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Abstract

Background: Acute myeloid leukemia (AML) cells are characterized by non-mutated TP53, high
levels of Hdm2, and frequent mutation of the FIt3 receptor tyrosine kinase. The juxtamembrane
mutation of FLT3 is the strongest independent marker for disease relapse and is associated with
elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic
mechanism of cancer cell eradication in current therapy of AML.

Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately
after chemotherapy and Hdm?2 is proposed a role in receptor tyrosine kinase regulation. Thus we
examined the DNA damage related modulation of these proteins in relation to FLT3 mutational
status and induction of apoptosis.

Results: Within one hour after exposure to ionizing radiation (IR), the AML cells (NB4, MV4-11,
HL-60, primary AML cells) showed an increase in FIt3 protein independent of mMRNA levels, while
the Hdm?2 protein decreased. The FLT3 mutant MV4-1 | cells were resistant to IR accompanied by
presence of both Mcl-1 and Hdm?2 protein three hours after IR. In contrast, the FLT3 wild type NB4
cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin
(DNR) induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by
apoptosis.

Conclusion: Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1,
Hdm?2 and Fit3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2.
These observations suggest that defining the pathway(s) modulating Flt3, Hdm2 and Mcl-I may
propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.
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Background

Anthracyclines like daunorubicin (DNR) are used in the
induction treatment of acute myeloid leukemia (AML),
obtaining short time complete hematological remission
for more than 65% of adult AML patients with de novo
AML [1]. Successful hematological remission after only
one induction cycle is a favorable prognostic parameter
and is associated with decreased risk of later AML relapse
[1,2]. Induction therapy causes rapid activation of the
tumor suppressor p53 followed by dominating p53-tar-
geted gene expression in vivo [3]. A major mechanism for
this p53 induction is DNA damage through anthracycline-
stabilization of the DNA:topoisomerase II complex [4],
but cell death induction by anthracyclines may also
involve other molecular targets independent of p53 [4-7].

Ionizing radiation (IR) is frequently used in the treatment
of solid cancers, in the conditional treatment before
allotransplantation of leukemia patients and in radioiso-
tope-conjugated therapeutic antibodies directed against
AML cells [8,9]. IR and anthracyclines induce growth
arrest and cell death through DNA-damage, but also
involve cell membrane-related effects in regulation of
apoptosis [4-7,10]. We have previously reported that AML
patient cells respond with varying sensitivity to IR-
induced proliferation arrest [11], and it may therefore be
of interest to determine molecular mechanisms for radi-
oresistance in more detail.

The strongest molecular predictor for AML relapse is inter-
nal tandem duplications in the juxtamembrane domain
of the receptor tyrosine kinase Flt3 (Flt3-ITD). These
mutations are present in approximately one third of the
patients [12]. FIt3-ITD are associated with increased DNA
repair [13], an observation suggesting that these cells are
able to recover from DNA damage caused by topoisomer-
ase II blockage and thus have a more drug-resistant phe-
notype. The expression of anti-apoptotic Bcl-2 protein
family members is also influenced by the mutational sta-
tus of FIt3 [14]. We have recently shown that a duplication
of Y591 in FIt3-ITDs is associated with elevated Bcl-2 pro-
tein and hyper-phosphorylated wild type (wt) p53 in
AML, proposing a mechanism for inactivation of p53
[14].

Mcl-1 is an anti-apoptotic member of the Bcl-2 family of
proteins. High levels of Mcl-1 have been detected in cells
from patients with relapsed AML [15]. Therapeutic target-
ing of Bcl-2 family proteins seems to depend on Mcl-1 to
trigger apoptosis [16]. It may therefore be of particular
interest to examine the Mcl-1 modulation in DNA damage
therapy.

In contrast to solid tumors, more than 90% of the AML
cases comprise wild type p53 [17,18]. On the other hand,
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the E3 ubiquitin ligase Hdm?2 is usually strongly expressed
in AML, contributing to block the growth inhibitory and
pro-apoptotic effect of p53 [19]. IR induces DNA damage
and rapid down regulation of Hdm2 through induction of
auto-ubiquitination and subsequent proteasomal degra-
dation [20]. Recent reports indicate that Hdm2 have
important p53-independent activities, including regula-
tion of cell membrane receptors like insulin-like growth
factor (IGF) 1 receptor and [2-adrenergic receptor
through ubiquitination [21]. However, it is not known
whether the FIt3 receptor is regulated by Hdm?2.

Concerted protein modulation of a receptor tyrosine
kinase, the E3 ubiquitin ligase Hdm2 and selected Bcl-2
family members through DNA damage therapy has previ-
ously not been reported. Our study indicated that both IR
and DNR induced Hdm?2 protein down regulation, partly
Flt3 protein elevation, and a pro-apoptotic shift in the
expression of proteins in the Bcl-2 family. Flt3 and Hdm2
might have a reciprocal regulation at the protein level and
FLT3 mutations could be involved in protection against
IR-induced apoptosis through a persisting Mcl-1 level.

Results

lonizing radiation induces reciprocal regulation of Flt3 and
Hdm2 protein in NB4 cells

The promyelocytic cell line NB4 is characterized by
mutated TP53 and non-functional p53 protein [22,23] as
well as wild type FLT3 [24]. DNA damaging 25 Gy IR of
NB4 cells resulted in increased apoptosis, but no modula-
tion of FLT3 or HDM2 mRNA was observed (Fig. 1a,b; left
panel). Hdm2 responds to IR with protein auto-degrada-
tion [20], and it regulates endocytosis of certain receptors
like the IGF 1 receptor [25]. We examined Flt3 and Hdm?2
at different time points after IR (25 Gy) and found highly
significant reciprocal regulation at the protein level (Fig.
1¢ left panel). This was accompanied by attenuation of
the anti-apoptotic Mcl-1, an increase in Bax but unaltered
Bcl-2 (Fig. 1d; left panel) and Bdl-X, (data not shown).
Previous studies have shown that DNA-damaging in vivo
chemotherapy of AML has no effect on MCL-1 gene induc-
tion, but rapidly induces BAX and PUMA mRNA [3]
(Dyan et al., manuscript in preparation). p21 protein was
not detected in NB4 cells (data not shown), and the p53
protein level was not altered after irradiation (Fig. 1d; left
panel), reflecting its non-functional status.

Hdm2 response and stable Mcl-1 in the IR-resistant cell
line MV4-11

MV4-11 is characterized by FLT3-ITD, loss of wilt type
FLT3 allele, and wild type TP53 [22,24]. MV4-11 cells
were resistant to IR with regards to apoptosis induction
(Fig 1a, right panel), but responded with more than one
fold increase in HDM2 mRNA (Fig. 1b), reflecting the
functional p53. The level of Hdm2 protein showed a
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Figure |

Rapid IR-induced protein modulation of FIt3, Hdm2 and Bcl-2 family members in AML cell lines. A. Cells were
exposed to 25 Gy and fixed after the indicated time (minutes). The percentage of normal nuclei in a total of 200 cells was
determined in Hoechst stained cells for each time point. The results shown represent the mean of three separate experiments
and the error bars show standard error of mean (SEM = Standard Deviation/Vn). The star denotes statistical significance rela-
tive to the control, this is determined by a Students two-tailed t-test, p < 0.05. B. mRNA level of FLT3 and HDM2 was deter-
mined by Real-time PCR in one typical experiment. GAPDH was used as endogenous control. C. IR down regulated Hdm2
protein and up regulated Flt3 protein in these AML cell lines. The diagram shows measured intensity on three separate West-
ern blots (normalized to Actin). The error bars show standard error of mean SEM and the stars represents significance as in A.
D. Visualization of the protein modulations of Fit2 and Hdm2 shown in C. in addition to modulation of proteins in the Bcl-2
family. Mean intensity on the Western blots written below the corresponding panel were measured and normalized to Actin
and to the control. The values shown are arbitrary units and represent one typical experiment.
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small but significant decrease after 60 minutes before an
increase was detected, whereas the Flt3 level increased in
response to IR and was not attenuated by the elevated
HDM?2 level after 180 minutes (Fig. 1¢,d). Another strik-
ing difference from the NB4 cells with FLT3-wt was that
the Mcl-1 level did not change in response to IR (Fig. 1d).
Furthermore, MV4-11 responded to IR with increased pro-
tein levels of p53, Bax, Bcl-2, (Fig. 1d) and p21 (data not
shown) while the level of Bcl-X; was unaltered (data not
shown). The IR induction of p53, Hdm2, Bax and p21
suggests that the p53 transcriptional activation in MV4-11
is intact [3].

Attenuation of Hdm2 and Mcl-1 is independent of p53 and
Fit3

The effect of IR was also examined in HL-60 cells, charac-
terized by wild type FLT3 and deleted alleles for TP53
[22,24]. Like inNB4 and MV4-11 cells, Hdm2 was attenu-
ated and FlIt3 increased, but the FIt3 protein appeared not
to be full length (Fig. 2a; ~150 versus ~60 kDa). The lack
of full length FIt3 was confirmed in cells from both ATCC
and DSMZ within four passages of culture, and immuno-
precipitation of FIt3 in these cells did not reveal any low
molecular anti-Flt3 reactive form (data not shown). Flt3
protein has previously been reported non-detectable in
HL-60 cells [26].

Bcl-2 family members showed no significant response to
IR in HL-60 cells except a late decrease in Mcl-1.

Human primary AML cells (patient 1) were irradiated and
examined for Flt3 and Hdm2 modulation (Fig. 2b), indi-
cating that the reciprocal FIt3-Hdm2 response to DNA
damage also could be present in primary leukemia cells.
In contrast to the HL-60 cells where the p21 response was
absent, early increase was present in the primary AML
cells. These differences reflects an absence of a p53
response in HL-60 cells and a presence of such in the
patient cells (Fig. 2a,b).

Daunorubicin induces attenuation of Hdm2 and Mcl-1
independent of TP53 and FLT3 status

Since both DNR and IR induce DNA damage, we exam-
ined the effect of DNR in both AML cell lines (NB4, MV4-
11 and HL-60) and primary cells (patient 2). The cells
were treated in vitro (Fig. 3) with DNR for 5 hours at rele-
vant concentrations [3]. The NB4 and MV4-11 cell lines
were sensitive to DNR with regards to apoptosis induc-
tion, and both Mcl-1 and Hdm2 were down regulated
(Fig. 3a). Although DNR increased Flt3 protein in all the
AML cells tested (Fig. 3ab), this effect was most prominent
in MV4-11 cells, HL-60 and the primary AML cells. HL-60
cells showed an increase in putative short forms of FIt3
protein with low doses of DNR (Fig. 3b).
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Figure 2

IR decrease Hdm2 protein in HL-60 (p53 -/-) and in
primary AML cells. A. HL-60 cells treated with 25 Gy and
harvested at indicated time (minutes) demonstrated a rapid
decrease in Hdm2 protein after IR. There was no detectable
FIt3 protein at 130 kDa. B. Primary AML cells also treated
with IR and harvested at indicated time, demonstrated the
rapid Flt3 increase and Hdm?2 attenuation as previously
observed. This was followed by an increase in Hdm2, reflect-
ing functional and elevated p53 protein. Mean intensity on
the Waestern blots were measured and normalized to Actin
and to the control. Values shown are arbitrary units and rep-
resent one typical experiment.
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Daunorubicin therapy of primary AML cells and cell lines increased FIt3 protein and attenuated Hdm2/Mcl-1.
A. Treatment of NB4 and MV4-1 | cells with DNR resulted in an increase in FIt3 and a decrease in Hdm2. The mean intensity
on one representative VWestern blot was calculated and normalized to Actin and to the control. The numbers shown are in
arbitrary units and represent one typical experiment. The percentage of living cells was determined by flow cytometry. The liv-
ing cells distinct forward and side scatter properties were used to separate viable cells from dead cells. B. Increasing doses of
DNR induce Flt3 and down regulate Hdm2 protein in primary AML cells in vitro. Note that Hdm?2 is down regulated in HL-60
cells, a cell line with lack of full length Fit3 protein and with deleted alleles for p53. All wells on the SDS-PAGE gel was loaded
with equal amounts of protein, and Coomassie staining of the gel after blotting confirmed this equal loading.
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FIt3 and Hdm2 protein are reciprocally regulated in vivo
We have recently demonstrated swift induction of p53
and Bax proteins in AML cells collected from patients
undergoing induction chemotherapy with anthracyclines
and cytarabine [3]. It was therefore of interest to examine
the AML cells' protein levels of FIt3 and Hdm?2 after in vivo
chemotherapy (Fig. 4, one representative patient). AML
cells from patients were collected within the first 4 hours
of chemotherapy, and showed a strong in vivo decrease in
Hdm?2, in addition to increase in p53 and FIt3.

Discussion

We demonstrated that Flt3 protein increased in response
to IR and DNR in all AML cell lines and primary leukemic
cells tested, in vitro and in vivo. Likewise, Hdm2 was down
regulated in concert with the FIt3 increase. This reciprocal
regulation was consistent in all experiments except in
MV4-11 cells 3 hours after IR and in NB4 cells treated with
DNR. A summary of all the results is shown in Fig. 5. Sev-
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eral scenarios may explain this mutual modulation of Flt3
and Hdm2. The IGF 1 receptor, a more distant relative of
Flt3, has been demonstrated to undergo Hdm2-depend-
ent ubiquitination and degradation [25]. If Hdm2 regu-
lates the turnover of Flt3 through ubiquitination, IR-
induced Hdm2 degradation will result in elevated levels
of Flt3. The observed down regulated Hdm2 in irradiated
AML cells (Fig. 5) is probably due to proteasomal degra-
dation [27,28]. In addition to its ability of auto-ubiquiti-
nation, Hdm?2 is ubiquitinated by several E3 ubiquitin
ligases, including the p300-CBP associated factor (PCAF)
and TSG101 [29,30]. Future work is needed to address if
modulation of Flt3 level may affect the level of Hdm2,
and if this possible action is directly mediated by FIt3 on
Hdm?2 or involves other E3 ligases.

It can not be ruled out that the increase in FIt3 protein
after IR is based on mechanisms independent of Hdm2.
IR has been shown to increase the mRNA and protein lev-
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Induction therapy of AML reciprocally regulates FIt3 and Hdm2 proteins in vivo. AML cells sampled from a patient
undergoing induction chemotherapy with an anthracycline and cytarabin were subjected to Western blotting and analyzed for
FIt3, Hdm2 and p53 expression. The mean intensity on one representative Western blot was calculated and normalized to

Actin. The numbers shown are in arbitrary units.
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Summary of the results. A. FLT3 and TP53 mutational status of the cell lines used in this study. B. A summary of the ability
of IR and DNR to induce apoptosis in the three different cell lines studied (n.d; not determined). C. Overview of the concerted
protein modulations elicited by DNA-damaging therapy found in this study (n.d; not determined).
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els of epidermal growth factor (EGF) receptor as well as
the cell surface protein expression of IGF 1 receptor
[31,32]. Such mRNA regulation of FIt3 after IR was not
observed in our study (Fig. 5).

The NB4 cells, in contrast to the MV4-11 cells, showed IR
induced apoptosis (Fig. 5) and a lack of increase in HDM?2
mRNA level. Since NB4 cells have non-functional p53
[33], this suggests that NB4 undergoes a p53-independent
apoptosis during IR-exposure. A possible explanation for
the IR-resistance of MV4-11 is that AML cells with FIt3-
ITD can repair double-stranded breaks in DNA more effi-
cient than in cells with wild type FIt3 [13], but an anti-
apoptotic effect on p53 by the MLL-fusion products may
be an alternative mechanism [34]. This makes MV4-11
more protected against apoptosis induced by IR. Other
explanations for early IR-induced apoptosis in NB4 cells
in contrast to in the MV4-11 cells could include a pro-
apoptotic response on the Bcl-2 family members and a
lack of Hdm?2 induction (Fig. 5). No shift in the balance
of Bcl-2/Bax was observed (Fig. 5), thus our data suggest
that Mcl-1 is a central player in regulation of DNA-damage
induced cell death. A striking feature of IR treated NB4
cells, as well as DNR treated NB4 and MV4-11 cells, was
the Mcl-1 down regulation accompanied by apoptosis.
These observations emphasize the putative importance of
Mcl-1 in regulation of apoptosis in AML, with possible
implications for the biology behind disease relapse
[15,16].

MV4-11 cells were resistant to IR while DNR effectively
induced apoptosis (Fig. 5). DNR elicited a lasting Hdm2
and Mcl-1 down regulation in contrast to IR. This suggests
that DNR ignites apoptosis through more pathways than
IR and that the Mcl-1 attenuation is a pre-apoptotic event.
In addition to the induction of DNA damage, DNR is
known to stimulate the level of the second messenger
ceramide by de novo synthesis and thus trigger apoptosis
[5].- Anthracyclines may also induce apoptosis via signal-
ling through altered plasma membrane lipid rafts and the
death receptor pathway [6] (for review see [7]).

The p53-deficient HL-60 cell line demonstrated Hdm2
decrease as well as a putative FIt3 increase in response to
IR or DNR (Fig. 5). The FLT3 gene in HL-60 is wild type
[24], confirmed by sequencing of the juxtamembrane
region and the kinase activation domain. Interestingly,
lack of full length Flt3 protein in HL-60 has previously
been reported [26], and we were not able to detect full
length FIt3 in different batches of HL-60 cells from ATCC
and DMZS (Fig. 3b). The protein bands between 50 and
100 kDa may be protein products from alternative splic-
ing of FLT3 mRNA, as reported for the closely related
platelet-derived growth factor alpha-receptor and KIT
[35,36]. Additional work is clearly needed to address the
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possibility of alternative splicing of FLT3 in HL-60 and in
AML cells in general.

FIt3-ITD is the strongest predictor for relapse of AML in
therapy with anthracyclines [12], and is recently associ-
ated with enhanced DNA repair [13]. We demonstrated
that the anti-apoptotic protein Bcl-2 was induced in MV4-
11, HL-60 cells and primary AML cells during DNA dam-
age therapy (Fig. 5). This could indicate that anthracy-
clines elicit an anti-apoptotic signal through Flt3. The
anti-apoptotic signal may be particular strong in AML
cells with a FIt3-ITD mutation including an Y591 duplica-
tion [14].

Conclusion

In this study we show a concerted protein modulation of
FIt3, Hdm2 and Mcl-1 after DNA damaging therapy in
AML. IR resulted in decreased levels of Hdm2 and ele-
vated levels of Flt3 and may involve p53 independent
activities of Hdm2 acting on FIt3 as proposed for other
receptor tyrosine kinases. The apoptotic response may
depend on a persisting down regulation of Hdm2 and
Mcdl-1 [37]. Targeting of Flt3, Bcl-2/Bcl-X; and Mcl-1 is
proposed to enhance the response of chemotherapy. Pre-
clinical studies and early clinical trials that follow these
principles are underway [38,39], and we believe that rele-
vant biomarker examinations [3] including the proteins
presented in this study may help to pinpoint the patients
that will benefit from this enhanced therapy.

Methods

Cell culture

All patient studies were approved by the local ethical com-
mittee (REK Vest) and the Data Inspectorate, Norway.
REK Vest is affiliated with the University of Bergen and
Haukeland University Hospital. Samples were collected
after informed consent. Patient data is overviewed in
Table 1.

Leukemic peripheral blood mononuclear cells (PBMC)
were isolated by density gradient separation (Ficoll-
Hypaque; Nycomed, Oslo, Norway) and were stored fro-
zen in liquid nitrogen [40]. The percentage of blasts
among leukemic PBMC exceeded 95% for all patients as
judged by light microscopy of May-Griitnwald-Giemsa
stained cytospin smears [41]. PBMC were cultured in
serum free conditions in StemSpan (Stem Cell Technolo-
gies, Vancouver, BC, Canada) at an average concentration
of 2 x 10° cells per ml. Cells collected from patients during
therapy followed the procedures as described by Anensen
et al. 2006 [3].

The AML cell line NB4, kindly provided by Dr. Michel
Lanotte (INSERM U-301, Hopital St. Louis, Centre
Hayem, Paris, France) [42], was cultured in RPMI 1640
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Table I: Clinical and biological characteristics of AML patients

http://www.molecular-cancer.com/content/6/1/33

Patients Age Sex Previous FAB Membrane molecules Karyotype FLT3 FLT3 Survival
malignant M Asp835  (Weeks)
disease
CDI3 CDI4 CDI5 CD33 CD34
# 72 M Residive AML M| + + - Normal wt wt 6
#2 34 F AML M5a + - 46 XX, t(9;11), wt 0.31 >24 (Tx)
(922;q23)
#3 55 M Atypical + + - Multiple wt wt >23

The patients were randomly selected; their clinical and biological data are included as background information.

(Sigma-Aldrich, Inc. St. Louis, MO, USA) with 10% fetal
bovine serum (Foetal Calf Serum Gold, PAA Laboratories
GmbH, Pasching, Austria) and penicillin/streptomycin 50
IU/50 pg per ml. Sequence analysis of both DNA strands
of the NB4 cells used in this study confirmed wild type
juxtamembrane region and activation loop of FLT3, and
FISH analysis confirmed the presence of t(15;17) translo-
cation. The same culture conditions as for NB4 were used
for HL-60, purchased from DSMZ (Deutsche Sammlung
von Mikroorganismen und Zellkulturen, Braunschweig,
Germany). Reverse transcriptase PCR of HL-60 confirmed
presence of normal length of FLT3 mRNA in the juxtam-
embranous region. The MV4-11 cell line was purchased
from ATCC (American Type Culture Collection, Manas-
sas, VA, USA) and cultured in IMDM (BioWhittaker, Cam-
brex Bio Science, Verviers, Belgium) with 10% FBS and
penicillin/streptomycin 50 IU/50 pug per ml. The FLT3
gene in MV4-11 comprised a length mutation in the jux-
tamembrane region, and the t(4;11)(q21;q23) transloca-
tion was confirmed by FISH. The TP53 gene in MV4-11 is
wild type according to data published [22] and the JARC
TP53 Database [43]. The protein level of FIt3 in NB4 was
approximately 50% of the level in MV4-11, estimated by
Western blot and flow cytometry.

Irradiation and chemotherapy treatment of cells

For irradiation induced DNA double strand breaks, sam-
ples were exposed to 25 Gray (Gy) from a Ce!37 source
[11] and maintained in culture until samples were col-
lected for Western blot analysis at time indicated. To
secure that the observed effect was from the irradiation,
the control samples were handled the same way as the
exposed samples except for the actual irradiation. Collec-
tion of cells from AML patients under therapy and in vitro
treatment of cells with daunorubicin was performed as
previously described [3].

Apoptosis assays

Cells were fixed in 2% paraformaldehyde solution con-
taining the DNA specific nuclear stain Hoechst (Hoechst
33342, Invitrogen, Carlsbad, CA, USA; 10 pg/ml) and
examined as previously described [33]. The number of
normal and apoptotic nuclei was counted in an inverse

fluorescence microscope (x400 magnification; Leica IRB,
Leica Microsystems GmbH, Wetzlar, Germany). The mean
number of three experiments was calculated together with
the standard error of mean (standard deviation/Ynumber
of experiments). Nuclear staining with Hoechst of the
cells treated with daunorubicin was not possible due to
the strong fluorescence from the drug. These cells were
fixed in 4% paraformaldehyde solution and their forward
scatter and side scatter properties were examined by flow
cytometry and used to determine the number of living
cells. Flow cytometry was performed on a FacsCalibur
flow cytometer (BD Biosciences, San Jose, CA, USA) and
data analyses were carried out using the FlowJo software
(Tree Star, Inc., Ashland, OR, USA).

Western blotting

Samples for Western blotting were prepared by pelleting
the cells (3-10 millions) and washing them twice in 0.9%
NaCl following lysis in the following buffer: 10 mM Tris
(pH 7.5), 1 mM EDTA, 400 mM NaCl, 10% glycerol, 0.5%
NP40, 5 mM NaF, 0.5 mM sodium orthovanadate, 1 mM
DTT, and 0.1 mM PMSF (50-200 pl lysis buffer per sam-
ple) and transfered to 1.5 ml tubes. The samples were
homogenized by 20 strokes of a plastic mini homogenizer
before centrifugation at 14000 x g for 20 minutes. Protein
concentrations were determined using the Bradford pro-
tein assay, following the manufacturers instructions (Bio-
Rad Laboratories, Inc., Hercules, CA, USA). The protein
samples were added SDS loading buffer (Final: 1% SDS,
10% Glycerol, 12 mM Tris-HCI pH 6.8, 50 mM DTT and
0.1% Bromophenol Blue) and boiled for 10 minutes.

SDS-polyacrylamide gels, 10 or 12.5 % were loaded with
50-70 ug protein per well. After electrophoresis (100-200
V, 1-3 hours) and electroblotting (200 mA, o/n 4°C) the
PVDF-membranes (HybondP, Amersham Biosciences,
Oslo, Norway) were blocked for 1 hour in I-Block Block-
ing agent (Applied Biosystems, Foster City, CA, USA). Pri-
mary antibodies were incubated for 1-2 hours in room
temperature or over night at 4°C followed by 1 hour
washing in TBS-Tween. The antibodies FIt3 S-18, Hdm2
SMP-14, p53 BP53-12, Mcl-1 22, Bcl-2 AC 21 and Bax
2D2 were from Santa Cruz Biotechnology, CA, the Actin
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antibody AC-15 was from Abcam plc, Cambridge, UK and
the Hdm2 antibodies 2A10 and IF2 were from Calbio-
chem, San Diego, CA, USA.

Secondary antibodies conjugated to horse radish peroxi-
dase (Jackson ImmunoResearch laboratories, West Grove,
PA, USA) were diluted in 4% fat-free dry milk in TBS-
Tween and incubated 1 hour at room temperature. After
washing for 1 hour with TBS-Tween, the membranes were
developed using Supersignal® West Pico or West Femto
Chemiluminiscence Substate from Pierce Biotechnology
Inc, Rockford, IL, USA according to the manufacturers'
instructions. The membranes were imaged using a Kodak
Image Station 2000R (Eastman Kodak Co., Lake Avenue,
Rochester, NY, USA), and bands were quantified using the
Kodak analysis software. Data were exported to Excel
spreadsheet, corrected for background and loading con-
trol intensities and a Student's two-tailed t test was used
for determination of significance.

Real time PCR

Immediately after in vitro experiments, 5 x 10° cells were
dissolved in RNAlater (Ambion Inc.) to stabilize and pro-
tect RNA and then stored at -80°C. RNAeasy plus mini kit
(Qiagen Inc.) was used for isolation of total RNA. Cells
were thawed, centrifuged and resuspended in RTL buffer
and further procedures were followed according to manu-
facturer's instructions. RNA quality was tested on a 2100
Bioanalyzer (Agilent Technologies) and total RNA was
quantified with a spectrophotometer for small aliquots
(NanoDrop Technologies, Wilmington, DE, USA). cDNA
were synthesized using the High-Capasity cDNA Archive
Kit (Applied Biosystems, Foster City, CA) running 625 ng
RNA in 50 pl total reaction volume. Real Time PCR was
performed using assays-on-demand containing primers
and FAM dye-labelled probes. Human GAPDH and f-
Actin were used as endogenous controls. For Flt3 and
Hdm?2, assays Hs00174690_m1 and Hs00234753_m1
(Applied Biosystems) were used. TagMan Universal PCR
Master Mix (Applied Biosystems) was run with 2 ul cDNA
in 10 pl total reaction volumes. The PCR was performed
in a 384-well clear optical reaction plate on a 7900HT real
time PCR system (Applied Biosystems). The calibrator
sample in each experiment was used for standard curve
dilution. All samples were run in three replicates and data
were analyzed using the relative standard curve method as
described by the manufacturer (Applied Biosystems).
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