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Abstract
Background: Cervical carcinogenesis is a multistep process initiated by "high risk" human
papillomaviruses (HR-HPV), most commonly HPV16. The infection per se is, however, not sufficient
to induce malignant conversion. Transforming Growth Factor β (TGF-β) inhibits epithelial
proliferation and altered expression of TGF-β or its receptors may be important in carcinogenesis.
One cofactor candidate to initiate neoplasia in cervical cancer is the prolonged exposure to sex
hormones. Interestingly, previous studies demonstrated that estrogens suppress TGF-β induced
gene expression. To examine the expression of TGF-β2, TGF-βRII, p15 and c-myc we used in situ
RT-PCR, real-time PCR and immunohistochemistry in transgenic mice expressing the oncogene E7
of HPV16 under control of the human Keratin-14 promoter (K14-E7 transgenic mice) and
nontransgenic control mice treated for 6 months with slow release pellets of 17β-estradiol.

Results: Estrogen-induced carcinogenesis was accompanied by an increase in the incidence and
distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-
E7 mice. TGF-β2 mRNA and protein levels increased in K14-E7 transgenic mice as compared with
nontransgenic mice and further increased after hormone-treatment in both nontransgenic and
transgenic mice. In contrast, TGF-βRII mRNA and protein levels were decreased in K14-E7
transgenic mice compared to nontransgenic mice and these levels were further decreased after
hormone treatment in transgenic mice. We also observed that c-myc mRNA levels were high in
K14-E7 mice irrespective of estrogen treatment and were increased in estrogen-treated
nontransgenic mice. Finally we found that p15 mRNA levels were not increased in K14-E7 mice.

Conclusion: These results suggest that the synergy between estrogen and E7 in inducing cervical
cancer may in part reflect the ability of both factors to modulate TGF-β signal transduction.

Background
Cervical cancer (CC) is one of the most frequent cancers
affecting women worldwide and is an important public

health problem for adult women in developing countries
[1].
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Infection with HR-HPV types, in particular HPV16 and
HPV18, is a crucial step in the etiology of CC [2,3]. The
oncogenic process is mainly driven by the viral proteins
E6 and E7, which inactivate tumor suppressor gene prod-
ucts p53 and pRB, respectively. Despite infection with HR-
HPV subtypes, most precancerous cervical lesions termed
cervical intraepithelial neoplasia (CIN) do not progress to
in situ or invasive carcinoma implicating either environ-
mental or genetic cofactors in those rare cases where pro-
gression occurs [4]. For example, both cigarette smoking
and genetic predisposition have been linked to cervical
carcinogenesis associated with HR-HPV [5]. Another
cofactor that has been repeatedly associated with cervical
neoplasia is exposure to estrogen [6]. This raises the
important question of which genetic or biological charac-
teristics distinguish CIN lesions that will progress to can-
cer from the majority that spontaneously regress.

A particularly interesting biological characteristic associ-
ated with malignant progression of cervical epithelial cells
is their progressive loss of responsiveness to TGF-β [7,8].
TGF-β belongs to a multifunctional family of growth fac-
tors that tightly regulate basic cellular functions such as
proliferation, apoptosis, differentiation, extracellular
matrix turnover and immunosuppression [9].

There are three isoforms of TGF-β: TGF-β1, TGF-β2, and
TGF-β3. Each isoform is encoded by a distinct gene, but
aminoacid sequences of the three isoforms are 70–80%
homologous [10]. TGF-β1 is expressed in endothelial,
hematopoietic, and connective tissue cells, TGF-β2 in epi-
thelial and neuronal cells, TGF-β3 primarily in mesenchy-
mal cells [11]. TGF-β2 is an important regulator of
differentiation [12] and this function is blocked by E6 and
E7 oncoproteins [13,14]. Primary cervical keratinocytes
that are immortalized by HPV in vitro and are passaged in
culture for prolonged periods of time, eventually lose
their sensitivity to the inhibitory effects of TGF-β [15]. In
addition, some cell lines derived from CIN lesions are sen-
sitive to TGF-β, whereas lines derived from invasive CCs
are resistant [7,8].

The biological effects of TGF-β are primarily mediated by
a complex of two transmembrane serine/threonine
kinases, the type I (TGF-βRI) and type II (TGF-βRII) recep-
tors [9]. TGF-β signaling cascade is activated when TGF-β
binds to TGF-βRII, then receptor I is recruited into the
complex and phosphorylated by receptor II at serine and
threonine residues [16]. Activated TGF-βRI phosphor-
ylates Smad2 and/or Smad3, and a heterotrimeric com-
plex is formed with Smad4 that translocates into the
nucleus, binds a consensus sequence, and directly or indi-
rectly (by interacting with other transcription factors) reg-
ulates gene transcription [9].

TGF-β induces growth inhibition of most cell types by
causing arrest in the G1 phase of the cell cycle. In normal
epithelial cells, TGF-β has been shown to induce the
expression of the cyclin-dependent kinase (CDk) 4/6
inhibitor p15Ink4B (p15) [17] and repress the expression
of c-Myc [18]. In certain cell types, TGF-β also upregulates
p21 [19], a CDK2 inhibitor and downregulates cdc25A, a
phosphatase that activates CDK2 [20]. Induction of CDK
inhibitors appears to represent key events in TGF-β
induced growth arrest.

Kang et al. [7] examined the expression and structural
integrity of TGF-βRI and TGF-βRII genes in a serie of 8
human CC cell lines. Two of these lines failed to express
TGF-βRII-specific RNA, which in one case was due to a
homozygous gene deletion. In addition, missense muta-
tions, gross rearrangements, truncated or decreased tran-
scripts and aberrant 5'-CpG methylation in the TGF-βRII
promoter have been found for this gene in a variety of
tumor types [21,22]. Because of the strongly suggestive
evidence that CC is associated with loss of TGF-β respon-
siveness and because cervical epithelial differentiation is
altered by E7 in the absence or presence of exogenous
estrogen [6,23], we investigated the status of TGF-β2 and
TGF-βRII expression in transgenic mice expressing the
oncogene E7 of HPV16 under control of the human Kera-
tin-14 promoter (K14-E7 transgenic mice) and nontrans-
genic control mice treated with slow release pellets of 17β-
estradiol. In this animal model E7 and estrogen synergize
to induce CC [24]. In comparison with cervical tissue
from estrogen-treated nontransgenic mice, we found
higher expression of TGF-β2 mRNA and protein in cervi-
cal tumors from K14-E7 mice treated with estrogen. In
contrast, a significant decrease in TGF-βRII mRNA and
protein was detected in the CC arised in estrogen-treated
K14-E7 transgenic mice. These results suggest that cervical
cancer in estrogen-treated K14-E7 mice is accompanied by
elevation of TGF-β2 and reduction of TGF-βRII expres-
sion.

Results
Histological features of cervical epithelium from untreated 
and estrogen-treated K14-E7 transgenic mice compared 
with nontransgenic mice
We evaluated the histopathology and expression of TGF-
β2 and TGF-βRII at the transcription and protein levels by
in situ RT-PCR, real-time PCR and immunohistochemis-
try respectively in a total of 40 mouse cervical tissues. Ten
samples each from nontransgenic (Nt-E), 17β-estradiol
treated (6 months) nontransgenic (Nt+E), untreated K14-
E7 transgenic (E7-E) and estrogen-treated K14-E7 trans-
genic (E7+E) mice were employed in this study.

The histopathology study revealed that none of the
untreated mice developed epithelial cancers of the repro-
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ductive tract (Figure 1A). However the squamous epithe-
lium from vagina and cervix in E7-E mice (Figure 1C) was
different from their nontransgenic counterparts, due to
epithelial rete ridges elongation and rounded basal-like
cells with high nuclear/cytoplasmic ratio within the supra-
basal compartment, suggestive of differentiation delay.
These observations are consistent with ones made previ-
ously in this animal model [6], in which, basal-like cells
within the suprabasal compartment of untreated K14-E7
cervix were able to perform DNA synthesis, which further
strengthen the conclusion that E7 delays differentiation of
cervical epithelial cells. Furthermore, double and multi-
nucleated cells were more prevalent in the K14-E7 mice
compared with nontransgenic mice, consistent with the
ability of E7 to induce endoreduplication [25]. As previ-
ously described [24], E7+E mice displayed evidence of

high-grade dysplasia and CC (Figure 1D). In contrast, the
squamous epithelium from Nt+E mice only showed epi-
thelial hyperplasia without evidence of dysplasia (Figure
1B). It is important to mention that invasive cancer or
high grade cervical lesions (CIN III or CIS) occurred in
100% of E7+E mice [24].

Detection and quantification of TGF-β2 and TGF-βRII 
mRNA by in situ RT-PCR and real-time PCR in cervix of 
nontransgenic and K14-E7 transgenic mice
In situ RT-PCR analysis (Figure 2A–D) demonstrated an
increase of TGF-β2 mRNA in the cervical squamous epi-
thelium from estrogen-treated mice (Figure 2B and 2D)
compared to untreated controls (Figure 2A and 2C). Addi-
tionally, we observed that the level of TGF-β2 mRNA in
E7-E mice was higher than in Nt-E mice (Figure 2A and
2C). E7+E mice displayed the highest in situ RT-PCR sig-
nals of all four sample sets (Figure 2D). Together these
results indicate that the TGF-β2 mRNA is upregulated in
its expression by both estrogen and E7.

We next analysed expression of the TGF-β type II receptor
(Figure 3). Compared with untreated control, TGF-βRII
mRNA expression was increased in estrogen-treated non-
transgenic mice (Figure 3A and 3B), but interestingly the
expression of this receptor was decreased in E7+E mice in
comparison to its untreated K14-E7 control mice (Figure
3C and 3D). Thus signal in E7+E mice was the lowest
among analysed cervical samples (Figure 3D).

As a control for the DNase treatment, DNA signal was
detected only in cell nuclei on control slides that were not
pretreated with DNase (data not shown). No signal was
detected in the cytoplasm of control slides, in which RT-
PCR was performed without reverse transcriptase or with
only one oligonucleotide (data not shown).

The expression levels of TGF-β2 and TGF-βRII mRNA
determined by in situ RT-PCR were confirmed by real-time
PCR in cervical tissue including the transformation zone.
Using the 2ΔΔCT method, the change in TGF-β2 and TGF-
βRII gene expression of cervical samples was normalized
to gapdh mRNA. In comparison with Nt-E mice, TGF-β2
mRNA levels were increased 1.5 fold and 5.6 fold in Nt+E
and E7+E mice respectively (P < 0.005) (Figure 4A). The
amount of TGF-β2 mRNA was also increased 3 fold in E7-
E compared with Nt-E mice (P < 0.005) (Figure 4A). TGF-
βRII mRNA expression was increased 1.7 fold in Nt+E in
comparison with Nt-E mice (P < 0.005). Cervical samples
from K14-E7 transgenic mice show half TGF-βRII mRNA
level than nontransgenic mice in the absence of hormone
supply and 3 fold less than the level observed in E7+E
mice (P < 0.005) (Figure 4B). These results suggest that
high TGF-β2 mRNA levels and low TGF-βRII mRNA levels

Representative histological features of cervical epithelium from untreated and estrogen-treated K14-E7 transgenic mice compared with nontransgenic miceFigure 1
Representative histological features of cervical epi-
thelium from untreated and estrogen-treated K14-
E7 transgenic mice compared with nontransgenic 
mice. We evaluated the epithelial histopathology in a total of 
40 mouse cervical tissues. Ten samples each from untreated 
nontransgenic (Nt-E), 17β-estradiol treated (6 months) non-
transgenic (Nt+E), untreated K14-E7 transgenic (E7-E) and 
estrogen-treated K14-E7 transgenic (E7+E) mice were 
included in this study. Control Nt-E mice show thin cervical 
epithelium (A). In contrast, Nt+E mice exhibit wider cervical 
epithelium (B). Thick cervical epithelium constituted by cells 
with slight dysplasic changes are apparent in E7-E mice (C). In 
comparison, cervical epithelium from E7+E mice show lack of 
differentiation with evident dysplastic changes (D) (indicated 
by black arrows). (All micrographs at 400× magnification, H-
E stained cross sections).
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are associated with in situ carcinoma arising from estro-
gen-treated K14-E7 transgenic mice.

Quantification of c-myc and p15 mRNA in cervix of 
nontransgenic and K14-E7 transgenic mice
In normal conditions, the TGF-β pathway leads to down-
regulation of c-myc expression and upregulation of cdks
inhibitors, such as p15 and p21 [26]. The repression of c-
myc has been shown to be required for the induction of
p15 by TGF-β [27] and it was previously reported that loss
of c-myc repression is central to TGF-β resistance mecha-
nism [26]. We therefore examined whether or not c-myc
and p15 expression was different in cervical samples from
K14-E7 transgenic and nontransgenic mice and the effect
of 17β-estradiol treatment. We found that c-myc mRNA
levels were higher in K14-E7 mice irrespective of estrogen
treatment and were increased in estrogen-treated non-
transgenic mice (Figure 5A). p15 mRNA levels were not
increased in K14-E7 mice even in the presence of the hor-
mone; however p15 mRNA levels were very high in Nt+E
mice (Figure 5B).

Detection of TGF-β2 and TGF-βRII protein in cervix of 
nontransgenic and K14-E7 transgenic mice by 
immunohistochemistry
As in situ RT-PCR and real-time PCR showed upregulation
of TGF-β2 mRNA in estrogen-treated nontransgenic and
K14-E7 mice and downregulation of TGF-βRII mRNA in
both E7-E and E7+E mice, we performed immunohisto-
chemistry to assess if there exists a correlation between
mRNA and protein expression of these genes.

The immunoreactivity against TGF-β2 was increased in
Nt+E and K14-E7 transgenic mice in comparison with
respective untreated controls (Figure 2). It was also evi-
dent that TGF-β2 protein levels were higher in cervix of
K14-E7 transgenic mice (Figure 2G and 2H) compared
with nontransgenic controls (Figure 2E and 2F), particu-
larly in E7+E mice (Figure 2G).

TGF-βRII immunostaining was higher in Nt+E mice in
comparison with untreated nontransgenic animals (Fig-
ure 3E and 3F). In contrast, TGF-βRII staining was lower
in E7+E mice (Figure 3H) when compared to E7-E mice
(Figure 3G). The lowest level of this important receptor
was detected in E7+E mice (Figure 3H). Therefore, it
seems that there is a correlation between higher expres-

Representative in situ RT-PCR (A-D) and immunohistochemical (E-H) detection of TGF-β2 in cervical tissueFigure 2
Representative in situ RT-PCR (A-D) and immunohistochemical (E-H) detection of TGF-β2 in cervical tissue. 
Shown are histological cross-sections of the mouse cervical tract from Nt-E, Nt+E, E7-E and E7+E mice. Figure 2A and E: Nt-E 
mice; (B and F): Nt+E mice; (C and G): E7-E mice; (D and H): E7+E mice. In both cases (mRNA, protein), signal was mainly 
cytoplasmic (indicated by black arrows for in situ RT-PCR). TGF-β2 mRNA and protein levels were increased throughout mul-
tiple layers of cells in LSILs (C and G) and CIS (D and H) arising from K14-E7 transgenic mice, whereas weaker TGF-β2 mRNA 
and protein expression was detected in the normal cervical squamous epithelium (A and E) and hyperplastic lesions (B and F) 
arising from nontransgenic mice. These experiments are representative of five separate experiments (all micrographs at 400× 
magnification).
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sion of TGF-β2 and decrease of TGF-βRII expression in
this particular model of cervical carcinogenesis, suggest-
ing TGF-β2 participation in the loss of growth control and
promotion of tumorigenesis.

Discussion
In several cancer types, there is a strong correlation
between malignant progression and loss of sensitivity to
the antiproliferative effects of TGF-β, which is frequently
associated with reduced expression or mutational inacti-
vation of TGF-β receptors [28,29]. Interestingly, re-expres-
sion of TGF-βRII restored response to exogenous TGF-β
and reversed the malignant behavior of various cell lines
[30]. We demonstrate here a diminished expression of
TGF-β type II receptor in CC at the mRNA and protein lev-
els. Such decrease in TGF-βRII expression might lead to
loss of TGF-β sensitivity in CC cells from our HPV-trans-
genic mouse model, and ultimately to escape from growth
regulatory signals imposed by TGF-β.

TGF-β2 shares 71% homology in the amino acid sequence
with TGF-β1, and they are interchangeable in bioassays
[31]. Overproduction of TGF-β has been associated with
tumors of many histologic types including those of breast,
prostate, lung, liver and colon [11]. These high TGF-β lev-

els in tumor tissues, including cervical cancer, correlate
with markers of higher metastatic phenotype and/or poor
patient outcome [32], and many tumor cells exhibit
increased invasiveness in response to TGF-β [33]. In addi-
tion, TGF-β2 was higher expressed than TGF-β1 and TGF-
β3 in tumor cells of malignant HaCaT-Ras clones, partic-
ularly at the invasion front [34]. TGF-β can also induce an
epithelial-to-mesenchymal transition in tumor and non-
tumor epithelial cells [35], and it has been demonstrated
that TGF-β1 stimulates epithelial-mesenchymal transition
in SiHa (HPV16) cells [36]. Other recent studies demon-
strated that TGF-β is overexpressed in Pap smears correlat-
ing with CIN progression to cancer [37,38]. Even more, it
was found that specific TGF-β2 expression is a common
feature in CIN lesions [39], and it was positively corre-
lated with E7 expression [22]. Moreover, HPV16 E6 and
E7 increased TGF-β1 promoter activity [40]. Our results
confirm and extend these observations, showing high
TGF-β2 mRNA and protein expression in cervical tumors
from estrogen-treated K14-E7 mice. A mechanism by
which TGF-β2 overproduction may contribute to cervical
carcinogenesis is through inhibition of the immune
response [41]. However, there are also some studies that
disagree with these observations. Decrease of TGF-β1,
TGF-β2 and TGF-β3 mRNA expression was reported in 

Representative in situ RT-PCR (A-D) and immunohistochemical (E-H) determination of TGF-βRII in cervical tissueFigure 3
Representative in situ RT-PCR (A-D) and immunohistochemical (E-H) determination of TGF-βRII in cervical 
tissue. Shown are histological cross-sections of the mouse cervical tract from Nt-E, Nt+E, E7-E and E7+E mice. Figure 3A and 
E: Nt-E mice; (B and F): Nt+E mice; (C and G): E7-E mice; (D and H): E7+E mice. In both cases (mRNA, protein), signal was 
mainly cytoplasmic (indicated by black arrows for in situ RT-PCR). TGF-βRII mRNA and protein expression was increased in 
hyperplastic lesions arising from Nt+E mice (B and F) but note that staining was lower in E7-E (C and G) and E7+E mice (D and 
H) in comparison with Nt-E mice (A and E). These experiments are representative of five separate experiments (all micro-
graphs at 400× magnification).
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Quantification of TGF-β target genes c-myc and p15 gene expression using real-time PCR in cervical tissueFigure 5
Quantification of TGF-β target genes c-myc and p15 
gene expression using real-time PCR in cervical tis-
sue. We evaluated c-myc and p15 mRNA in a total of 3 mice 
from each group. Samples from the following mice categories 
were employed: Nt-E, Nt+E, E7-E and E7+E mice. (A) Quan-
tification of c-myc mRNA. The data are presented as the fold 
change in c-myc mRNA level normalized to the gapdh mRNA 
(endogenous control). Nt-E mice were used as calibrator. c-
myc mRNA levels were very high in K14-E7 mice irrespec-
tive of estrogen treatment and were strongly increased in 
Nt+E mice as compared with the control Nt-E (P < 0.005) 
(Figure 5A). The difference in expression of c-myc mRNA 
between Nt-E vs Nt+E, E7-E and E7+E mice was statistically 
significant (P < 0.005). All significant differences are indicated 
by asterisks. (B) Quantification of p15 mRNA. The data are 
presented as the fold change in p15 mRNA level normalized 
to the gapdh mRNA (endogenous control). p15 mRNA levels 
were not increased in K14-E7 mice even in the presence of 
the hormone; however p15 mRNA levels were very high in 
Nt+E mice (P < 0.005) (Figure 5B). The difference in expres-
sion of p15 mRNA between Nt-E vs Nt+E, and Nt+E vs E7+E 
mice was statistically significant (P < 0.005). There was not 
statistical significance between E7-E vs E7+E P > 0.005. All 
significant differences are indicated by asterisks.
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some patients with CIN, but that result was not statisti-
cally significant [42]. Another study found specific
decrease of TGF-β1 expression in CIN I-III, but they did
not analyze TGF-β2 [43,44]. Nees et al. [12], found that
E7 downregulate the expression of TGF-β2; a possible rea-
son for this apparent contradiction may be that they used
primary human keratinocytes while we used a cervical
cancer mouse model.

One characteristic associated with malignant progression
of cervical epithelial cells is their progressive loss of
responsiveness to TGF-β [7,8]. Furthermore, resistance to
TGF-β that is acquired by several cell lines correlates with
HPV tumorigenic potential. Such studies indicate that
after HPV infection, additional cellular or molecular
changes might participate in the loss of TGF-β responsive-
ness, which then promotes malignant transformation.
Our results agree with these observations, and suggest that
one significant mechanism is the lack of TGFβRII expres-
sion.

The antimitogenic action of TGF-β in epithelial cells
involves the expression of CDK inhibitors like p15 and
down-regulation of c-Myc expression. The significance of
c-Myc downregulation in TGF-β action is underscored by
the observation that overexpression of exogenous c-Myc
renders cells resistant to the antimitogenic TGF-β effect
[27]. Particularly, Kim et al., [8] observed in cervical cell
lines that growth inhibition by TGF-β includes downregu-
lation of c-myc gene expression. We observed that c-myc
mRNA levels were higher in K14-E7 mice irrespective of
estrogen treatment, and were also increased in estrogen-
treated nontransgenic mice, while p15 mRNA levels were
not significatively increased in K14-E7 mice, even in the
presence of estrogens. However, p15 mRNA levels were
highest in estrogen-treated nontransgenic mice. These
results suggest that in our CC model, c-myc levels are
increased due to E7 presence and they are not regulated by
estrogen.

Estrogen contributes not only to the onset, but also to the
persistence and malignant progression of CC in our HPV-
transgenic mouse model [6], and this is supported by epi-
demiological evidence in humans [45]. One notable find-
ing in our study is that in estrogen-treated K14-E7 mice it
was observed the lowest TGF-βRII levels as compared to
nontransgenic mice. Our results indicate that this striking
down-regulation of TGF-βRII expression is at the tran-
scriptional level. In spite of the enormous amount of work
that has been published on the role of estrogen in hormo-
nal carcinogenesis [46], the mechanism by which estro-
gen contributes to cervical cancer is not clear, but could be
an initiation factor of neoplastic lesions acting as a direct
carcinogen [46].

Chronic elevation of estrogen levels by oral contraceptive
use or during pregnancy, might be sufficient to contribute
to tumor growth in HR-HPV infected women. The high
frequency of spontaneous regression of high-grade cervi-
cal dysplasia in women, is consistent with suboptimal
estrogen concentration after pregnancy or after short-term
oral contraceptive use [6]. Similarly, cervical tumors
induced in K14-E7 mice stop and revert their growth in
estrogen absence [6]. In addition, we informed previously
in this animal model high BrdU incorporation in several
cell layers of cervical squamous epithelium [24], while Ki-
67 and cyclin E were overexpressed [23]. These are well-
established proliferation markers which were positive in
all cervical epithelium layers of high-grade squamous
intraepithelial lesions and in invasive cancers developed
in K14-E7 transgenic mice, indicating loss of cell cycle or
epithelial growth control [23,24]. In this animal model,
apoptosis was absent at any stage of cervical neoplastic
progression in estrogen-treated K14-E7 transgenic mice
[24]. Thus, in our model E7 plus estrogen could be block-
ing several tumor suppressor pathways, like the TGF-β
pathway signaling to induce CC.

Conclusion
Our observations indicate that loss of growth response to
TGF-β in CC could originate from decreased cellular TGF-
βRII expression because the lower TGF-βRII level in estro-
gen-treated K14-E7, as compared to that found in non-
transgenic mice may contribute to cervical cancer.
Additional studies are needed to find possible alterations
of other components of this important signaling pathway
and its biological relevance.

Methods
Transgenic mice
K14-E7 transgenic mice expressing the HPV16 E7 onco-
gene contain the HPV16 E6 and E7 translational open
reading frames spanning nucleotides 79–883 positioned
downstream of the human keratin 14 (K14) transcrip-
tional promoter. K14-E6ttl/E7 (designated here as K14-
E7) transgenic mice have a translation termination linker
(ttl) in the E6 gene precluding E6 expression [47]. Ani-
mals were housed in a pathogen-free barrier facility. All
experiments and procedures were carried out under an
animal protocol approved by the University of Wisconsin
IACUC.

Hormone treatment
One-month old K14-E7 transgenic and nontransgenic vir-
gin female mice were anesthetized with halothane, s.c.
implanted in the dorsal skin with continuous release pel-
lets delivering 0.05 mg 17β-estradiol over 60 days (Inno-
vative Research of America, Sarasota, FL). Three estrogen
pellets were administered in total during the 6 month
period of estrogen treatment. A total of 40 mice were used.
Page 7 of 11
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Ten mice each of Nt-E, Nt+E, E7-E and E7+E mice were
employed in this study. Control mice received no pellet
insertions.

Tissue procurement and histology
One hour prior to sacrifice, mice were injected intraperi-
toneally with 100 μg/kg of bromodeoxyuridine (BrdU). At
sacrifice, mice were anesthetized with 2.5% Avertin and
perfused with 4% formaldehyde through the aorta. The
reproductive tract, including the vagina, cervix, and uter-
ine horns, was dissected and postfixed overnight at 4°C.
The posterior vaginal wall was removed for orientation.
Tissues were embedded in paraffin and were cut at ~100
μm intervals until the cervical canal was visible, after
which 5 μm serial sections through the cervix were
obtained. Every tenth section was stained with hematoxy-
lin and eosin and evaluated for pathology. The treatment
of these mice and the histopathological characterization
of these tissues have been described previously [24].

In situ RT-PCR
Detection of TGF-β2 and TGF-βRII mRNA was carried out
using a two-step in situ RT-PCR procedure as previously
reported [48] with the following modifications. Sections
were pretreated with 0.5 μg/μl proteinase K (Sigma
Aldrich; St Louis, MO) in 0.01 M PBS, pH 7.4, at room
temperature for 30 min. After Proteinase K digestion, tis-
sues were treated with 1 U/sample of DNase I RNase-free
(Roche, U.S.A.) during 24 hrs at room temperature. After
thoroughly washing with DEPC-treated water, reverse
transcription was performed using the SuperScript II
reverse transcriptase (Invitrogen, U.S.A.). TGF-β2 and
TGF-βRII mRNA sequences obtained from [49] were used
to design forward (5'-CCGCA-TCTCCTGCTAATGTTG-3')
and reverse (5'-AATAGGCGGCATCCAAAGC-3') primers
for TGF-β2 mRNA amplification. For TGF-βRII mRNA,
primers 5'-AGCATCACGGCCATCTGTG-3' (forward) and
5'-TGGCAAACCGTCTCCAG-AGT-3' (reverse) were used
(Invitrogen).

In situ RT reactions were performed by the application of
2.5 U Superscript™ II reverse transcriptase (Invitrogen,
USA) to the slides. Positive controls consisted of in situ
RT-PCR reactions in the absence of DNase and as a nega-
tive control buffer without Superscript™ II reverse tran-
scriptase was applied to one section on each slide. Slides
were incubated at 37°C for 2 h, then 94°C for 5 min. PCR
amplification was performed using the corresponding
primers and the system provided by Perkin Elmer. The
slides were preheated to 70°C on the assembly tool
included in the in situ Perkin Elmer equipment, 50 μl PCR
master mix was added to each sample and the reaction
was sealed using Amplicover discs and clips (Perkin
Elmer, USA). After assembly, slides were placed at 70°C in
the GeneAmp In situ PCR system 1000 (Perkin Elmer,

USA) until running was started. Slides were incubated first
at 94°C for 5 min (initial denaturation), followed by 20
cycles at 94°C for 1 min (denaturation), 60°C for 1 min
(annealing) and 72°C for 1 min (extension), respectively.
After PCR amplification, slides were washed for 5 min in
1× PBS pH 7.4, followed by 5 min in 100% ethanol before
they were air dried. Slides were soaked in PBS containing
5% bovine serum albumin (Sigma, USA) for 30 min to
block nonspecific binding activity (stringent wash).
Immunohistochemical signal detection was carried out
using mouse anti-digoxigenin monoclonal antibody Fab
fragments conjugated to alkaline phosphatase (1:200
dilution, 30 min, room temperature) (Roche; Mannheim,
Germany), and signals visualized by nitroblue tetrazo-
lium chloride (NBT) and bromochloroindoxyl phosphate
(BCIP) (Zymed, USA). We evaluated TGF-β2 and TGF-
βRII mRNA in a total of 5 mice from each group.

Real-time RT-PCR
Isolated RNA was controlled for quality by 2% agarose gel
separation and ethidium bromide staining. RNA was
quantified by spectrophotometry. Complementary DNA
(cDNA) was synthesized using 2 μg of total RNA. The 20
μl reverse transcription reaction consisted of 2 μl 10× RT
buffer, 0.5 mM each dNTP, 1 μM Oligo-dT primers, and 4
U Omniscript reverse transcriptase (QIAGEN, USA). The
reverse transcription reaction was incubated for 1 h at
37°C and then at 93°C for 15 min. A no-template control
was performed for each experiment, establishing the
absence of genomic contamination in the samples. For
the quantitative SYBR Green real-time PCR, 1 μl of each
RT product was used per reaction and SYBR Green reac-
tion was conducted using a QuantiTect™ SYBR Green PCR
Reagents kit (QIAGEN, USA) and the protocol provided
by the manufacturer. Optimization was performed for
each gene-specific pair of primers prior to the experiment
to confirm that 50 nM primer concentrations did not pro-
duce nonspecific primer-dimmer amplification signal in
no-template control tube. Changes in fluorescence were
recorded as the temperature was increased from 65°C to
95°C at a rate of 0.2°C/s to obtain a DNA melting curve.
The characteristic peak at the melting temperature of the
target product distinguishes it from amplification artefacts
that melt at lower temperatures in broader peaks.

The primer sequences, that were designed using Primer
Express Software, confirmed specificity of the PCR. TGF-
β2, TGF-βRII, c-myc, p15 and gapdh mRNA sequences
obtained from [49] were used to design forward and
reverse primers. For TGF-β2 mRNA amplification we used
(5'-CCGCATCTCCTGCTAATGTTG-3') (forward) and (5'-
AATAGGCGGCATCCAAAGC-3') (reverse). For TGF-βRII
mRNA, primers 5'-AGCATCACGGCCATCTGTG-3' (for-
ward) and 5'-TGGCAAACCGTCTCCAGAGT-3' (reverse).
For c-myc mRNA, primers 5'-TGCATTGACCCCTCAGT-
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GGT-3' (forward) and 5'-TCCGAGGAAGGAGAG-
AAGGC-3' (reverse). For p15 mRNA, primers 5'-TCT-
GCAGCTGGATCTGGTCC-3' (forward) and 5'-TCCT-
GAAAGGTAGAGGGCCC-3' (reverse). For gapdh mRNA,
primers 5'-CATCTCCTCCCGTTCTGCC-3' (forward) and
5'-GTGGTG-CAGGATGCATTGC-3' (reverse). Each sam-
ple was tested in triplicate with quantitative PCR, and for
standardisation of gene expression levels, mRNA ratios
relative to the house-keeping gene gapdh were calculated.
We evaluated TGF-β2 and TGF-βRII mRNA in a total of 3
mice from each group.

Data analysis using 2-ΔΔCT method
Real-time PCR was performed on the corresponding
cDNA synthesized from each sample. The data were ana-
lysed using the equation described by Livak [50] as fol-
lows: Amount of target = 2-ΔΔCT. The threshold cycle (CT)
indicates the fractional number at which the amount of
amplified target reaches a fixed threshold. ΔCT = (average
TGF-β2, TGF-βRII, c-myc and p15 CT – average gapdh
CT). ΔΔCT = (average ΔCT untreated Nt mice (calibrator)
– average ΔCT untreated or estrogen-treated mice). Valida-
tion of the method was performed as previously reported
[51].

Statistical analysis
Data are presented as mean ± standard deviation (S.D.).
Statistical evaluation of significant differences was per-
formed using the Student's t-test. Differences of P < 0.05
were considered statistically significant.

Immunohistochemistry
Sections of 5 μm width were placed on poly-L-lysine-
coated slides. Following deparaffination, the sections
were immersed in an antigen-retrieval solution (DAKO,
Glostrup, Denmark) for 40 min at 98°C. Endogen perox-
idase was blocked with 3% H2O2 in absolute methanol,
followed by immersion in a universal blocking reagent
(Powerblock, Biogenex, San Ramon, CA, USA) for 10 min.
The sections were incubated overnight at room tempera-
ture with rabbit polyclonal antibodies against TGF-β2 or
TGF-βRII (Santa Cruz Laboratory, Santa Cruz, CA, USA)
diluted 1/50 in PBS. Bound antibodies were detected with
goat antirabbit immunoglobulin G labelled with peroxi-
dase diluted 1/150 in PBS and the site of antibody bind-
ing was visualized using diaminobenzidine reagent. The
slides were counterstained with Mayer's Hematoxylin
(Sigma Diagnostics). We evaluated TGF-β2 and TGF-βRII
protein levels in a total of 5 mice from each group.
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