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Abstract
The Cox proportional hazards model is the most widely used model for survival analysis because
of its simplicity. The fundamental assumption in this model is the proportionality of the hazard
function. When this condition is not met, other modifications or other models must be used for
analysis of survival data. We illustrate in this review several methodological approaches to deal with
the violation of the proportionality assumption, using survival in colon cancer as an illustrative
example.

Background
Several methods for estimating survival probability of
populations from patient samples have been proposed
since the first systematic approach in 1950 [1]. One of the
oldest and most straightforward methods for analyzing
survival data is to compute the Life Table. This method,
proposed by Berkson and Gage [1] for studying cancer sur-
vival, uses an enhanced frequency distribution approach.
To compute a Life Table, the range of survival times for all
patients is divided into subintervals. For each interval, one
computes the number and proportion of cases that
entered the interval "alive." the number and proportion of
cases that "died", and the number of cases that were lost
or "censored" in the respective time interval. An observa-
tion is censored if the subject leaves the study or is alive
when the study ends. Appropriate manipulation of these
quantities allows estimation of parameters of interest
related to the survival distribution.

While the Life Table method worked well for a homoge-
neous sample, it did not address a primary goal of cancer
research, namely to determine whether or not certain con-
tinuous and/or categorical variables are related to the sur-

vival times. This need led to the application of regression
methods for analyzing survival data. The standard multi-
ple linear regression model is not well suited to survival
data for several reasons; among these are (i) survival times
are typically not normally distributed, and (ii) censored
data is commonplace, resulting in missing values for the
dependent variable (survival time). Early attempts to cir-
cumvent these problems involved applying the log trans-
form to survival time, but this worked well only when
censoring was present in a very small percentage of the
observations (Everitt and Rabe-Hesketh, [2]). Two impor-
tant developments that have greatly enhanced survival
analysis methods are the derivation of a nonparametric
method for constructing a survival curve from censored
data by Kaplan and Meier [3], and the Proportional Haz-
ards (PH) model proposed by Cox [4]. With the rapid
improvements in the graphics capabilities of personal
computers over the last 20 years, the use of the Kaplan-
Meier method has become so popular that survival curves
are often referred to as "Kaplan-Meier curves". An example
of a survival curve estimated using the Kaplan-Meier
approach is shown in Figure 2. The Cox model, a rnulti-
variate semiparametric regression model, is now the most
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widely used in clinical studies to characterize disease pro-
gression on existing cases by revealing the importance of
covariates. It is the most popular model for survival anal-
ysis due to its simplicity. The proportional hazards model
is the most general of the regression models because it is
not based on any assumptions concerning the nature or
shape of the underlying-survival distribution. The model
assumes that the underlying hazard rate (rather than sur-
vival time) is a function of the independent variables
(covariates); no assumptions are made about the nature
or shape of the hazard function.

The hazard function (developed more fully in section 2)
is a non-negative function (of time) which can be thought
of as reflecting the change in an individual's probability of
death in the immediate future, given that the individual
has survived up to the current time. In humans, the prob-
ability of death is higher immediately after birth than it is
when the newborn becomes more mature; consequently,
the hazard function decreases with age through the matu-
ration process. Subsequent to maturation, there is a long
period where an individual's probability of death (in the
immediate future) is relatively low and changing very lit-
tle with the passage of time; here, the hazard function is
rather flat and closer to zero. In the final stages of life, this
probability increases with increasing age, resulting in an
increase in the hazard function.

This pattern of change gives rise to a U-shaped (or "bath-
tub shaped") hazard function for all cause mortality in
humans. The hazard is sometimes referred to as the "force
of mortality" or the "conditional failure rate".

Mathematically, the hazard function is simply a re-expres-
sion of the survival function, in that specification of either
one of these uniquely determines the other. The hazard
function, however, has more visual appeal in that it
directly displays the time periods over which changes to
the risk of death in the immediate future are occurring. To
identify these periods from the survival function (rather
than the hazard function), the analyst would have to look
for sharp drops and flatter sections of the survival curve.
The hazard function displays the information more
directly.

The Cox model relates the hazard function of an individ-
ual at time t, with a vector X = (X1, X2,..., Xp) of p covariates
(explanatory or predictor variables), to a baseline hazard
function h0(t) via a log-linear function:

where β = (β1, β2,..., βp) is a vector of coefficients. An
important consequence of this formulation, and the rea-
son for the name "Proportional Hazards Model", is that
the hazard ratio function (HRF) for two individuals with
covariates X and X* does not depend on time; h(t; X) is a
constant multiple of h(t; X*). It is also important to note
that the effects of the covariates on the hazard are
assumed to be constant over time. Inference about the
regression parameter (β) is possible without making
assumptions about the form of the baseline hazard func-
tion, h0(t); the hypothesis of no association of one or
more of the p independent variables with survival can be
tested by the likelihood ratio test (LRT) [4].

Figure 1 illustrates the difference between proportional
hazards and non-proportional hazards. In Figure 1a the
two hazard functions are proportional, and their corre-
sponding HRF (and log hazard ratio function, LHRF) is
constant over time as shown in Figure 1b. On the other
hand, if the hazard functions are not proportional, they
might start at the same value and then diverge, or con-
verge to some common value (Figure 1c), or cross and
diverge again, and the corresponding LHRF will not be
constant (Figure 1d). Many possibilities arise due to this
non-proportionality. For example, the resulting LHRFs
may be linear, non linear but monotonic (e.g. logarith-
mic), or non-monotonic (e.g. quadratic) (Ohno-Machado
[5]).

In most applications of the Cox model in cancer research,
the goal is to compare survival characteristics between two
or more treatment groups. This is accomplished by letting
one (or more) of the covariates serve as group indicator
variable(s). For example, in comparing a treated group
with a control group, we might assign X1 = 0 for control
group cases and X1 = 1 for treated group cases, and com-
pare the fitted survival curves. In this setting, it follows
from the constancy of the HRF that the survival curves for
different groups do not cross. In practice, however, the
HRF may change over time leading to incorrect inferences
(O' Quigley and Pessione [6] and Hess [7]) if the Cox
model were applied. Although there are several tests avail-
able to check for PH violations (Lin et al [8]), they are
rarely used because after rejecting the assumption it may
not be known how to model the effect of the predictors
(Quantin et al [9]).

This article focuses on a review of (a) the Cox model and
interpretation of its parameters, (b) assessment of the
validity of the PH assumption, (c) the use of time-varying
coefficients, and (d) accommodating nonproportional
hazards using covariate stratification, partitioning of the
time axis, and modeling tune dependence of the regres-
sion coefficients.
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1 Proportional Hazards Model
We describe the models in this paper using a synthetic
colon cancer survival (SCCS) data set on 100 individuals.
The explanatory variables considered are Treatment taking
values 1 or 2, Race taking values W and B, and Stage taking
values 1,2, and 3. The survival time in months is recorded
(Time) and whether the observation was censored (Event

= 0). Data for the first five individuals appear in Table 1.
For example, subject 1 in this table died after 3 months of
followup whereas subject 3 was still alive after 60 months
of followup. The number of censored events is 51 and the
median of the variable Time is 24. The estimated median
survival time will be higher than the sample median
because of the censored observations. The explanatory

Hazard FunctionsFigure 1
Hazard Functions. Two hazard functions that are proportional are shown in (a); the log of their ratio is constant in time as 
seen in (b). Two nonproportional hazard functions are shown in (c); the log of their ratio depends on time as seen in (d).
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variables are summarized as Treatment: 47 received 'Treat-
ment 1', 53 received 'Treatment 2', Race: 29 were 'Black',
71 were 'White', and Stage: 44 were 'Stage 1', 29 were
'Stage 2', and 27 were 'Stage 3'.

The proportional hazards model as well as the models for
nonproportional hazards attempt to describe the survival
function S(t) which is the proportion of individuals in the
population surviving beyond time t,

For an individual selected at random from the popula-
tion, the survival function can be interpreted as the proba-
bility this individual survives beyond time t.

For real data the survival function is not known but can be
estimated from a sample. If everyone in the sample were

observed until death the survival function could be esti-
mated by

Typically, not all individuals are observed until death so
that some of the data are censored. One method for deal-
ing with censored data is to estimate the survival function
with the Kaplan-Meier estimator. The Kaplan-Meier esti-
mate for the data in SCCS is plotted in Figure 2. This esti-
mate can be described as a decreasing step function where
the steps occur when a death has been observed. The
smooth function is the true survival function which we
know in this case because the data have been simulated.
This population survival function is for a population with
the following distributions: Treatment (50% Treatment 1,
50% Treatment 2), Race (80% White, 20% Black), and
Stage (40% Stage 1, 30% Stage 2, 30% Stage3).

S t
t

( ) = number of individuals surviving longer than time 
totaal number of individuals in the population

.

ˆ( )S t
t= number of individuals surviving longer than time 

tottal number of individuals in the sample

Survival Function and Kaplan-Meier EstimateFigure 2
Survival Function and Kaplan-Meier Estimate. Kaplan-Meier estimate (step curve) of the survival function and the popu-
lation survival function (dotted curve). The survival function for the population is known because these data were simulated.
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The survival function shows the relationship between sur-
vival and time; that is, between the variables Time and
Event in the SCCS data set. To describe the effect of other
variables, such as Treatment. Race, and Stage, on survival
it is convenient to use the hazard function.

The hazard function addresses the question:

What is the probability that an individual who has sur-
vived to time t dies in the interval t to t + Δt?

As the interval Δt gets close to zero so does the probability
of death and the hazard function h(t) is the rate at which
the probability goes to zero:

The hazard function h(t) is not a probability so it can be
larger than one and its value will depend on the units used
for time (e.g., days or months). The hazard function is
used to give an approximate probability, namely h(t)Δt,
for the event that an individual dies in interval t to t + Δt.
This approximation is very good for small Δt. The hazard
function is also related to the survival function. In fact, the
hazard function is an equivalent formulation for the rela-
tionship between survival time and the event of death.
The proportional hazards model is a simple model to
describe the survival between two groups having hazard
functions h1(t) and h2(t). The proportional hazards
assumption is that ratio of these hazard functions does
not depend on time:

where ψ is called the proportionality constant. If ψ > 1
Individuals in group 2 have a greater risk of dying than
individuals in group 1, regardless of the time t.

While ψ does not depend on time, it does depend on the
explanatory variables in the model, namely Treatment,
Race, and Stage. A convenient and readily interpretable
linear expression for the logarithm of ψ (which can be any
real number, since ψ > 0) is obtained by the proper use of
indicator variables according to the following scheme:

For Treatment:

For Race:

For Stage:

xStg2 = 0 and xStg3 = 0 if Stage is 1

xStg2 = 1 and xStg3 = 0 if Stage is 2

xStg2 = 0 and xStg3 = 1 if Stage is 3

With this coding of the explanatory variables, and appro-
priate substitution into equation 1, it can be shown that

log(ψ) = βTrt2xTrt2 + βRaceWxRaceW + βStg2xStg2 + βStg3xStg3  (2)

where the β's have been subscripted to reflect their role in
the hypothesized causal mechanism, and the subscript on
x indicates when the variable takes the value "1" rather
than "0". For example. xTrt2, xRaceW, and xStg2 are all 1 and
xStg3 is 0 when the individual receives treatment 2, is white
and has stage 2 cancer. An individual who received treat-
ment 1, was black, and had stage 1 cancer would have
each of these explanatory variables equal to zero. If βTrt2 >
0, individuals receiving treatment 2 have a larger log haz-
ard function than those receiving treatment 1. Expressed
in terms of the hazard function, exp(βTrt2) > 1 indicates
that the hazard function for treatment 2 is proportionally
greater than that of treatment 1 and the proportionality is
constant for all time t. The generic expression of the haz-
ards proportionality constant is

Fitting the proportional hazards model in (2) gives the
estimates in Table 2. This model indicates that the effect
of receiving treatment 2 rather than 1 is to decrease the
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Table 1: First five observations from SCCS

Time Event Treatment Race Stage

1 3 1 1 W 1
2 8 1 1 W 3
3 60 0 2 W 1
4 48 0 2 W 3
5 2 1 2 B 3
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hazard rate. That is, if we compare two groups one receiv-
ing treatment 1 and the other treatment 2, but the groups
have the same values for the other explanatory variables,
then the hazard rate for the group receiving treatment 2 is
0.46 times the hazard rate for those receiving treatment 1.
The effect of being white is to decrease the hazard rate by
the factor 0.4. Similar interpretation can be given for the
effects of Stage2 and Stage3.

Since the validity of inferences based on the Cox model
depends on the proportional hazards assumption, it is
desirable to have diagnostic methods for checking this
assumption. Many tools are available for checking the PH
assumption. These include:

(i) Plots of log(-log S(t))
Suppose the hazards for 2 groups are proportional, say
h1(t) = ψh2(t). It can be shown that this results in the rela-
tionship log(-log S1(t)) = log ψ + log(-log S2(t)); the log(-
log S(t)) curves for the two groups differ by a constant.
Plotting the estimated log(-log S(t)) curves for the two
groups, evaluated at the covariate mean values, provides a
visual check of the PH assumption. A clear departure from
parallelism of these two curves would be consistent with
violation of the PH assumption.

(ii) Interactions with Time
Interaction of a covariate x with time can be modeled by
including in the model a product term x × (time), result-
ing in a log hazard function of the form

log h(t) = � + β1x + β2xt + � = � + (β1 + β2t)x + �

The coefficient β2 reflects x's dependence on time; if this
effect is statistically significant in the fitted model we have
evidence for non-proportionality.

(iii) Schoenfeld Partial Residuals
For each covariate, a Schoenfeld residual can be calculated
for each case that was not censored. A plot of these resid-
uals against time should be "approximately flat" if the PH
assumption holds. We illustrate a check on the propor-
tionality assumption for the SCSS dataset using a Schoen-
feld residual plot with a smooth curve fit to these residuals
(Grambsch and Therneau [10]).

Figure 3 is the Schoenfeld residual plot for βTrt2. The

dashed lines are confidence bands drawn at plus and
minus two standard errors. The dotted line shows the true

functional dependence of βTrt2 on time t. Note that βTrt2(t)

is not constant but decreases toward zero as time
increases. That is, the treatment effect dies off over time.

The estimated curve indicates that Trt2(t) changes sign

for large time t. The true parameter βRaceW(t) is constant in

time but the estimate RaceW(t) indicates this parameter

could depend on t. See Figure 4.

2 Dealing with Nonproportional Hazards
In the SCCS example from the previous section we
encountered a model with a nonpreportional hazard
function where one of the coefficients varied with time t.
In this section we address some ways to cope with time
varying coefficients β(t) in the Cox model. Before describ-
ing these methods we list the following considerations
and caveats.

• Detecting the true time dependence of the parameter can
be difficult. The Schoenfeld plot for Treatment in Figure 3
shows that the parameter is not constant but does not
indicate the proper functional form. Therneau and
Grambsch [11] give examples where the data cannot dis-
tinguish two very different functions of time.

• While there are tests to check for nonproportionality
(see for example [10]), these need not be effective against
some alternatives. In particular, tests based on the slope of
β(t) need not be sensitive to quadratic or other nonlinear
functions of time.

• Even when a test for nonproportionality is statistically
significant, this does not mean the nonproportionality is
of practical importance or significance. This potential dif-
ficulty arises in any significance test, especially if the sam-
ple is large.

• Time varying coefficients can be due to other inadequa-
cies in the model. For example, one or more covariates are
not included, the functional form of the covariates is
incorrect, or another survival function can more effec-
tively model the data.

β̂

β̂

Table 2: Parameter estimates for the proportional hazards model using SCCS data

coef exp(coef) se(coef) z P

Treatment2 -0.78 0.46 0.31 -2.53 0.01
RaceW -0.92 0.40 0.30 -3.09 0.00
Stage2 -1.05 0.35 0.39 -2.69 0.01
Stage3 0.05 1.05 0.34 0.15 0.88
Page 6 of 12
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We consider three methods for dealing with time-varying
coefficients: stratification of variables with time varying
coefficients, partitioning of the time axis, and modeling
the dependence of β(t) on time. We discuss each of these
using the SCCS example. Other examples of these
approaches can be found on pages 145–147 in [11].

2.1 Covariate Stratification
Nonproportionality in Treatment can be addressed by fit-
ting a separate baseline hazard function for each level of
Treatment. The results for the SCCS data are given in Table
3. In this model, the effects of covariates are the same on
each stratum so there is only one set of coefficients that
apply to all strata. A disadvantage of this approach is that
we cannot test the effect of treatment 1 versus treatment 2.
For a variable that can be controlled this would make this

approach unacceptable. It could, however, be used if a
covariate such as race had a time varying coefficient.

2.2 Partitioning of the Time Axis
Proportional hazards may not hold over the entire time
axis but may hold approximately over shorter time peri-
ods. For the SCCS data we partition the time axis into two
intervals: t < 30 and t ≥ 30. The estimated coefficients for
these two time periods appear in Tables 4 and 5. The
parameters in the two time periods have been estimated
separately so that each covariate can relate differently to
survival during the two time periods.

An advantage of partitioning the time axis is that we can
model the effect of the Treatment variable. The relation-
ship between this model and the proportional hazards

Schoenfeld Residual Plot for βTrt2Figure 3

Schoenfeld Residual Plot for βTrt2. Schoenfeld residual plot for βTrt2. The black solid line is Trt2, a smooth function fit to 

the residuals, and the dotted line shows the actual dependence of βTrt2 on t (which is known in this case because the data have 
been simulated).
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model is illustrated in Figure 5 where the horizontal line
indicates the coefficient βTrt2(t) is constant in time, the
proportional hazards assumption, and the step function
breaking at time t = 30 indicates βTrt2(t) is constant in time
but only within each interval of the partition. The step
function, like the curve showing the actual dependence on
time, is increasing.

2.3 Modeling Time Dependence of β(t)
There are two basic approaches to modeling the depend-
ence of β(t) on t. One is to specify a known functional
form for this relationship. For example,

βTrt2(t) = β0 exp(-ρt)  (3)

so that the treatment effect diminishes over time. Another
is to allow the data to select the functional form of the
time dependence. This can be done by using splines. The
basic idea is to replace each of the dashed line segments in
Figure 5 with a curve such that the curves are connected at
time t = 30. The time axis in Figure 5 is partitioned into
just two intervals but by increasing the number of inter-
vals a close approximation can be obtained.

We do not use this approach for the SCCS data. One rea-
son is that software for this approach is not readily avail-
able. The SAS procedure phreg can be used when the
known functional form is linear; however, this will not
work for the function in equation (3). A more important
reason is that allowing the data to choose the functional
form increases the chance of over-fitting the data, and one

Schoenfeld residual plot for βRaceWFigure 4

Schoenfeld residual plot for βRaceW. Schoenfeld residual plot for βRaceW. The black solid line is RaceW, a smooth function 

fit to the residuals; βRaceW is constant in time which is indicated by the horizontal dotted line (which is known in this case 
because the data have been simulated).
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must be cautious about interpreting the p-values and con-
fidence intervals for the parameters.

2.4 Other Methods
The methods given above for dealing with nonpropor-
tional hazards all involve modification of the Cox model.
Another approach is to simply use a different model.
Therneau and Grambsch [11] suggest accelerated failure
time or additive hazard models. In the Cox model, the
covariates act multiplicatively on the baseline hazard
function (1). The additive hazard model:

allows the covariates to modify the baseline hazard in an
additive way; the effect of the covariate may also vary with
time. The additive model measures the additional risk due
to the effect of a covariate in absolute terms, whereas the
Cox model measures it in relative terms.

Artificial Neural Networks (ANNs) are another class of
models that have been used to model cancer data. These
are sometimes referred to as "black box" models because
of the complex, nonlinear relationships used in the fitting
procedure. In the Cox model, the form of the relationship
between the covariates and survival is specified; only the
parameters of the model are estimated. In contrast to this,
with ANNs one tries to estimate both the functional form
of the relationships between variables and the parameters
that describe those relationships. This limits the ability of
these models to identify causal relationships, because it is
usually difficult to relate the model parameters to the bio-
logical context that generated the data (Ahmed [12]).

Tree Structured Survival Analysis (TSSA) provides another
alternative for the study of risk factors (Segal [13]). It is an

extension of the Classification And Regression Tree
(CART) algorithm developed by Breiman et al [14]. TSSA
is an exploratory, nonparametric method that requires no
assumptions about the relationship between survival and
the potential risk factors (covariates). The primary output
of a TSSA algorithm is a "tree structure", whose branches
and nodes identify the successive splits of the cases into
risk groups with similar survival profiles. TSSA evaluates
the relationship between risk factors and survival through
recursive partitioning of patients according to their risk
factors, with a comparison of survival patterns among the
subgroups of patients resulting from each partition. The
method not only identifies a set of significant risk factors,
but also provides a simple procedure to identify sub-
groups of participants with an estimate of their associated
risk.

3 Application of Modified Cox Models in Colon 
Cancer Research
Moreau et al [15] proposed a crude survival model that
accounts for the nonproportionality of hazards by mode-
ling the hazard ratio as a step function of the follow-up
time (divided into predefined intervals). The application
of the piecewise model requires determining both the
number and the boundaries of these intervals. Clinicians
have conveniently suggested six intervals with the follow-
ing upper boundaries being 1 month, 6 months, 12
months, 24 months, 60 months, and 120 months (Bolard
et al [16]), and employed the 2L program of BMDP Statis-
tical Software analysis (Dixon et al [17]).

Esteve et al [18] fit the baseline hazard function and its
dependence on time by partitioning the time axis. How-
ever, the coefficients of the covariates were not allowed to
depend on time. In contrast, Moreau et al [15] allow the
coefficient on age to depend on time and finds the effect
of age continues to decline between 24 and 120 months.
Moreau et al [15] also allow cancer stage to depend on

h t X h t t X tj j
j

p
( ; ) ( ) ( ) ( )= +

=
∑0

1

β

Table 3: Parameter estimates for the proportional hazards model after stratification on Treatment

coef exp(coef) se(coef) z P

RaceW -0.87 0.42 0.30 -2.93 0.00
Stage2 -1.03 0.36 0.39 -2.65 0.01
Stage3 0.09 1.09 0.34 0.26 0.80

Table 4: Parameter estimates for the proportional hazards model on the first time interval

coef exp(coef) se(coef) z P

Treatment 2 -0.87 0.42 0.37 -2.39 0.02
RaceW -0.61 0.54 0.34 -1.81 0.07
Stage2 -0.38 0.68 0.48 -0.79 0.43

Stage 3 0.26 1.30 0.39 0.67 0.50

Table 3: Parameter estimates for the proportional hazards model after stratification on Treatment

coef exp(coef) se(coef) z P

RaceW -0.87 0.42 0.30 -2.93 0.00
Stage2 -1.03 0.36 0.39 -2.65 0.01
Stage3 0.09 1.09 0.34 0.26 0.80
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time. These considerable differences between models that
allow covariates to depend on time and those that do not
demonstrate the ability of models with time varying coef-
ficients to provide new insights about these changes.

Esteve et al [18] investigate the time-dependent logarithm
of the hazard ratio for each covariate by modeling the data

using B-splines (de Boor [19] and Stone and Koo [20]).
Using this B-spline model, they find a significantly higher
risk of post surgical mortality than the Cox model during
the first six months, and by 12 months the reverse happens.
Moreover, the Cox model overestimates the impact of age
on colon cancer-specific mortality after the first 6 months
of follow-up, whereas the impact of age is near zero during

Estimates for the dependence of βTrt2 on timeFigure 5
Estimates for the dependence of βTrt2 on time. The dependence of βTrt2 in the proportional hazards model (solid hori-
zontal line), in the time-partitioned model (dashed line segments), and from a nonparametric estimate based on the Schoenfeld 
residuals (solid curve). The dotted curve is the actual dependence of βTrt2 on time (which is known in this case because the 
data have been simulated).
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Table 5: Parameter estimates for the proportional hazards model on the second time interval

coef exp(coef) se(coef) z P

Treatment2 0.50 1.65 0.84 0.60 0.55
RaceW -1.29 0.28 0.72 -1.79 0.07
Stage 2 -1.22 0.30 0.86 -1.42 0.16
Stage3 -0.80 0.45 0.87 -0.91 0.36
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this time period when the B-spline model is used. Clini-
cally, the risk of cancer related death for elderly patients is
higher only during the initial few months corresponding to
post-surgical period. The estimated effect of later periods of
diagnosis shows that there may be some benefits of new
treatments in reducing post-surgical mortality, but they do
not appear to affect the long-term survival (Giorgi et al
[21]).

4 Software
Software routines for fitting Cox models are available in
all of the popular statistical software packages. Here we
provide only a brief summary for some of those that are
more widely used. It is worth noting that many of these
programs have active and well-organized user groups
whose members are continually writing add-on functions
and macros, usually available at no cost.

GLIM
GLIM [22], the Generalised Linear Interactive Modeling
package, is a flexible, interactive statistical analysis pro-
gram developed by the GLIM working party of the Royal
Statistical Society. It has a suite of macros that perform
survival analysis. These include COXMODEL (fits Cox
proportional hazards models), PHAZ (plots log hazard
against log survival time), LIFETABS (produces a life table
analysis from censored survival times), and STEPS (plots
the estimated survival curve using the Kaplan-Meier
approach). Other related macros are INIB, LOGRANK2,
NORM, LNORM, WEIBMIX, WEIBULL, and RESPLOTS.

R
R [23] is a language and environment for statistical com-
puting and graphics. Unlike the other packages men-
tioned here, R can be downloaded at no cost from the R
website. It is similar to the S language and environment
which was developed at Bell Laboratories (formerly AT&T,
now Lucent Technologies). Much code written for S runs
unaltered under R. Analysis is accomplished via calls to
functions; the arguments to these functions include data-
sets and model specifications, and the function returns
appropriate statistics and graphical output. An R add-on
package called "survival" (again, available at no cost) con-
tains over 100 files consisting of functions and datasets for
survival analysis.

SAS
SAS [24] software has six procedures that perform survival
analysis computations. LIFETEST produces life tables and
graphs of survival curves. LIFEREG estimates regression
models with censored data, but does not allow for time-
dependent covariates. PHREG fits Cox models, handling
both discrete-time and continuous-time data, as well as
time-dependent covariates. Three other procedures
(LOGISTIC, PROBIT, and GENMOD), while not designed

specifically for survival analysis, are effective for estimat-
ing survival models in certain settings.

S-PLUS
Marketed by Insightful Corporation, S-PLUS [25] contains
a complete array of survival analysis tools, including
frailty models, smoothing splines, penalized survival
models, parametric survival regression, Kaplan-Meier
curves, and Cox proportional hazards models.

SPSS
SPSS [26] is a popular menu-driven general statistical
analysis package. It contains menu-driven routines for
constructing Life Tables, plotting Kaplan-Meier survival
curves, and fitting Cox models with time-varying covari-
ates.

Other Programs
Though less widely used than those we have mentioned
above, other programs that have Cox model fitting capa-
bilities include BMDP [27], NCSS [28], Minitab [29], Sys-
tat [30], Stata [31], and Statistica [32].

Conclusion
The Cox model, also known as the proportional hazards
model, often provides a very good approximation to the
survival function and its dependence on covariates. For
those situations where the proportional hazards model is
inadequate we have described three simple modifications
that address nonproportional hazards. One solution is to
stratify covariates. A disadvantage of this approach is that
it does allow modeling the effect of the covariates used in
the stratification. Another solution is to partition the time
axis into intervals and require proportional hazards only
within intervals. A disadvantage here is determining the
number intervals that are necessary. The final approach is
to model the time dependence of the coefficients. Inter-
pretation should be tempered by the fact that these mod-
els tend to over-fit the data.
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