a negative regulator of
ABL1 activity.

The integration of omic data highlights likely functional
candidates of a particular biological process with
increased confidence [7,38]. The strategy used here is
applicable to other cancer types and would help to iden-
tify new tumor suppressor genes and oncogenes and the
wiring diagram of functional interactions between them.
The analysis of the breast cancer somatic mutome indi-
cates that at least a few of the genes identified by Sjoblom
et al. [1] play a key role in the breast cancer neoplastic
process. These results will help to focus subsequent exper-
imental characterizations on key gene/protein candidates.

Conclusion
We have presented the first comprehensive omic analysis
of a cancer somatic mutome. Our analysis supports the
theory that a few of these genes play a key role in the
breast cancer neoplastic process. This study also provides
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(page number not for citation purposes)



Molecular Cancer 2007, 6:13 http://www.molecular-cancer.com/content/6/1/13
new hypotheses for the coordinated function of these
genes/proteins as tumor suppressors or oncogenes. Net-
work modeling identifies hundreds of new potential path-
ological associations between the cancer genes/proteins
studied. Extensive future research will be carried out by
different groups focusing on each of the candidate genes
highlighted by Sjoblom et al. [1]. Our study provides a
possible framework for the appropriate initial categoriza-
tion of these genes.

Methods
Genomic data analysis
To analyze LOH and CN alterations in breast tumors, we
used the Gene Expression Omnibus (GEO) record

GSE3743 [10]. Data were normalized and modelled using
dChip software [39]. LOH and CN were obtained after
mapping genes in build 35.1 of the NCBI human genome
sequence. For each gene and sample we took the closest
SNPs to infer LOH and CN. If there was a mismatch in
LOH calling for surrounding SNPs, the gene was left as
missing for that particular sample. LOH profile correla-
tion and confidence intervals (CI) were computed using
Cohen's kappa coefficient of agreement, suitable for cate-
gorical data. We then classified genes as showing similar
profiling if the lower limit of the CI was greater than 0.6.
PCC was used to assess CN profile correlations, setting 0.6
as the lower cut-off. To determine the level of correlation
between gene expression and genomic CN variation, we

Breast cancer mutome network modelingFigure 6
Breast cancer mutome network modeling. Left panel, five functional genomic or proteomic, pathological or healthy-related 
associations; each one indicated by one of the colored lines shown in the inset was included to generate a mutome network 
model. Right panel, clusters or densely connected regions in the network that show enrichment in GO terms (functional mod-
ules). Benchmark nodes present in these functional modules are marked by arrows.
Page 10 of 13
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used PCC and FDR adjusted P values. All these analyses
were performed using the R statistical software package
[40].

Gene expression data analysis
Breast cancer gene expression was analyzed using two
large data sets [10,13]. Data from Richardson et al. [10]
was down-loaded from the GEO record GSE3744 and
analyzed using the limma and affy packages in R. Back-
ground correction, normalization and averaging of
expression values were computed using the RMA algo-
rithm [41]. Differentially expressed genes were detected
after computing an empirical Bayes moderated t-statistic
and P values adjusted by a FDR of 5%. Data obtained
from Hu et al. [13] was previously normalized and ana-
lyzed using the t-test. To evaluate co-expression, we used
the data set of van 't Veer et al. [18], calculated PCCs and
significance levels based on the t-distribution. A hierarchi-
cal algorithm was used to cluster genes, taking as distance
the absolute value of 1-PCC. To evaluate prognosis, we
used the Hu et al. data set [13] and fitted a Cox regression
model to each gene using the overall survival information.
An adjusted model taking into account tumor grade and
ER status was also fitted for each gene. Likelihood ratio
tests were used to evaluate the effect of gene expression on
survival. For genes that appeared significant in both mod-
els, expression was categorized into tertiles using Kaplan-
Meier curves. For these genes, the (non-parametric) log-
rank test was calculated. The replica data set used for sur-
vival analysis was that of Chang et al. [21].

Human interactome network and clustering analyses
The human interactome network was built by combining
three previously published data sets, which mainly repre-
sent experimentally-verified interactions [22-24]. The
Gandhi et al. [22] data set contains compiled and filtered
protein binary interactions from all currently available
databases (HPRD, BIND, DIP, MINT, INTACT and MIPS).
High-confidence yeast two-hybrid interactions from Rual
et al. [24] and Stelzl et al. [23] were then included. After
removing common interactions between the three data
sets, the resulting network contained 8,174 nodes and
27,810 edges. The Molecular Complex Detection
(MCODE) algorithm [42] was used to detect densely con-
nected regions in the interactome network. To calculate
the enrichment of mutome proteins in network clusters, a
binomial distribution was used. Enrichment in GO terms
was investigated using OntoExpress tools [43] and GENE-
CODIS [44]. To determine the level of connectivity
between validated mutome gene products, we compared
the number of nodes and interactions in the largest com-
ponent generated by direct interactions between these
proteins (73 of 122 were mapped in the interactome) to
the number of nodes and interactions generated by 100

iterations of 73 randomly chosen proteins in the interac-
tome.
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