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Abstract
Background: Human mammary epithelial cells (HMEC) overcome two well-characterized genetic and epigenetic barriers
as they progress from primary cells to fully immortalized cell lines in vitro. Finite lifespan HMEC overcome an Rb-mediated
stress-associated senescence barrier (stasis), and a stringent, telomere-length dependent, barrier (agonescence or crisis,
depending on p53 status). HMEC that have overcome the second senescence barrier are immortalized.

Methods: We have characterized pre-stasis, post-selection (post-stasis, with p16 silenced), and fully immortalized HMEC
by transcription profiling and RT-PCR. Four pre-stasis and seven post-selection HMEC samples, along with 10
representatives of fully immortalized breast epithelial cell lines, were profiled using Affymetrix U133A/B chips and compared
using both supervised and unsupervised clustering. Datasets were validated by RT-PCR for a select set of genes. Quantitative
immunofluorescence was used to assess changes in transcriptional regulators associated with the gene expression changes.

Results: The most dramatic and uniform changes we observed were in a set of about 30 genes that are characterized as a
"cancer proliferation cluster," which includes genes expressed during mitosis (CDC2, CDC25, MCM2, PLK1) and following
DNA damage. The increased expression of these genes was particularly concordant in the fully immortalized lines. Additional
changes were observed in IFN-regulated genes in some post-selection and fully immortalized cultures. Nuclear localization
was observed for several transcriptional regulators associated with expression of these genes in post-selection and
immortalized HMEC, including Rb, Myc, BRCA1, HDAC3 and SP1.

Conclusion: Gene expression profiles and cytological changes in related transcriptional regulators indicate that
immortalized HMEC resemble non-invasive breast cancers, such as ductal and lobular carcinomas in situ, and are strikingly
distinct from finite-lifespan HMEC, particularly with regard to genes involved in proliferation, cell cycle regulation,
chromosome structure and the DNA damage response. The comparison of HMEC profiles with lines harboring oncogenic
changes (e.g. overexpression of Her-2neu, loss of p53 expression) identifies genes involved in tissue remodeling as well as
proinflamatory cytokines and S100 proteins. Studies on carcinogenesis using immortalized cell lines as starting points or
"normal" controls need to account for the significant pre-existing genetic and epigenetic changes inherent in such lines before
results can be broadly interpreted.
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Background
Genetic and epigenetic changes that occur early in the
process of carcinogenesis may enable the survival and
growth of cells that subsequently acquire oncogenic muta-
tions. One early alteration in the development of human
carcinomas is the acquisition of an immortal potential,
associated with reactivation of endogenous hTERT expres-
sion and maintenance of stable telomere lengths. [1]. We
have employed an in vitro HMEC model system to exam-
ine gene expression changes during the process of trans-
formation of normal finite cells to immortality and
malignancy [2-11]. Two mechanistically distinct barriers
to unlimited proliferation have been described. The first
barrier, stasis (stress-associated senescence) is associated
with elevated levels of the cyclin-dependent kinase inhib-
itor (CKI) p16INK4A [6]. Stasis appears to be Rb-mediated
and not directly dependent on telomere length. Cells
arrested at this barrier exhibit a viable G1 arrest with a low
labeling index (LI), normal karyotypes, expression of
senescence -associated ß-galactosidase (SA-ß-gal) activity,
and a senescent morphology [7,12]. HMEC can undergo a
variable number of population doublings (PD), depend-
ing upon culture conditions, prior to encountering stasis.

Multiple types of single changes that prevent Rb-mediated
growth inhibition will overcome stasis. Loss of CDKN2A
(encoding p16ink4a) expression, from methylation-
induced CDKN2A promoter silencing, or mutations, is
one alteration frequently observed in human breast can-
cers and cultured HMEC [6,13,14]. HMEC cultured in a
serum-free medium can produce rare cells that spontane-
ously silence the p16 promoter and resume growth, a
process termed selection, with the resulting post-stasis
population called post-selection [3]. In the HMEC, no
increase in p53, p21, or p14ARF levels have been seen at
stasis [7] and p53 function is not required for the stasis
barrier (J.G. and M.S., unpublished). Rare HMEC with
silenced p16 are also observed in vivo and have been
called variant HMEC (vHMEC) [15,16].

HMEC that have overcome or bypassed stasis encounter a
second barrier as a consequence of telomere dysfunction.
Ongoing proliferation in the absence of telomerase
expression leads to critically shortened telomeres, and
chromosomal aberrations [7,17]. In post-selection HMEC
with functional p53, these aberrations induce a mostly
viable G1 and G2 arrest (termed agonescence); if p53 is
non-functional, massive cell death (crisis) ensues (J.G.
and M.S., unpublished) [18]. Telomere dysfunction poses
an extremely stringent barrier to human cellular immor-
talization; in post-selection HMEC multiple errors appear
to be necessary for telomerase reactivation, and immortal-
ization [4,8]. Since this barrier is dependent upon tel-
omere length, ectopic overexpression of hTERT readily
immortalizes post-selection HMEC [19]. HMEC can be

immortalized using several different pathologically rele-
vant agents, e.g., chemical carcinogens, over-expression of
the breast cancer-associated oncogenes c-myc and/or
ZNF217, and/or inactivation of p53 function [8,9,11].
Fully immortal HMEC maintain telomeres at short, stable
lengths, but do not necessarily express malignancy-associ-
ated properties; overexpression of specific oncogenes can
confer malignant properties [20-22].

Transcriptional profiling has proven to be a valuable tech-
nology for describing the differences between cell types
and experimental treatments for many disease models,
particularly cancer [23]. One of the most well-developed
stratifications of human cancers has been for breast cancer
[24,25]. These and other studies have shown that a com-
mon set of genes is consistently overexpressed in most
cancers [26], including many cell cycle regulated genes
and genes required for mitosis (e.g. MKI67, PCNA, BIRC5,
MYBL2, TOP2A, PLK1, MCM2-MCM6, CDC20). The fre-
quent identification of these genes in cancer cells suggests
that they represent a common characteristic of cancers,
irrespective of the cell type from which the cancers origi-
nate.

The data described here examines the changes that occur
as HMEC overcome the barriers to indefinite prolifera-
tion. We show that pre-stasis and post-selection HMEC
are profoundly different from fully immortalized HMEC
lines, despite the fact that the immortalized lines may
retain normal growth factor requirements, lack anchor-
age-independent growth or invasiveness, and are not tum-
origenic in animal models [4]. Rather, the non-malignant
immortalized lines display the cancer-associated prolifer-
ation cluster of genes frequently identified in transcrip-
tional profiling studies of cancer cells and tissues [26].

Materials and methods
Reagents and supplies
MEBM serum-free medium was purchased from the
Clonetics division of Cambrex BioScience (Walkersville,
MD), and was supplemented with EGF, hydrocortisone,
insulin, and BPE using Singlequot reagent packs from
Clonetics, as well as 5 µg/ml transferrin (Clonetics) and
10 nM isopeterenol (Sigma). Hams F-12/DMEM (50:50)
was purchased from Invitrogen or prepared by Core Tech-
nical Services (Wyeth Research), and supplemented to
contain 5% FBS (Invitrogen), 2 mM pyruvate (Invitro-
gen), 2 mM glutamine (Invitrogen), 20 ng/ml EGF
(Clonetics), 200 µg/ml cholera toxin (Sigma), 1× ITS
(Clonetics), 500 ng/ml hydrocortisone (Sigma or Clonet-
ics), and 20 mg/ml gentamycin (Invitrogen). MM
medium was prepared as described [2]. Antibodies and
fluorescent dyes used in High Content Screening (HCS, or
quantitiative immunofluorescence) were obtained from
Cell Signaling Technologies (Beverly, MA), Upstate Bio-
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technologies (Lake Placid, NY), and Molecular Probes/
Invitrogen (Carlsbad, CA), as described in the supplemen-
tary material. Antibodies were screened by Western blot
prior to immunofluorescence studies to verify that they
recognize a single specific antigen of the expected molec-
ular size.

Cell culture
Pre-stasis and post-selection HMEC, from specimens 48,
161, 184, 191, 195 and 239, as well as the immortally
transformed lines 184A1, 184AA2, 184AA3, 184B5 were
developed and characterized at LBNL, starting with reduc-
tion mammoplasty tissues; an additional post-selection
HMEC strain was obtained from Clonetics. Remaining
lines, as well as additional samples of 184A1 and 184B5
were obtained from ATCC (Manassas, VA). 184B5ME was
derived from immortal 184B5 following stable expression
of ERBB2/Her2 and selection for anchorage independent
growth (Stampfer, unpublished). Pre-stasis cells were
maintained in MM media [2], and post-selection cells
were maintained in MEBM prior to this study. Pre-stasis
HMEC display 15–25 PD in MM, and 10–15 PD in
MEBM, prior to growth arrest at stasis. For transcriptional
profiling studies, all lines maintained at LBNL (listed
above), as well as the post-selection HMEC purchased
from Clonetics, were revived in MEBM media and cul-
tured at 37°C with 1% CO2. Consequently, the pre-stasis
HMEC were studied as they neared stasis. Pre-stasis HMEC
used in HCS were cultured in MM medium. Fully immor-
talized cell lines obtained from ATCC (184A1, 184B5,
MCF10A, MCF10A-2 and MCF12A) were cultured in
DMEM/Ham's F-12 medium, at 37°C with 10% CO2, as
they were maintained prior to crypreservation.

RNA labeling, GeneChip hybridizations and expression 
analysis
Cells to be prepared for RNA extraction were revived from
cryopreservation and cultured to 80% confluence in a sin-
gle T-75 flask, trypsinized under conditions appropriate
for each line, and split 1:4 into four new T-75 flasks. When
cells reached 80% confluence three of the flasks were
trypsinized, lysed and total RNA isolated using the
Midiprep RNA isolation kit from Qiagen, according to
manufacturers instructions.

An 11-point standard curve of bacterial cRNA control
samples was added prior to hybridization as described
[27,28]. Three independent replicates were generated per
cell type at the indicated stage. Affymetrix's MAS5 algo-
rithm was used to generate expression measures including
Signal values and Absent/Present calls (Affymetrix (2001)
Microarray Suite User Guide, Version 5. [29]. A global scal-
ing normalization was applied to the raw signal intensity.
Briefly, a 2% trimmed-mean was calculated per chip, and
was scaled to an arbitrary value of 100. A scaled Signal

value was then computed for each gene by multiplying its
original Signal intensity with the scale factor (100/
trimmed-mean). Subsequently, genes were filtered to
remove those with uninformative or noisy expression
changes across the entire samples. A gene is selected for
downstream analysis if its expression exceeds 50 (scaled)
Signal unit in at least one sample. Analysis of variance
(ANOVA) was performed with log2 transformation on the
scaled Signals of several cell lineage groups (see details
below). Data was analyzed using several analytical
approaches, including unsupervised clustering [30],
supervised clustering [31,32], and principal components
analysis. For the unsupervised clustering, genes that are
filtered based on the Pvalues from one-way analysis of
variance (ANOVA) on four cell lineage groups as well as
greater than 2 fold difference among the four groups.
These groups consist of 1) all finite lifespan cells, 2) p53+/

+ immortalized 184A1 and 184B5, 3) p53-/- immortalized
184AA2 and 184AA3, and 4) immortalized non-184
derived cells (including MCF10A, MCF10A-2, and
MCF12A).

Promoter analysis
Genes identified as unique classes in a subset of post-
selection HMEC were examined in detail (see Results for a
complete list of genes). Initially, the 500 bp upstream of
the transcription start site for each gene was examined for
well-characterized transcription binding sites using two
algorithms, Match and Clover [33,34]. For most of the
groups, strong assignments of specific promoter binding
sites could be identified using both algorithms. One class
(Class B in the Results) was less definitive, so the region
was extended to 2 kb prior to the transcription start site for
those genes.

Taqman™ quantitative PCR
Primer sets for 15 genes analyzed by Taqman™ analysis
were obtained from Applied Biosystems (Foster City, CA)
and used according to standard protocols. Genes tested
are listed in the Results section.

High content screening
Cells were seeded at 5000 cells/well in a 96-well black
wall, clear bottom Packard ViewPlate, and incubated in
MM, MEBM or DMEM/F-12 medium for pre-stasis, post-
selection and immortalized HMEC, respectively, for 48
hours. Cells were washed with PBS, and fixed with pre-
warmed 4% paraformaldehyde for 10 minutes. Cells were
washed 2× with PBS, permeabilized with 0.2% Triton X-
100 for 3–5 minutes, and washed 2× with PBS again. Cells
were stained with primary antibodies in 1% BSA/PBS. Pri-
mary antibodies were used as follows: E2F1 (BD/Phar-
magin, 1:200 dilution), E2F4 (Abcam, 1:400), Rb (Cell
Signaling Technologies, 1:400), p107 (Santa Cruz,
1:200), BRCA1 (Abcam, 1:200), p53 (Cell Signaling Tech-
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nologies, 1:200), SP1 (Upstate Biotechnologies, 1:400),
NF-κB (Cellomics, 1:200). Cells were washed 3× with
PBST (0.05% Tween-20), and stained with DAPI and sec-
ondary antibodies of appropriate species/isotype specifi-
city and conjugated to either Alexa-488 or Alexa-594.
Cells were washed again 3× with PBST; 100 µl of PBS was
added and plates were sealed with an adhesive cover.

Quantitative immunofluorescence was performed using a
Cellomics ArrayScan Vti. Images were taken using a 20×
objective and data was collected for a minimum of 1000
valid cells per well. Valid cells are defined as having nuclei
with expected DNA content (defined by DAPI fluores-
cence intensity), nuclei size and shape typical for the cell
line/type, and well-separated from neighboring cells, such
that cytoplasmic regions could be clearly resolved. DNA
content and antigen intensity were quantitated for each
cell, and the nuclear-cytoplasmic ratio for each antigen
was determined by a mask derived from the DAPI stain-
ing, which was used to define the nucleus, and a region
surrounding the nucleus (which was specific for each cell
line/type) was used to define the cytoplasm. Quantitation
was performed using either the Compartmental Analysis
or Nuclear Translocation BioApplications, from Cel-
lomics.

Results
Transcriptional profiling of pre-stasis, post-selection and 
immortalized HMEC
To better understand the extent to which pre-stasis, post-
selection and immortalized HMEC represent distinct cell

types, we compared several samples of these cultures by
transcriptional profiling; the HMEC samples character-
ized are described in Table 1. The finite lifespan pre-stasis
and post-selection HMEC are referred to as strains or cell
types from a specific source, and culture conditions
(including stage) are noted for each particular sample. The
relationships between samples in this study, their origins,
are indicated graphically in Figure 1. Triplicate cultures for
each sample were grown under the conditions indicated
in the Methods, and in Table 1, following which the total
RNA was isolated, labeled and hybridized to the Affyme-
trix U133A/B GeneChips.

Principal Component Analysis (PCA) was used to visual-
ize the gross relationships among the cell types, as shown
in Figure 2A. The first three components, which explains
about 60% of the total variation, are displayed in a three
dimensional graph. The pre-stasis HMEC (in red) and
post-selection HMEC (in pink) are clearly separated from
the immortalized lines (in blue, black and green) along
the first principal component axis. Thus, transcriptional
profiling defines the transition from finite lifespan to fully
immortalized HMEC as the most significant change in
HMEC progression. The pre-stasis and post-selection
HMEC are also well segregated within their unique space.
In addition, the fully immortalized lines that either do not
express p53 or are transduced with ERBB2/Her2 (green
and blue, respectively) are distinguished from the rest of
the immortalized lines (black). According to the PCA,
there are no significant differences between the fully
immortalized lines derived from various methods of

Table 1: Cell Types and Lines Used in This Study

Cell Name Source Stage Growth Media

48L LBNL Pre-stasis, finite lifespan strain MM (MEBM)***
161 LBNL Pre-stasis, finite lifespan strain MM (MEBM)
184 LBNL Pre-stasis, finite lifespan strain MM (MEBM)
195L LBNL Pre-stasis, finite lifespan strain MM (MEBM)
48R LBNL Post-selection, finite lifespan strain MEBM
161 LBNL Post-selection, finite lifespan strain MEBM
184 LBNL Post-selection, finite lifespan strain MEBM
195L LBNL Post-selection, finite lifespan strain MEBM
191 LBNL Post-selection, finite lifespan strain MEBM
239 LBNL Post-selection, finite lifespan strain MEBM

HMEC-1001-13 Clonetics Post-selection, finite lifespan strain** MEBM
184A1 LBNL Fully immortal cell line MEBM
184B5 LBNL Fully immortal cell line MEBM

184AA2 LBNL Fully immortal cell line MEBM
184AA3 LBNL Fully immortal cell line MEBM
184B5ME LBNL Fully immortal cell line MEBM
184A1* ATCC Fully immortal cell line DMEM/F-12
184B5* ATCC Fully immortal cell line DMEM/F-12

MCF-10A ATCC Fully immortal cell line DMEM/F-12
MCF-10A-2 ATCC Fully immortal cell line DMEM/F-12
MCF-12A ATCC Fully immortal cell line DMEM/F-12

*designated as 184A1(a) and 184B5(a) in other tables and figures
**stage defined by transcriptional profile
***cells isolated from reduction mammoplasty tissues and expanded in MM media to passages 2–3, then cultured in serum-free MEBM media for 
transcriptional profiling
Page 4 of 17
(page number not for citation purposes)



Molecular Cancer 2007, 6:7 http://www.molecular-cancer.com/content/6/1/7

Page 5 of 17
(page number not for citation purposes)

Graphic relationship of cell lines profiled in this studyFigure 1
Graphic relationship of cell lines profiled in this study. Cell lines characterized in this study are shown with reference to 
their stage in transformation. The pre-stasis HMEC used were cultured for 2–3 passages before analysis, and reach stasis by 
passages 3–5. Rare isolates of cells grown in serum-free media (MEBM) emerge spontaneously from stasis, associated with the 
absence of p16 expression due to promoter silencing, and continue growing as post-selection HMEC until reaching a second, 
proliferation barrier (telomere dysfunction). This barrier is highly stringent, and spontaneous immortalization has never been 
observed in cells that were not mutagenized or virally transduced during pre-stasis or post-selection growth. HMEC grown in 
MM do not spontaneously give rise to post-selection cells, however primary populations exposed to the chemical carcinogen 
benzo(a)pyrene (BaP) have produced rare clonal isolates with post-stasis growth, associated with absence of p16 expression 
due to mutation or promoter silencing. These non-spontaneously arising post-stasis cells are referred to as extended lifespan, 
and may harbor additional errors due to the carcinogen exposure. Overcoming the telomere dysfunction barrier is associated 
with reactivation of telomerase activity. The fully immortalized lines 184A1 and 184B5 were derived from extended lifespan 
post-stasis cells grown in MM and exposed to BaP in primary culture. Exposure of extended lifespan 184Aa cells to retroviral 
infection resulted in two cell lines that had lost both copies of the TP53 gene. The cell lines profiled in this study are shown rel-
ative to the profiling analyses performed. Comparisons used to analyze selection and immortalization, as well as the influence 
of p53 and ERBB2/Her2 status are shown by colored boxes and identified in the key at the lower left of the figure.
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immortalization, or from lines maintained at LBNL versus
those obtained from ATCC. Unsupervised (or Eisen) clus-
tering of the genes that change following selection and
immortalization for most of the samples is shown in Fig-
ure 2B. These data reflect the 1 342 genes that are filtered
based on the Pvalues from one-way analysis of variance
(ANOVA), as described in the supplementary material.

Gene expression changes following selection
Gene expression changes that distinguish pre-stasis from
post-selection cells were identified using GeneCluster
[31], and the results are shown in Figure 3A. The figure
characterizes a large set of concordantly-regulated genes in
the pre-stasis strains, and a high level of concordance in
four of the six post-selection HMEC (200 genes for each
class). Among these top-200 genes in the pre-stasis cell
types, the largest number of genes we identified are
involved in the extra-cellular matrix (ECM), including
structural proteins and matrix remodeling enzymes (listed
in supplementary Additional file 1). Examples include
many collagen and kallikrein genes. Genes that increase
expression level in post-selection HMEC include a large
number of genes associated with proliferation and the cell
cycle. These genes are strongly associated with cancer cell
growth, and increase in expression directly with tumor
grade. Specific examples include BIRC5, A and B type cyc-
lin genes, CDC2, and the MCM chromosomal proteins.
The increased expression of these genes is dependent on
E2F transcription factors and reflects the proliferative state
a cell. Since the pre-stasis cells were nearing stasis, the
increased expression of the genes in the post-selection
HMEC may reflect either a loss of Rb repression (consist-
ent with a loss of p16), or could reflect the relative prolif-
erative state of these pre-stasis and post-selection cells.

The two discordant post-selection HMEC we observed in
Figure 3A (195L and 1001-13), suggest that additional
molecular events can occur during selection; these sam-
ples also show a loss of p16 expression (results not
shown), a definitive event for post-selection HMEC. In
order to probe further into the changes that occur during
selection, we compared the four sets of HMEC studied as
pre-stasis and post-selection samples. For this analysis, we
identified genes that increase expression in post-selection
HMEC, as compared to the corresponding pre-selection
sample. Four patterns were observed. The genes we iden-
tified in each group are listed in Table 2, and the expres-
sion changes we observe for three of the groups are shown
in Figure 3B. The group not explicitly shown in Figure 3B
is uniformly down-regulated in all four pairs. Genes
expressed exclusively in post-selection 195L HMEC
(Group A) fall into two categories: genes previously iden-
tified as cancer-associated (including several antigens pro-
posed as cancer biomarkers), and genes induced by
interferons [35]. Among the cancer-associated genes, the

Cancer-Testis Antigen 2 (CTAG-2) is very strongly expressed
(30-fold according to the GeneChip data), as are ARH-
GDIB/Ly-GDI, and IGFBP6. The cytokine induced genes
[35] include a set previously reported as increasing in
post-selection HMEC, such as IFIT1, IFITM1, G1P2 and
OAS1 [36]. The genes that are unique to 48 HMEC (Group
B) include several transcription factors and cell cycle pro-
teins whose roles in cancer or breast tissue development
have not been well characterized to date, including
NUCKS, SON and HOXB2. Group C includes many genes
previously associated with cancer cell proliferation.

Since these geneset classes were comprised of a relatively
small number of genes, we performed promoter analyses,
to see if these sets are linked in specific pathways. Pro-
moter binding sites we were able to identify are listed in
Table 2. For Group A, interferon-responsive elements
were found for most of the genes, but not the cancer/
metastasis-associated genes (BST2 is an exception), con-
sistent with previous studies that did not identify these
genes as IFN-regulated [35]. Instead, several genes in this
group have been shown to be direct or indirect targets of
p53 and Myc. A common element in the regulation of
both p53/Myc and IFN-regulated genes is BRCA1, and in
particular, BRCA1 is essential for the activation of stress
and inflammatory response genes following treatment
with interferons [37]. Group B was less well-defined by
specific binding sites near the promoter, but an extended
analysis (2 kb) identified SP1, E2F, MAZ and NF-Y bind-
ing sites for many genes. These binding sites were also
identified in the genes of Group C, especially the E2F, NF-
Y and SP1 sites, which is consistent previous work [38,39].
Group D, genes significantly repressed in post-selection
HMEC, may be under the control of MAZ (Myc-associated
zinc finger protein), as binding sites were found in 19 of
22 genes examined, which is consistent with previous
observations that increased Myc can repress ECM genes
[40-42]. In conclusion, although distinct gene expression
patterns could be observed for each of the pre-stasis/post-
selection HMEC pairs we have characterized, in each case
strong associations could be made between the promoters
of each class and the proliferation and cell cycle transcrip-
tion factors, particularly E2F, SP-1, NF-Y and the Myc-
related MAZ. The distinguishing features for each of these
expression classes is likely to be found in additional,
unique pathways such as BRCA1-mediated regulation.

Gene expression changes that distinguish finite life span 
HMEC from immortally transformed HMEC
The most significant transition observed in this study is
that of immortalization. Genes whose expression are
reduced in the immortalized lines include a significant
number that suppress angiogenesis, contribute to the
ECM, or regulate the actin cytoskeleton. Many of these
genes were identified as down-regulated in HMEC follow-
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Relationship of HMEC as determined by transcriptional profilesFigure 2
Relationship of HMEC as determined by transcriptional profiles. A. Data from 2319 genes were used to determine the 
number of principal components of the data. Three components were identified, and the contribution of the components to 
the transcription profile of each cell line samples are shown in the figure. Individual replicates for each cell line are shown. Cell 
lines grouped in Figure 1 are shown in Figure 2A as shown in the legend. Vertical axis is PC1, the first, and therefore the 
strongest. principal component. B. Unsupervised clustering of HMEC. All genes that change expression in one or more sam-
ples were used to cluster the cell types and lines by overall similarity. Cell types and lines are identified by color under the des-
ignations: pre-stasis HMEC: light green; post-selection HMEC: light blue; fully immortalized HMEC: dark blue; p53-/- fully 
immortal HMEC: burgundy, and lines not formally characterized: black. Samples of 184A1 and 184B5 designated by (a) were 
obtained from ATCC.
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ing selection as well; some are further down-regulated in
the immortalized lines, as shown in Figure 4A. These com-
parisons include multiple independent samples from
each stage, including four distinct fully immortalized cell
lines, and three additional samples from either different
sources (184A1 and 184B5 from ATCC) or two separate
isolates from the same experiment (MCF-10A and MCF-
10A-2) [43]. The genes identified in each group are
described in Additional file 2. Collectively, the pre-stasis
and post-selection samples are distinguished most
strongly by changes to the ECM and cell-cell communica-
tion genes, particularly collagens, kallikrein, matrix metal-
loproteinase and serpin proteinases; genes that affect the
actin cytoskeleton are also noted (both actin and actin-
interactors, such as actinin, nidogen, transgelin, and pal-
ladin, genes). Several well-recognized classes of genes are
up-regulated in fully immortalized lines, including the

commonly observed "proliferation cluster" described
above. These genes were also observed to be up-regulated
in the post-selection, compared to pre-stasis HMEC. Fewer
of these "proliferation genes" are identified in the fully
immortalized samples following a three-way comparison,
but this is because GeneCluster identifies the most defin-
itive group of genes for each class, and since some of the
post-selection samples express increased levels of genes
such as MCM2 and STK12, they are not unique to either
the post-selection or the fully immortalized HMEC.

We have examined the expression of the cancer cell prolif-
eration class of genes directly in Figure 4B. In this exam-
ple, the absolute expression levels of each gene listed in
the figure are displayed directly (rather than the ratio of
post-selection over pre-stasis expression levels in Figure
3B). These genes are compared to equal subsets of genes

Supervised Clustering of Pre-stasis, and Post-selection HMECFigure 3
Supervised Clustering of Pre-stasis, and Post-selection HMEC. A. Gene expression values were normalized and character-
ized for the significance of overexpression in one group relative to other groups in the comparison. The top 50 genes that are 
significantly overexpressed in one group are shown. All pre-stasis and post-selection cell types have been used. Analysis was 
performed in GeneCluster, and the color bar describing how normalized values are depicted is shown at the bottom of the fig-
ure. B. Distinct classes of genes over-expressed in post-selection HMEC. Genes showing one of three specific patterns of 
expression in the four pairs of pre-stasis and post-selection samples are diagramed. The top 10 qualifiers (based on fold 
change) are shown (some genes are represented by more than one qualifier).
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Supervised Clustering of Pre-stasis, Post-selection and Immortalized HMECFigure 4
Supervised Clustering of Pre-stasis, Post-selection and Immortalized HMEC. A. Gene expression values were normalized 
and characterized for the significance of over-expression in one group relative to other groups in the comparison. The top 200 
genes (of 1342) that are significantly over-expressed in one group are shown. All pre-stasis, post-selection and immortalized 
HMEC (except the p53-/- and ERBB2/Her2 transfected variants) have been grouped. The top 100 genes (of 1440) that are over-
expressed in one group relative to the other two are presented. Analysis was performed in GeneCluster. B. Expression of a 
subset of highly concordant genes in pre-stasis, post-selection and fully immortalized HMEC. Gene-normalized expression of 60 genes 
identified in the figure are shown for four representatives each for the three groups of HMEC. Samples are (left to right): 48L, 
161, 195L and 184; 48R, 161, 195L, and 184; 184A1, 184B5, MCF-10A and MCF12A.
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Table 2: Genes and Promoter Elements That Define Post-Selection HMEC Gene Expression Classes

Geneset Classes Genes Promoter Elements

Group A
IFN genes IFIT1, BST2, G1P2, G1P3, IFIT2, OAS1, IFI44, IFIT4 IRF, ILR, IRL
Non-IFN genes CTAG2, ARHGDI-B/Ly-GDI, MMP7, PLAU, CALB1, SLC1A6, MDA5, FXYD5, HMOX1

Group B NUCKS, HDAC3, TRAP150, HOXB2, SON, IF2, LZ16, ANLN, BBX, TOP1, H4FG, SFRP1, KTN1, 
GTAR, BAZ1A, PK428, FALZ, TTC3, DNCL12, RBM9

SP1

Group C TOP2A, RRM2, KIF20A, BIRC5, ANKT, CCNA2, CDC2, MKI67, CDC20, MCM5, HMMR, IL-1B, 
PRC1, PMSCL1, MADL1, DLG7

E2F, NF-Y, B-Myb

Group D H11, COL11A1, IGFBP5, CNN1, COMP, LGALS7, CLDN7, KLK6, KLK7, KLK10, KLK11 KRT23, 
LOXL4, THY1, FLJ21841

MAZ, MAZR, MEF-3
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that show maximal levels of expression in the pre-stasis
and post-selection HMEC samples. As can be observed in
the figure, genes showing maximal expression in the pre-
stasis samples are robust, whereas those showing maximal
expression in the post-selection are less strongly definitive
of post-selection cells. The "proliferation cluster" genes
show strongest expression in the fully immortalized
HMEC lines, however expression of these genes is hetero-
geneous for both the post-selection and fully immortal-
ized sets. Increased expression can be observed for the
post-selection 48R and 184 samples (as was seen for some
of these genes in Figure 3B), and lesser expression is seen
for MCF-12A. However, the rise in expression of this
group of genes as HMEC progress from pre-stasis through
fully immortalized stages is clear.

Gene expression changes observed in p53-/- cell lines
HMEC lines that have lost p53 during immortalization
show distinctive changes in transcriptional profiles when
compared to closely related lines that have retained p53
function. The complete list of genes is presented in the
supplementary Additional file 3. When we explicitly look
for genes whose expression changes are common to the
p53 status of the lines derived from specimen 184 cells,
several genes showing concordant changes between p53+/

+ 184A1 and 184B5 versus p53-/- 184AA2 and 184AA3 are
observed. SIAH2, Lipocalin 2, Asparagine synthase and Ker-
atin 15 are all upregulated in both 184AA2 and 184AA3,
relative to both 184A1 and184B5. Genes down-regulated
in the p53-/- lines include several that are explicitly regu-
lated by p53 (including RRM2 and TP53INP1). A compar-
ison of the two p53+/+ and the two p53-/- lines shows that
additional gene expression changes unique to each line
have occurred. Examples include DUSP1 and BIRC3,
expressed at significantly higher levels 184AA3 than in
184AA2, and FABP4, IFI27, HRASLS3, and Fibulin 1,
expressed much more robustly in 184A1 than in 184B5.
The complete list of genes is presented in the supplemen-
tary Additional file 4 and Additional file 5.

Gene expression changes resulting from ectopic expression 
of Her2
The events characterized thus far in this study concern
HMEC immortalization; however, additional events are
critical to malignancy. To connect these studies directly to
changes that occur following an oncogenic event, we have
compared one immortalized HMEC line, 184B5, with a
derivative that ectopically expresses the ERBB2/Her2
oncogene, 184B5ME. ERBB2/Her2 is frequently over-
expressed in breast cancer, and is transforming simply by
being over-expressed, so this line models clinically rele-
vant features of breast cancer. Over-expression of ERBB2/
Her2 in 184B5 results in anchorage independent growth,
a malignancy-associated property, while over-expression
of oncogenic ERBB2/Her2 in 184B5 can confer tumori-

genicity [21]. Gene expression changes seen for 184B5ME
that are distinct from its parent are listed in the supple-
mentary Additional file 6. Genes showing increased
expression include many that were down-regulated in
post-selection HMEC, including kallikreins KLK6 and
KLK7, and cystatin E/M. These phenotypic reversions may
play a role in the transition to invasive cancer [44]. Addi-
tional gene expression changes include a dramatic
increase in the expression of IL24 and significant changes
in BIRC3, HRASLS3, and PTGES. Genes showing down-
regulation as a consequence of ERBB2/Her2 overexpres-
sion include many of the IFN genes that showed increased
expression following selection (in 195L) or immortaliza-
tion (in 184A1, 184B5 and others).

Real-time PCR measurement for selected genes identified 
in this study
The results presented comprise a large study of human
mammary cell samples that have not been characterized
by transcriptional profiling previously, and the gene
expression patterns are either new or not previously asso-
ciated with non-cancerous cell lines. As such we wished to
validate the findings by corroborating the gene expression
changes observed by genechips with an independent
method. 15 genes were chosen from the data to be vali-
dated by Taqman™ quantitative PCR. Genes that change
following selection (PMP22/GAS3 and several insulin-like
growth factor binding protein (IGFBP) genes: IGFBP2,
IGFBP3, IGFBP4, IGFBP5, IGFBP6, and IGFBP7), as well as
genes that change in immortalized lines (CCNB1, CDC2,
CDC25B, HDAC3, MYC, and STK6) were evaluated by RT-
PCR in 17 cell types, comprising pre-stasis, post-selection
and fully immortalized samples, and the results compared
to expression data from the oligonucleotide arrays. The
concordance between expression of a gene as measured by
oligonucleotide array and Taqman™ assays were generally
quite good; in 14 cases, only minor discordances can be
observed (see Figure 5). HDAC3 was an exception. The
expression level changes of three probes sets for HDAC3
on the Affymetrix U133 GeneArrays, and the Taqman™
primer set, were highly discordant, so we were not able to
validate the expression changes of this gene by RT-PCR,
however were able to show significant changes in HDAC3
protein expression and localization by immunofluores-
cence microscopy (described below).

Transcriptional regulatory factors are localized to the 
nucleus following selection and immortalization
We explored the changes that occur in several critical reg-
ulators of cell cycle progression and chromosomal stabil-
ity by quantitative fluorescence microscopy, or High
Content Screening (HCS). These factors were chosen
based on patterns observed in the transcription profiling
data as ones that would be expected to change as HMEC
progress past senescence barriers, based on the gene
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Real-time PCR measurements of gene identified in transcriptional profiling analysesFigure 5
Real-time PCR measurements of gene identified in transcriptional profiling analyses. Representative genes from groups 
identified as changing expression during selection or immortalization were characterized by real-time PCR analysis (Taq-
Man™). Genes were selected as representative of classes were described in this study. Each gene is presented as a separate 
graph, as identified in the figure. Cell lines are presented in the same order in each graph, as listed in the bottom left panel. The 
finite lifespan samples are shown as pairs, with the pre-stasis sample on the left and the post-selection sample on the right. For 
each cell line, expression data from Affymetrix GeneChips are shown as blue bars, according to the scale at the left of the 
graphs. Expression data from real-time PCR of the same samples are shown as yellow bars, according to the scale at the right 
of the graphs.
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expression patterns we observe. Example images are
shown in Figure 6A. For these images, Rb is shown in red
and DNA is shown in blue. In the pre-stasis 184 HMEC,
Rb is punctate and is evenly distributed between the
nucleus and cytoplasm. In post-selection 184 HMEC and
in immortalized lines such as 184A1 (shown in the figure)
and 184B5 (not shown), Rb is very strongly localized to
the nucleus, and the staining is no longer punctate. The
nuclear/cytoplasmic ratio (determined using least 1000
cells per sample for three samples each) are shown in Fig-
ure 6B for Rb and 8 other proteins. The ratio for Rb in pre-
stasis cells is 0.5–2, whereas for post-selection and
immortalized HMEC it is greater than 100. Similar dra-
matic changes are observed for HDAC3, BRCA1, p53 and
the general transcription factor SP1. BRCA1 and c-Myc are
localized in the cytoplasm in pre-stasis HMEC, but to the
nucleus in post-selection and immortalized HMEC. For
other proteins associated with G1 progression (E2F1,
E2F4 and p107), the differential is in the range of two to
four-fold.

Discussion
Transcriptional profiles and quantitative 
immunofluoresence of HMEC reveal significant cancer-
associated changes following both selection and 
immortalization
The effect of malignant transformation (oncogenesis) on
gene expression has been studied extensively in both cell
lines and tissues in an effort to characterize the causes of
cancer at the molecular level [45]. Gene signatures com-
monly found in breast and other human cancers include
those critical for the cell cycle, chromosomal stability and
proliferation; the extent of the increase in the expression
of this signature correlates with tumor grade and poorer
prognosis [26,46]. A separate signature of IFN-regulated
genes has also been observed in ductal carcinoma in situ
(DCIS) [47] and has been associated with metastasis to
the lymph nodes in aggressive breast cancers [48]. We
have observed both of these signatures in non-malignant,
immortally transformed, HMEC lines that had overcome
the two senescence barriers to immortalization, despite
these lines retaining many characteristics of finite lifespan
epithelial cells.

Transcriptional changes in gene families associated with 
mammary epithelial biology or breast cancer in post-
selection and fully immortalized HMEC
There are several gene families that we identified in this
study which have direct connections to breast epithelial
biology and breast cancer, which we can summarize:

(A) Several IGFBPs show reduced expression in post-selec-
tion HMEC and immortalized lines, including IGFBP2
(minor decreases overall, but larger in the p53-/- lines),
IGFBP3 and IGFBP5 (very large decreases in immortal

HMEC). Levels of IGFBP4 were significantly reduced in
184B5ME relative to 184B5. IGFBPs are frequently
observed to be reduced in breast cancers, and these reduc-
tions are associated with increased sensitivity to IGF-I and
IGF-II [49,50].

(B) BRCA1, a gene deleted in about 5% of women with
breast cancer, encodes a protein that interacts with many
other proteins [51]. These complexes recognize and
orchestrate the repair of DNA damage. Many genes that
encode proteins that interact with BRCA1 were identified
in this study as genes that increase expression following
either selection or immortalization. BAP, RAD51, CSE1L
and RFC4 all increased expression following selection in a
pattern similar to the E2F-regulated genes identified as
Group C in Figure 3B. MYC, RAD50 and RFC3 increased
expression in fully immortalized lines, including the p53-

/- lines. These changes suggest the possibility that BRCA1-
mediated functions are affected by overcoming stasis and/
or immortalization, which is supported by the significant
change in localization of BRCA1 to the nucleus in post-
selection HMEC.

(C) The increased expression of a well-characterized clus-
ter of IFN-regulated genes was observed in some lines in
this study, as well as in other studies of HMEC [36], and
in a taxol-resistant MCF-7 line [52]. The IFN-dependent
stress response is mediated by BRCA1 [37,53]. Therefore,
since we have noted expression changes in many genes
associated with BRCA1 function, as well as in BRCA1
abundance and localization in post-selection HMEC, IFN
gene signature may reflect changes in BRCA1-mediated
functions.

(D) Inhibitors of Differentiation (ID) genes are important
regulators of differentiation by dominantly interfering
with the function of bHLH proteins during embryogene-
sis, neurodevelopment and cancer. Part of their function
is through the repression of CKIs, including p16. Some
functions have been attributed to specific members,
including the interaction of ID2 with Rb [54], and the
expression of BRCA1 by ID4 [55], which is in turn
repressed by BRCA1 [56]. In this study, ID1 is expressed at
higher levels in the immortalized lines (184AA2 is an
exception), while ID4 is repressed in post-selection HMEC
and all of the immortalized lines.

(E) S100 proteins comprise a large family of calcium-acti-
vated proteins that function in homo- and hetero-dimers
to regulate many intra- and extra-cellular targets [57].
Their increased expression in cancer and inflammatory
diseases has provoked interest in this family as potential
drug targets and clinical biomarkers. We observe increases
in the expression of S100A8 and S100A9, which comprise
the heterodimer Calprotectin, following selection and fur-
Page 12 of 17
(page number not for citation purposes)



Molecular Cancer 2007, 6:7 http://www.molecular-cancer.com/content/6/1/7

Page 13 of 17
(page number not for citation purposes)

High Content Screening of proteins associated with cell cycle progression and chromosomal stabilityFigure 6
High Content Screening of proteins associated with cell cycle progression and chromosomal stability. (A) Immunofluo-
rescent images of Rb (red) and DNA (blue) obtained using a Cellomics ArrayScan Vti are shown for pre-stasis 184 HMEC 
(left), post-selection 184 HMEC (center) and the 184A1 cell line (right). (B) Quantitation of the nuclear/cytoplasmic ratio is 
shown for pre-stasis 184 and 161 HMEC, post-stasis 184 and 161 HMEC and the cell lines 184A1 and 184B5, as indicated in the 
figure panels. Antigens quantitated in each panel are identified above the panel.

Rb BRCA1 p53

p107 E2F1 E2F4
1.0

0.9

0.8

0.7
0.6

0.4

0.3

0.2

0.1

184 161 184 161 184A1 184B5

1.0

0.9

0.8

0.7
0.6

0.4

0.3

0.2

0.1

184 161 184 161 184A1 184B5

1.0

0.9

0.8

0.7
0.6

0.4

0.3

0.2

0.1

184 161 184 161 184A1 184B5

2.0

1.5

1.0

0.5

0

184 161 184 161 184A1 184B5

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

184 161 184 161 184A1 184B5184 161 184 161 184A1 184B5

2.5

2.0

1.5

1.0

0.5

0

A

B

lo
g 10

 (n
uc

le
ar

/c
yt

op
la

sm
ic

 ra
tio

)

lo
g 10

 (n
uc

le
ar

/c
yt

op
la

sm
ic

 ra
tio

)

lo
g 10

 (n
uc

le
ar

/c
yt

op
la

sm
ic

 ra
tio

)

lo
g 10

 (n
uc

le
ar

/c
yt

op
la

sm
ic

 ra
tio

)

lo
g 10

 (n
uc

le
ar

/c
yt

op
la

sm
ic

 ra
tio

)

lo
g 10

 (n
uc

le
ar

/c
yt

op
la

sm
ic

 ra
tio

)

0
-0.1
-0.2

0.1
0.2
0.3
0.4
0.5
0.6

Myc

184 161 184 161 184A1184B5

lo
g 1

0 (
nu

cle
ar

/c
yt

op
la

sm
ic 

ra
tio

)

0

0.5

1.0

1.5

2.0

HDAC3

184 161 184 161 184A1184B5

lo
g 1

0 (
nu

cle
ar

/c
yt

op
la

sm
ic 

ra
tio

)

0

0.5

1.0

1.5

2.0

2.5

SP1

184 161 184 161 184A1184B5

lo
g 1

0 (
nu

cle
ar

/c
yt

op
la

sm
ic 

ra
tio

)

pre-stasis
post-selection
immortalized



Molecular Cancer 2007, 6:7 http://www.molecular-cancer.com/content/6/1/7
ther dramatic increases following immortalization.
Increased expression of S100P is seen in DCIS [58], and
was also observed in several of the immortalized lines,
particularly 184B5ME, the ERBB2/Her2 transduced line.
Increased expression of S100A7, also known as psoriasin,
is seen in both DCIS and IDC, particularly ER negative
breast cancers [59]; increased expression was observed in
several immortalized lines, most strongly in 184AA3.

Transcriptional changes that occur following genetic 
changes associated with invasive cancer
p53 imposes a cell cycle arrest when chromosomal break-
age or damage is detected, and its loss in breast cancer is
associated with increased chromosomal instability and a
more aggressive subtype [60]. The two p53-/- lines we have
characterized show a number of transcriptional changes
that are expected of p53-/- cell lines, as well as changes
unique to the two lines. Of note is expression of the IFN-
induced genes observed in post-selection 195L cells and
in the 184AA3 line. This may indicate a common molec-
ular event occurred following selection of the 195L cells
and the immortalization of the 184AA3 cells. Further
studies on the changes common and unique to p53-/-

HMEC lines may be important in understanding differ-
ences between p53+/+ and p53-/- cell lines and breast can-
cers in overcoming senescence barriers and
immortalizing.

In data presented here, transfection of an immortalized
line with a clinically-relevant oncogene, ERBB2/Her2,
showed fewer transcriptional changes than were observed
following selection or immortalization, and these changes
were generally limited to genes involved in invasive
growth and motility. Specifically, expression of the prolif-
eration geneset was not dramatically altered, but there was
increased expression of genes encoding the secreted pro-
teases Cystatin E/M, and Kallikrein 6, as well as tissue
plasminogen activator. Such changes could enable these
cells to grow invasively in breast tissue.

Activation of transcriptional regulators associated with 
gene expression changes in post-selection and 
immortalized HMEC, telomerase reactivation and cancer
In quiescent or unstimulated cells, many transcription fac-
tors are excluded from the nucleus and localize to the
nucleus upon activation [61]. In the case of BRCA1,
nuclear retention has been shown to suppress its pro-
apoptotic functions [62]. The proliferation, cell cycle and
DNA damage response genes identified in the gene
expression signatures we observe are supported by the
changes in the localization of several associated regulatory
proteins and transcription factors, as determined by quan-
titative immunofluorescence. Based on previous studies
linking regulatory pathways to gene expression, the rela-
tionship between the gene expression signatures and the

regulatory factor localizations we observe are concordant.
Proteins directly responsive to p16/CDK4 activation, par-
ticularly Rb, show striking changes in cytoplasmic/nuclear
distribution in both post-selection and fully immortalized
HMEC, compared to pre-stasis HMEC. Additional pro-
teins also showing strong changes in localization are
BRCA1, p53, HDAC3, Myc and SP1. Each of these pro-
teins have well characterized roles in oncogenesis and in
the regulation of hTERT [63-66], a critical event in immor-
talization [1,5]. These changes are consistent with both
the transcriptional profiles we have generated of post-
selection and fully immortal HMEC, as well as with what
is known about the role of these factors on telomerase reg-
ulation.

The relationship between immortalized HMEC and DCIS
Taken together, these data support a classification of
immortalized breast epithelial cell lines as in vitro models
of highly dysregulated epithelial cells, rather than as per-
petually growing models of normal breast epithelia. Gene
expression patterns we have identified in the comparison
of finite-lifespan and immortalized HMEC lines are
highly similar to changes observed in DCIS and invasive
human breast cancers [47,67,68], and are consistent with
other similarities between immortal HMEC lines and
DCIS. Specifically, short telomeres and moderate chromo-
somal instability, as well as telomerase re-activation, are
common to many early-stage tumors [69], including the
breast [17]. In addition, p16 expression is lost in post-
selection, as it is in vHMEC [15,16], which are proposed
to be premalignant breast cancer precursors in vivo. In con-
trast, we observe that a cell line, 184B5ME, which grows
invasively in tissue culture and in in vivo models, shows
fewer changes.

DCIS is a complex disease [70], often requiring no imme-
diate treatment in the strict sense, however it is not cur-
rently possible to forecast when, or if, progression to IDC
will occur. This necessitates an aggressive strategy, even in
cases where it may be effectively managed by substantially
simpler, cheaper, and less emotionally challenging modes
[71]. The ability to characterize DCIS, and to target it
explicitly when it manifests invasive potential, is a critical
need with regard to effective breast cancer treatment strat-
egies. In particular, established markers for breast cancer,
including Ki-67, p53, Her-2neu and ER expression are very
effective for identifying aggressive, invasive cancers, and
for determining the most effect treatment strategy in these
cases, but are less informative about the likelihood that a
well-contained DCIS will progress to invasive cancer. Cur-
rently, some of the best indicators of DCIS progression
risk are cytological, including grade, necrosis and architec-
tural patterns [72]. Additional molecular markers, partic-
ularly those that correlate strongly (or better, explain) the
histological patterns used to stage DCIS would be very val-
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uable. Some additional molecular markers are emerging.
COX-2 has been identified as a marker of vHMEC [15,16],
and expression levels have been correlated with DCIS
grade, as well [73]. For these reasons, recognizing immor-
talized HMEC as resembling early-stage cancers would
facilitate a formal interrogation of their genetics and phys-
iology for clues to how DCIS occurs, and to the factors
that can enable DCIS to progress.

Use of post-selection and immortalized HMEC to study 
normal mammary cell biology and breast cancer
Immortalized cell lines have been used to address com-
plex problems in cancer [74] and epithelial cell biology
[75] precisely because they allow for controlled experi-
ments to be performed and theories of breast cancer to be
tested. In studies of oncogenesis, the non-malignant sta-
tus of immortalized lines allows for the specific steps in
full malignant transformation to be examined, such as by
the introduction of activated oncogenes [76,77]. How-
ever, in many cases immortalized cell lines are referred to
and used as "normal" cells. This inaccurate characteriza-
tion may obscure understanding of the multiple errors
that permit immortal transformation, and thus aspects of
early stage carcinogenesis. While established breast cancer
cell lines are usually derived from advanced, metastatic
tumors (particularly pleural effusions), and therefore are
quite different from immortalized cell lines, immortal-
ized lines themselves have undergone extensive genetic
and epigenetic changes, especially in frequently studied
aspects of oncogenesis, such as G1 checkpoint function
and the DNA damage response. The use of immortalized
HMEC as "normal" controls for tumor-derived lines can
impede our ability to understand early stages of carcino-
genesis, and obscure the potential of treating DCIS-stage
changes as additional targets for clinical benefit.

Conclusion
Gene expression profiles and cytological changes in
related transcriptional regulators indicate that immortal-
ized HMEC resemble non-invasive breast cancers, such as
ductal and lobular carcinomas in situ, and are strikingly
distinct from finite-lifespan HMEC, particularly with
regard to genes involved in proliferation, cell cycle regula-
tion, chromosome structure and the DNA damage
response. The comparison of HMEC profiles with lines
harboring oncogenic changes (e.g. overexpression of Her-
2neu, loss of p53 expression) identifies genes involved in
tissue remodeling as well as proinflamatory cytokines and
S100 proteins. Studies on carcinogenesis using immortal-
ized cell lines as starting points or "normal" controls need
to account for the significant pre-existing genetic and epi-
genetic changes inherent in such lines before results can
be broadly interpreted.
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