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Abstract

Background: C-Myc is a short-lived oncoprotein that is destroyed by ubiquitin-mediated proteolysis.
Dysregulated accumulation of c-Myc commonly occurs in human cancers. Some of those cases with the
dysregulated c-Myc protein accumulation are attributed to gene amplification or increased mRNA
expression. However, the abnormal accumulation of c-Myc protein is also a common finding in human
cancers with normal copy number and transcription level of c-Myc gene. It seems that the mechanistic
dysregulation in the control of c-Myc protein stabilization is another important hallmark associated with
c-Myc accumulation in cancer cells. Here we report a novel mechanistic pathway through which DNA-
dependent protein kinase catalytic subunit (DNA-PKcs) modulates the stability of c-Myc protein.

Results: Firstly, siRNA-mediated silencing of DNA-PKcs strikingly downregulated c-Myc protein levels in
Hela and HepG2 cells, and simultaneously decreased cell proliferation. The c-Myc protein level in DNA-
PKcs deficient human glioma M059) cells was also found much lower than that in DNA-PKcs efficient
MO59K cells. ATM deficiency does not affect c-Myc expression level. Silencing of DNA-PKcs in Hela cells
resulted in a decreased stability of c-Myc protein, which was associated the increasing of c-Myc
phosphorylation on Thr58/Ser62 and ubiquitination level. Phosphorylation of Akt on Ser473, a substrate
of DNA-PKcs was found decreased in DNA-PKcs deficient cells. As the consequence, the phosphorylation
of GSK3 (3 on Ser9, a negatively regulated target of Akt, was also decreased, and which led to activation
of GSK 3 and in turn phosphorylation of c-Myc on Thr58. Moreover, inhibition of GSK3 activity by LiCl
or specific siRNA molecules rescued the downregulation of c-Myc mediated by silencing DNA-PKcs.
Consistent with this depressed DNA-PKcs cell model, overexpressing DNA-PKcs in normal human liver
LO2 cells, by sub-chronically exposing to very low dose of carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), increased c-Myc protein level, the phosphorylation of Akt and GSK3 f, as well as cell
proliferation. siRNA-mediated silencing of DNA-PKcs in this cell model reversed above alterations to the
original levels of LO2 cells.

Conclusion: A suitable DNA-PKcs level in cells is necessary for maintaining genomic stability, while
abnormal overexpression of DNA-PKcs may contribute to cell proliferation and even oncogenic
transformation by stabilizing the c-Myc oncoprotein via at least the Akt/GSK3 pathway. Our results
suggest DNA-PKcs a novel biological role beyond its DNA repair function.

Page 1 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426604
http://www.molecular-cancer.com/content/7/1/32
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Molecular Cancer 2008, 7:32

Background

The c-Myc oncoprotein is a short-lived basic helix-loop-
helix leucine-zipper transcription factor that, together
with its dimerization partner Max, binds to specific E-box
sequences and is responsible for controlling a set of genes
whose functions impinge directly upon the machinery of
cell growth and proliferation [1,2]. C-myc has the trans-
forming capacity, even the activation of the c-Myc gene
alone can lead to the formation of liver cancers and inac-
tivation of the c-Myc is sufficient to induce sustained
regression of invasive liver cancers [3]. Dysregulated accu-
mulation of c-Myc oncoprotein commonly occurs in vari-
ous human cancers (30-50%) [4-9], and in most cases is
associated with disease progression.

Proteolysis of c-Myc protein within minutes of its synthe-
sis occurs through the ubiquitin-proteasome pathway
[10], which involves the F box protein and the ubiquitin
ligase components, Skp2 and Fbw7 [11-15]. The c-Myc
transactivation domain (TAD), spanning amino acids 40-
150, contains the sequence PTPPLSP (residues 57-63),
within which both T58 and S62 are phosphorylated. The
critical phosphorylation event of T58 and S62 determines
the protein half life [16]. The phosphorylation of S62
mediated by the Ras/MEK/ERK kinase pathway, is
believed to be a prerequisite for the phosphorylation of
T58 regulated through the phosphatidylinositol 3-kinase/
Akt (PKB)/glycogen synthase kinase 3 (GSK3) pro-sur-
vival pathway [7,17,18]. Phosphorylation of c-Myc on
T58 by GSK3 regulates the binding of Fbw7, which in turn
triggers c-Myc ubiquitination and degradation [15].

Mechanisms for the dysregulated accumulation of c-Myc
protein in cancers, as well as the means by which c-Myc
stimulates cell proliferation and transformation, have
received much attention. Indeed, a number of studies
demonstrated that T58 mutation occurred in some can-
cers, which resulted in decreased ubiquitination and pro-
teolysis of cMyc [17-19]. However, the abnormal
accumulation of ¢-Myc protein is also a common finding
in human cancers with intact and normal copy or expres-
sion levels of the c-Myc gene, suggesting the mechanistic
dysregulation in the control of c-Myc protein stabilization
in human cancers.

DNA-dependent protein kinase catalytic subunit (DNA-
PKcs) is a member of a sub-family of proteins containing
a phosphoinositol (PI) 3-kinase domain with the activity
of a serine/threonine protein kinase [20,21]. It is well
known that DNA-PKcs is required for the non-homolo-
gous end joining (NHE]) pathway of DNA double-strand
breaks, V (D) J recombination of immunoglobulin genes
and T cell receptor genes [20], and telomere length main-
tenance [22,23]. However, overexpression of DNA-PKcs
has recently been unveiled in various human cancers [24-
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30], and its expression level was also reported to correlate
with the development of productive tissues or the differ-
entiation and proliferation status of some cell types [31-
34]. It is still unclear what the biological significance is for
this overexpressed DNA-PKcs in human cancers. Recently
we have reported that silencing of DNA-PKcs mediated by
specific siRNA molecules led to strongly decreased c-Myc
protein level without changing c-myc mRNA expression
[35], and increased expression of some of the c-Myc
repressing genes, e.g. p21, p27 and NDRG1[36]. In this
study, we sought to determine the effect of DNA-PKcs on
regulating c-Myc protein stability and focused on the
involvement of Akt and GSK3 in its mechanistic pathway
using the cell model with siRNA-silenced DNA-PKcs,
DNA-PKcs deficient cells. Moreover, we have confirmed
the effect of DNA-PKcs on regulating c-Myc stability in an
overexpressed DNA-PKcs cell model, generated by sub-
chronically exposing normal human liver L02 cells to very
low dose of carcinogen 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD).

Materials and methods

Cell culture and siRNA transfection

Hela, HelLa-NC, HeLa-H1, HepG2, HepG2-NC, HepG2-
H1, HepG2-H3, M059K (DNA-PKcs efficient human gli-
oma cells), M059] (DNA-PKcs deficient human glioma
cells), normal human liver L02 cells, ATM-deficient
AT5BIVA, and human normal foreskin fibroblast HFC
cells were maintained in Dulbecco modified Eagle
medium (DMEM) containing 10% fatal bovine serum,
100 U/ml of penicillin and 100 pg/ml of streptomycin in
a humidified chamber at 37°C in 5% CO,. M059K and
MO059] cell lines were kindly provided by Dr David Chen
from the Department of Radiation Oncology, UT South-
western Medical Center. HeLa-H1, and HeLa-NC were
generated from Hela cells, and HepG2-H1, HepG2-H3,
HepG2-NC were generated from HepG2 cells, by stably
transfecting with specific siRNA constructs targeting the
DNA-PKcs catalytic motif (nucleotides 11637~11655,
H1) or translation initiation region (nucleotides
354~372, H3) and a control construct (NC), respectively
[35].

For experiments in which DNA-PKcs, GSK3a or GSK3f3
was knock-down transiently, the siRNA molecules were
synthesized and purified by Cenechem company (Shang-
hai, China), including DNA-PKcs specific siRNA (5'-
GGGCGCUAAUCGUACUGAAdtdt-3"), GSK3a specific
siRNA (sense strand: 5'-CAUUCUCAU CCCUCCU-
CACdtdt-3'), GSK3p specific siRNA (sense strand: 5'-
GAGCAAAUCAGAGAAAUGAdtdt-3"), and the non-spe-
cific control siRNA (sense strand: 5'-UUCUCCGAACGU-
GUCACGUAtdt-3"). For siRNA transfection, 1 x 105 cells
were plated in each well of 6-well culture plate, 24 h later
30 wl of Lipofectamine 2000 reagent (Invitrogen, Caris-
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bad, CA) was added into 1.5 ml DMEM without antibiot-
ics and serum and incubated at room temperature for 5
min (solution A). A certain amount of siRNA was added
into 1.5 ml DMEM without antibiotics and serum (solu-
tion B). Solution A and solution B were mixed and incu-
bated at room temperature for 20 min. The medium in the
cell culture was removed, and then 0.5 ml of Lipo-
fectamine 2000-siRNA mixture and 1.5 ml of fresh DMEM
without antibiotics were added to each culture well and
gently mixed. After 48 hours of incubation, the cells were
harvested for immunoblotting analysis.

Antibodies

All antibodies were purchased commercially: anti-DNA-
PKcs (H-163, Santa Cruz, CA), anti-Ku70 (H-308, Santa
Cruz, CA), anti-c-Myc (9E10, Santa Cruz, CA), anti-phos-
pho-c-Myc (Thr58/Ser62, #9401, Cell signal, Danvers,
MA), anti-B-actin (I-19-R, Santa Cruz, CA), anti-Ubiquitin
(P4D1, Cell signal, Danvers, MA), anti-Akt (#9272, Cell
signal, Danvers, MA), anti-phospho-Akt (Serd73, #9271,
Cell signal, Danvers, MA), anti-GSK3a (#9338, Cell sig-
nal, Danvers, MA), anti-GSK3p (#9332, Cell signal, Dan-
vers, MA), anti-phospho-GSK3(Ser9, #9336, Cell signal,
Danvers, MA), anti-Rabbit IgG(H+L)/HRP (ZB-2301,
Zhongshan, Beijing, China), and anti-Mouse IgG(H+L)/
HRP (ZB-2305, Zhongshan, Beijing, China).

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment
Normal human liver LO2 cells were exposed to 0.01, 0.1,
or 1.0 pM TCDD in the growth medium for 48 hours or 2
or 4 weeks. During the period of TCDD sub-chronic treat-
ment, cells were subcultured for each 3-4 days. After end-
ing of TCDD exposure, cells were subjected to growth
curve and immunoblotting analyses under normal culture
conditions.

Cell growth and radiosensitive analyses

5x103 cells per well were seeded in 24-well culture plates
The cell numbers from three wells were counted every day
after plating for each group. Three independent experi-
ments were performed, and the means were used to depict
the growth curve.

In the radiosensitive experiment, cells were trypsinized,
counted, and diluted to certain concentrations. Cell sus-
pensions were irradiated immediately at room tempera-
ture using a °°Co y-ray source at a dose rate of 2 Gy/min.
Corresponding controls were sham irradiated. A colony-
forming assay was performed immediately after irradia-
tion by plating an appropriate number of cells (3 x 102to
1 x 10%) into 60 mm diameter Petri dishes, in triplicate.
After two weeks in culture, cells were fixed with methanol,
stained with Giemsa solution, and colonies consisting of
more than 50 cells were counted. After correction with
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plating cell numbers, the data of survival colonies were
used to plot survival curves.

Immunoblotting analysis and coimmunoprecipitation
(ColP)

The cells were harvested and washed twice in ice-cold
phosphate buffered saline. Cell pellets were treated with
lysis buffer (50 mmol/L Tris-HCL, pH 7.5, 1% Noridet
P40, 0.5% Sodium deoxycholate, 150 mmol/L NaCl, 1
piece of protease inhibitor cocktail tablet in 50 ml solu-
tion), and the total protein was isolated. Protein (50 pg)
was resolved on SDS/PAGE (8%), and then transferred
onto the polyvinylidene fluoride (PVDF) membrane for
immunoblotting detection.

In the ColP experiment, HeLa-H1 and HeLa-NC cells were
treated with 20 uM proteasome inhibitor MG132 (Z-Leu-
Leu-Leu-al) (Sigma, Saint Louis, MO) for 2 h, or 40 mM
GSK3 B inhibitor LiCl (ACROS, NJ) or 40 mM KClI (con-
trol) for 45 min before cell lysis. Coimmunoprecipitation
was performed by using the Immunoprecipitation Kit
(Protein A/G, Roche Molecular Biochemicals) according
to the manufacturer's instructions. Briefly, cells were
washed twice with ice-cold PBS and collected by centrifu-
gation. The cell pellets were resuspended in pre-chilled
lysis buffer (50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 1%
Nonidet P40, 0.5% sodium deoxychoolate and certain
amount of complete tablet provided by the Kit) and
homogenized. The supernatants were collected by centrif-
ugation at 12 000 x g for 10 min at 4 °C to remove debris,
and then subjected to immunoprecipitation. After pre-
cleared with protein A/G-agarose, the supernatants were
reacted for 3 h with 2 pg of anti-c-Myc antibody at 4°C
followed by overnight incubation with protein A/G-agar-
ose at 4°C. The immunoprecipitates were collected by
centrifugation, and washed twice with washing buffer 1
(50 mM Tris-HCI, pH 7.5, 500 mM NacCl, 1% Nonidet
P40 and 0.05% sodium deoxychoolate), and one time
with washing buffer 2 (10 mM Tris-HCI, pH 7.5, 0.1%
Nonidet P40 and 0.05% sodium deoxychoolate). The
immunoprecipitates were denatured by heating to 100°C
for 3 min in gel-loading buffer and centrifuged at 12 000
x g for 20 s to remove the protein A/G-agarose. The dena-
tured proteins were resolved by 8% SDS-PAGE and sub-
jected to immunoblotting analysis with the anti-ubiquitin
antibody.

Determination of c-Myc protein stability

Hela-H1 and HeLa-NC cells were pretreated with 20 uM
MG132 (Sigma, Saint Louis, MO) for 2 h to accumulate
protein, then washed with cold-PBS three times to remove
the MG132, followed by treatment with 40 pg/ml
cycloheximide (CHX) (Sigma, Saint Louis, MO) at 37°C
to block novel protein synthesis. The cells were harvested
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at the given times after CHX treatment, and subjected to  results indicated that siRNA-mediated silencing of DNA-

immunoblotting analysis with the anti-c-Myc antibody. PKcs led to stable downregulation of c-Myc protein, and

even after 35 passages of subculture, the DNA-PKcs
Results silenced HeLa-H1 cells expresses a lower level of c-Myc
DNA-PKcs modulates c-Myc protein expression and cell protein (Fig. 1A). Here we further shows that silencing of
proliferation DNA-PKcs in HepG2 cells by siRNA strategy also leads to
We have firstly generated a number of cell models, includ-  a significant depression of c-Myc oncoprotein (Fig. 1B).

ing HeLa-H1, HepG2-H1, HepG2-H3, by silencing DNA- ~ M059K and MO059] cells are a pair of cell lines derived
PKcs in human cervix cancer Hela cells or liver cancer  from the same malignant glioma specimen, M059K cells
HepG2 cells respectively, with specific siRNA molecules  express functional DNA-PKcs, whereas M059] cells lack
targeting different position of DNA-PKcs sequence. The =~ DNA-PKcs expression. This pair of cell lines offers a useful
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DNA-PKGcs regulates c-Myc protein expression (Immunoblotting analysis). (A) DNA-PKcs and c-Myc expression in
the passage 35 of Hela-H| cells transfected with DNA-PKcs specific siRNA construct or HeLa-NC transfected with nonspe-
cific siRNA construct (the same in all figures for HeLa-H| and HelLa-NC cells). (B) DNA-PKcs and c-Myc expression in HepG2
cells transfected with DNA-PKcs specific siRNA construct (HepG2-H| and HepG2-H3) or nonspecific siRNA construct
(HepG2-NC). (C) Comparison of DNA-PKcs and c-Myc expression between human glioma M059K cells (DNA-PKcs efficient)
and M059 cells (DNA-PKcs deficient). (D) Alterations of DNA-PKcs and c-Myc expression in normal human liver LO2 cells
after exposed to 0, 0.01 and 0.1 pM of TCDD for 4 weeks. (E) Effect of re-depressing TCDD-upregulated DNA-PKcs on c-Myc
expression in LO2 cells. LO2/TCDD-H| and L02/TCDD-NC cells were generated by exposing L02 cells to 0.1 pM TCDD for
two weeks, then transfected with DNA-PKcs specific siRNA or nonspecific siRNA constructs, respectively. Cells grew in nor-
mal growth medium without TCDD after primary two weeks of TCDD exposure. (F) c-Myc protein expression in ATM-defi-
cient AT5BIVA cells and human HFC fibroblasts, and the effect by siRNA-mediated suppression of DNA-PKcs.
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model for studying the biological function of DNA-PKGcs.
Therefore, we compared the c-Myc protein levels between
these two cell lines and found that c-Myc level in M059]
cells which lack DNA-PKcs was significantly lower than in
MO59K cells (Fig. 1C).

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a chemi-
cal carcinogen. We found that sub-chronic exposure of
normal human liver cells LO2 with 0.01 - 1.0 pM low dose
of TCDD for 2 or 4 weeks dramatically increased DNA-
PKcs expression. Interestingly, c-Myc protein level was
concurrently augmented (Fig. 1D). We then asked
whether depressing DNA-PKcs by siRNA strategy could
alter c-Myc protein expression in this TCDD-treated L02
cells model. As shown in Fig. 1E, re-depressing DNA-PKcs
by transfecting DNA-PKcs specific siRNA vector into L02/
TCDD-H1 cells downregulated c-Myc protein, as com-
pared with the control L02/TCDD-NC cells which were
transected with the control non-specific siRNA vector. It
has been demonstrated previously that DNA-PKcs defi-
ciency causes down-regulation of ATM, another member
of the phosphatidylinositol 3-kinase-related kinase
(PIKK) family [37]. In order to investigate whether the
involvement of DNA-PK in regulating c-Myc expression
was due to further inhibition of ATM, we compared the c-
Myc protein levels in ATM-deficient AT5BIVA cells and in
normal HFC fibroblasts. As shown in Fig. 1F, there is no
difference on c-Myc protein level between AT5BIVA cells
and HFC cells. The involvement of DNA-PKcs in regulat-
ing c-Myc protein was further addressed with siRNA-
mediated suppression of DNA-PKcs in AT5BIVA cells.
Transient transfection of AT5BIVA cells with siRNA target-
ing DNA-PKcs resulted in a substantial decrease in DNA-
PKcs protein level (Fig. 1F). Moreover, this suppression of
DNA-PKcs was accompanied by a markedly decrease of c-
Myc protein level in ATM5IBV cells. Taken together, our
data illustrated the specific role of DNA-PKcs in regulating
cellular c-Myc protein level.

We then investigated whether the alteration of DNA-PKcs
expression affects cell proliferation. The clonogenic sur-
vival assay showed that siRNA-mediated depression of
DNA-PKcs strikingly sensitized HepG2-H1 cells to ioniz-
ing radiation (Fig. 2A). The killing effect of 2Gy irradia-
tion was ~12 times higher on HepG2-H1 cells than on
control HepG2-NC cells. Importantly, the growth curve
analysis demonstrated that silencing DNA-PKcs decreased
the proliferation activity of HepG2 cells (Fig. 2B) as well
as Hela cells (data not shown). It is well documented that
exposure to some chemical toxins at very low doses can
induce a stimulating effect (hormesis) on cell growth
[38,39]. We demonstrated here that sub-chronic exposure
to 0.01 - 0.1 pM of TCDD for 2 or 4 weeks drove human
liver cells LO2 to proliferate a great deal faster (Fig. 2C).
The colony formation assay also showed that the colony
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focus size of low dose TCDD-treated cells was larger than
that of control cells under the same culture conditions
(Fig. 2D). The plating efficiency of TCDD-treated cells was
also significantly increased as compared with control cells
(Fig. 2D), while more than 1 pM concentration of TCDD
exhibits a depression effect on cell proliferation (data not
shown). Moreover, re-depression of DNA-PKcs in TCDD-
treated LO2 cells by specific-siRNA molecules not only
downregulates c-Myc protein (Fig. 1E), but also re-modu-
lates the proliferation rate to control levels (Fig. 2E,F).

DNA-PKcs daffects ubiquitination and stability of c-Myc
protein

To investigate the stability of c-Myc protein, the half-life
time of c-Myc was analyzed by measuring c-Myc protein
level alteration after blocking protein synthesis with
cycloheximide (CHX). We have compared the c-Myc pro-
tein levels between DNA-PKcs-depressed cells and the
control cells at 0, 30, 45 and 60 min after CHX treatment.
In control HeLa-NC cells, c-Myc protein level decreased
only after CHX treatment for more than 60 min. In con-
trast, c-Myc protein level decreased about 50% at 30 min
after CHX treatment in DNA-PKcs silenced cells (HeLa-H1
and Hela-H3) (Fig. 3A &3B). We next detected c-Myc
ubiquitination, and found that silencing of DNA-PKcs in
HeLa-H1 cells promotes the ubiquitination of c-Myc pro-
tein (Fig. 3C). Treatment with LiCl, an inhibitor of GSK3
kinase, impedes c-Myc ubiquitination. This result makes it
likely that the downregulation of c-Myc protein by silenc-
ing DNA-PKGcs is associated with the augmentation of c-
Myc ubiquitination.

GSKS3 activity is necessary for the regulation of DNA-PKcs
on c-Myc protein stability

The proteasome inhibitor MG132 remarkably increases c-
Myc protein level in DNA-PKcs silenced HelLa-H1 cells
(Fig. 4A). Moreover, the GSK kinase inhibitor LiCl can
also recover c-Myc protein levels in HeLa-H1 cells (Fig.
4B). Phosphorylation of c-Myc on T58, which is catalyzed
by GSK3 B kinase, is necessary for activating the ubiquitin/
proteasome pathway to destroy c-Myc protein. Although
total c-Myc levels in HeLa-H1 cells is lower than that in
HeLa-NC cells, the base level of phosphorylated c-Myc
protein in Hela-H1 cells is higher than that in HeLa-NC
cells (Fig. 4C). The accumulated c-Myc protein in MG132-
treated HeLa-H1 cells exhibits a higher phosphorylation
level as compared to HeLa-NC cells. Inhibition of GSK3
activity by LiCl dramatically decreases the level of phos-
phorylated c-Myc protein, but increases the accumulation
of c-Myc protein in HeLa-H1 cells (Fig. 4C). In addition,
the level of c-Myc protein is increased by siRNA-mediated
depression of GSK3 a or B3 (Fig. 4D). These results demon-
strate that CSK3 plays an important role in c-Myc stabili-
zation modulated by DNA-PKcs.
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Effects of DNA-PKcs expression status on cell proliferation and radiosensitivity. (A) Survival curves of HepG2-H |
and HepG2-NC cells after y-ray irradiation. (B) Growth curves of HepG2-H| and HepG2-NC cells. (C) Growth curves of L02
cells measured after exposed to 0.1 pM TCDD for 2 weeks (L02-TCDD2W) or 4 weeks (L02-TCDD4W). (D) Focus colony
formation assay. After treatment with 0, 0.01, or 0.1 pM of TCDD for two weeks, 1000 LO2 cells were seeded into 60 mm
diameter Petri dishes and cultured in normal growth medium without TCDD for 10 days, then fixed with methanol and stained
with Giemsa solution. (E) Growth curves of L02/TCDD-HI and L02/TCDD-NC cells, which were generated from L02 cells
exposed to 0.1 pM TCDD for two weeks, then transfected with DNA-PKcs specific siRNA or nonspecific siRNA constructs,
respectively. Cells grew in normal growth medium without TCDD after primary two weeks of TCDD exposure. (F) Cell pro-
liferation activity as measured by MTT method. Student T — test: * P < 0.05; ** P < 0.01.
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Phosphorylation level of Akt and GSK3 proteins is
associated with DNA-PKcs expression status

We detected the phosphorylation level of Akt using the
antibody against phosphorylated Akt on Ser-473 in the
cell lines with different status of DNA-PKcs expression. It
is clear that the level of phosphorylated Akt in DNA-PKcs
silenced HeLa-H1 cells as well as DNA-PKc deficient
MO059]J cells is dramatically lower than that in the control
cells (Fig. 5A &5B). Consequently, the phosphorylation
level of GSK3 B, a substrate of activated Akt, is simultane-
ously decreased in the cells lacking DNA-PKcs. Con-
versely, the phosphorylation of Akt and GSK3 B in normal
liver LO2 cells is augmented, along with the increasing of
DNA-PKcs and c-Myc proteins, as the consequence of sub-

chronic exposure with a low dose of TCDD (Fig. 5C &5D).
We then investigated that whether re-depression of
TCDD-augmented DNA-PKcs expression in L02 cells
affects the phosphorylation of Akt. We found that trans-
fection with DNA-PKcs specific siRNA not only downreg-
ulated the TCDD-augmented DNA-PKcs and c-Myc
expression in LO2 cells, but also led to a decrease in the
phosphorylation of Akt and GSK3 f (Fig. 5E). Impor-
tantly, the increased proliferation activity by a low dose of
TCDD exposure was also reversed to the level of control
cells (Fig. 2E). These results indicated that Akt/GSK3 sign-
aling is involved in the pathway through which DNA-PKcs
modulates c-Myec stability.
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GSKS3 plays a role in the regulation of DNA-PKcs on c-Myc. (A) Proteasome inhibitor MG 132 recovered the downreg-
ulation of c-Myc in HelLa-H|1 cells. (B) GSK3 isoforms inhibitor LiCl rescued the downregulated c-Myc in Hela-H| cells. (C)
Phophorylation level of c-Myc (Thr58/Ser62) in HeLa-NC and Hela-H|1 cells, and the inhibiting effect of LiCl. (D) Depression
of GSK3 o (upper panel) or GSK3 3 (lower panel) by siRNA promotes c-Myc accumulation in HelLa-H| cells.

Discussion

C-Myc is intimately involved in cell proliferation [1,2],
carcinogenesis [3], tumor progression [40,41], angiogen-
esis [42] and metastasis [43]. Dysregulated accumulation
of c-Myc protein is often observed in a variety of human
cancers [4-9]. This abnormal accumulation of ¢-Myc in
human cancers can be attributed to multiple causes, for
instance, gene translocation and amplification
[2,4,40,41,43,44], gene mutations on hot spots, e.g.,
Thr58 which abolishes c-Myc phosphorylation and results
in decreased ubiquitination and proteasome-mediated
degradation of c-Myc [7,18,19], and dysregulation of the
mechanistic signaling pathway controlling c-Myc stability.
In the present study, we highlighted the overexpression of
DNA-PKcs and its role in controlling the stability of the
oncoprotein ¢-Myc. Our study demonstrates that DNA-

PKcs expression status in cells is closely associated with c-
Myc protein levels.

Recently, overexpression of DNA-PKcs was reported in
various human tumors [24-30,45]. For example, Hosoi et
al. have detected the expression of DNA-PK in tumor tis-
sues and adjacent normal tissues of 12 colorectal cancers,
and found that the activity and expression level of DNA-
PKcs were significantly higher in tumor tissues than in
normal tissues [24]. Um et al. have revealed increased pro-
tein level and activity of DNA-PKcs in the metastatic can-
cer cell lines as compared with their parental cells, and
suggested that the activities of DNA-PK as well as EGFR are
associated with the metastatic phenotype [45]. We have
assessed DNA-PKcs in 47 cases of liver neoplasm by
immunohistochemistry, and found a wide variation in
the expression levels of DNA-PKcs among different types
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DNA-PKcs controls phophsporylation of Akt and GSK3 3. (A) Phosphorylation of Akt and GSK3 [3 was depressed in
Hela cells transfected with a DNA-PKcs specific siRNA construct (HeLa-H|1). (B) Phosphorylation level of Akt and GSK3 3
was lower in DNA-PKcs deficient M059) cells than in DNA-PKcs efficient M0591K cells. (C) & (D) Subchronic exposure to low
dose TCDD for 2 weeks (C) or 4 weeks (D) upregulated the phosphorylation level of Akt and GSK3 3 along with increased
expression DNA-PKcs and c-Myc. (E) Depression of TCDD-increased DNA-PKcs by DNA-PKcs specific siRNA led to
decreased phosphorylation level of Akt and GSK3 3. L02/TCDD-H1 and L02/TCDD-NC cells were described in Fig. 2(D).

of liver neoplastic tissues. The highest expression was
detected in hepatocellular carcinoma, followed by
cholangioadeno carcinoma and biliary cystadeno-carci-
noma. Relatively weak expression was detected in papil-
lary adenoma cases, but clearly increased expression was
observed in cases of papillary adenoma with hyperplasia
or infiltration. However, very weak immunohistochemi-
cal staining was detected in the adjacent normal tissues
[29]. It is believed that a suitable base level of DNA-PKcs
in cells is necessary for maintaining the genomic stability
via its role in DNA repair. However, the biological signif-
icance of overexpressed DNA-PKcs in cancer cells, besides
its potential effect of increasing resistance of cancer cells
to radiotherapy or chemotherapy, has attracted our atten-
tion. Our results indicate that silencing DNA-PKcs of

HelLa cells causes not only an increased sensitivity to ion-
izing radiation (Fig. 2A), but also a decrease in prolifera-
tion (Fig. 2B). More interestingly, the increased
proliferation of normal human liver L02 cells induced by
sub-chronically exposing to low dose of carcinogen TCDD
is associated with the overexpression of DNA-PKcs
induced by TCDD (Fig. 2C,D). These results suggest that
overexpressed DNA-PKcs plays a role in promoting cell
proliferation and even has transforming potential. We
have previously reported that silencing DNA-PKcs alters
the expression of a set of genes functionally related to pro-
liferation and differentiation, some of which are c-Myc
target genes, e.g. p21, p27, NDRG1 [36]. Moreover,
siRNA-medicated silencing of DNA-PKcs results in down-
regulation of c-Myc protein in Hela cells [35]. Here we
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further demonstrated that c-Myc protein levels in malig-
nant glioma M059J cells lacking DNA-PKcs is much lower
than that in M059K cells expressing DNA-PKcs. In addi-
tion, overexpressing DNA-PKcs in normal liver L02 cells
by sub-chronic exposure to a low dose of TCDD simulta-
neously leads to an increased c-Myc level. This increased
c-Myc level was re-downregulated along with the depres-
sion of DNA-PKcs mediated by siRNA strategy. Therefore,
we offered evidence suggesting a novel biological role for
DNA-PKcs, which is potentially associated with cell prolif-
eration and transformation through controlling c-Myc
protein levels, beyond its well-defined function as a com-
ponent involved in DNA double-strand break repair and
V(D)] recombination.

Silencing of DNA-PKcs does not alter the level of c-Myc
mRNA in the cells [35]. Therefore, we suggest that DNA-
PKcs regulates cellular c-Myc protein levels possibly by
affecting the stabilization of c-Myc protein. Phosphoryla-
tion of c-Myc protein on Thr58 and Ser62 is essential for
the ubiquitin-proteasome pathway of c-Myc destruction.
Phosphorylation on Thr58 by GSK3 regulates the binding
of Fbw7 to c-Myc, triggering c-Myc ubiquitination and
destruction [15]. Our data show that silencing DNA-PKcs
leads to increased ubiquitination and decreased half-life
of c-Myc protein (Fig. 3). The phosphorylation of c-Myc
on Thr58 was also increased (Fig. 4C). These data suggest
that DNA-PKcs does regulate the stabilization of c-Myc
protein by affecting its phosphorylation on Thr58 and
ubiquitination.

DNA-PKcs was previously reported to phosphorylate Akt
on Ser473 [46], while Akt phosphorylates and inactivates
GSK3 B [47]. It is likely that DNA-PKcs regulates c-Myc
stability via phosphorylation of Akt, which in turn inacti-
vates GSK3 B, resulting in stabilization of c-Myc. There-
fore, we have further analyzed the possible link between
DNA-PKcs and GSK3 B/c-Myc by investigating the role of
Akt. Here we observed that silencing DNA-PKcs or DNA-
PKcs deficiency caused deceased phosphorylation of Akt
on Serd73 as well as GSK3 B (Fig. 5A&5B). Inhibition of
GSK3 B by its inhibitor LiCl or specific siRNA rescued the
downregulated c-Myc protein mediated by silencing
DNA-PKcs (Fig. 4B &4D). As indicated above, we have
established a cell model with an increased DNA-PKcs
expression by sub-chronically exposing normal liver LO2
cells with 0.1 pM low dose of carcinogen TCDD (Fig. 1C).
c-Myc protein level as well as phosphorylation of Akt and
GSK3 B is also increased in this cell model (Fig. 5C &5D).
Most importantly, re-silencing DNA-PKcs by siRNA strat-
egy resulted in downregulated c-Myc (Fig. 1D) as well as
decreased phosphorylation of Akt and GSK3 B (Fig. 5E) in
this cell model. Thus, it is conceivable that Akt and GSK3
f are involved in the mechanistic pathway by which DNA-
PKcs regulates c-Myc stability.

http://www.molecular-cancer.com/content/7/1/32

Conclusion

Given the facts that DNA-PKcs is a DNA damage sensing
protein in responding to environmental genotoxic or oxi-
dative stresses in cells and overexpression of DNA-PKcs
frequently occurs in human cancers, long-term exposure
of cells to genotoxins or oxidative stress, e.g. TCDD which
produces oxidative stress in cells [48], may lead to consti-
tutive overexpression of DNA-PKcs as the consequence of
persistently stressing reactions. We suggest that overex-
pressed DNA-PKcs is another critical cause contributing to
the stabilization of c-Myc oncoprotein via the Akt/GSK3 f3
pathway. Taken together, a suitable level of DNA-PKcs in
cells is necessary for maintaining genomic stability via its
DNA repair function, while dysregulated overexpression
of DNA-PKcs may contribute to cell proliferation and
even oncogenic transformation via stabilizing the c-Myc
oncoprotein. The environmental genotoxic or oxidative
stresses could be one of the causes destroying the balance
of DNA-PKcs expression.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

JA, DYY and QZX performed experiments and analyzed
data, and they contributed equally to this work. SMZ and
YYH performed the experiment of siRNA-mediated
depression of GSK3 f and its effect on c-Myc protein
expression. ZFS and YW constructed vectors and per-
formed gene transfection. DCW and PKZ designed the
experiments, analyzed data, and wrote the manuscript. All
authors read and approved the final version of the manu-
script.

Acknowledgements

This work was supported by the National Basic Research Program of China
(973 Program, grant No: 2007CB914603) and the Chinese National Natu-
ral Science Foundation (Grants No. 30371232, 30500267) and the Beijing
Natural Science Foundation (Grants No. 7072057).

References

I. Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/
Mad network and the transcriptional control of cell behav-
ior. Annu Rev Cell Dev Biol 2000, 16:653-699.

2. Park K, Kwak K, Kim J, Lim S, Han S: c-myc amplification is asso-
ciated with HER2 amplification and closely linked with cell
proliferation in tissue microarray of nonselected breast can-
cers. Hum Pathol 2005, 36:634-639.

3. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, MandI S,
Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q,
Bishop JM, Contag CH, Felsher DW: MYC inactivation uncovers
pluripotent differentiation and tumour dormancy in hepato-
cellular cancer. Nature 2004, 431:1112-1117.

4. Chrzan P, Skokowski ], Karmolinski A, Pawelczyk T: Amplification
of c-myc gene and overexpression of c-Myc protein in breast
cancer and adjacent non-neoplastic tissue. Clinical Biochemistry
2001, 34:557-562.

5. Naidu R, Wahab NA, Yadav M, Kutty MK: Protein expression and
molecular analysis of c-myc gene in primary breast carci-
noma using immunohistochemistry and differential
polymerase chain reaction. Int | Mol Med 2002, 9:189-196.

Page 10 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11031250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11031250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11031250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16021569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16021569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16021569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786932

Molecular Cancer 2008, 7:32

20.

21.

22.

23.

24.

25.

26.

27.

Nesbit CE, Tersak JM, Prochownik EV: MYC oncogenes and
human neoplastic disease. Oncogene 1999, 18:3004-3016.
Oster SK, Ho CS, Soucie EL, Penn LZ: The myc oncogene: Mar-
velously complex. Adv Cancer Res 2002, 84:81-154.

Paganano KB, Vassallo |, Lorand-Metze |, Costa FF, Saad ST: p53,
Mdm2, and c-Myc overexpression is associated with a poor
prognosis in aggressive non-Hodgkin's lymphomas. Am |
Hematol 2001, 67:84-92.

Tokumoto N, lkeda S, Ishizaki Y, Kurihara T, Ozaki S, Iseki M, Shimizu
Y, ltamoto T, Arihiro K, Okajima M, Asahara T: Immunohisto-
chemical and mutational analyses of Wnt signaling compo-
nents and target genes in intrahepatic cholangiocarcinomas.
Int | Oncol 2005, 27:973-980.

Salghetti SE, Kim SY, Tansey WP: Destruction of myc by ubiqui-
tin-mediated proteolysis: cancer-associated and transform-
ing mutations stabilize myc. The EMBO Journal 1999, 18:717-726.
Amati B: Myc degradation: Dancing with ubiquitin ligases. Proc
Natl Acad Sci USA 2004, 101:8843-8844.

Gregory MA, Hann SR: c-Myc proteolysis by the ubiquitin-pro-
teasome pathway: stabilization of c-Myc in Burkitt's lym-
phoma cells. Mol Cell Biol 2000, 20:2423-2435.

Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP: Skp2
regulates myc protein stability and activity. Molecular Cell
2003, 11:1177-1188.

Lehr N von der, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya
C, Hydbring P, Weidung |, Nakayama K, Nakayama KI, Soderberg O,
Kerppola TK, Larsson LG: The F-box protein Skp2 participates
in c-myc proteosomal degradation and acts as a cofactor for
c-myc-regulated transcription. Molecular  Cell 2003,
11:1189-1200.

Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clur-
man BE: The Fbw7 tumor suppressor regulates glycogen syn-
thase kinase 3 phosphorylation-dependent c-Myc protein
degradation. Proc Natl Acad Sci USA 2004, 101:9085-9090.

Flinn EM, Busch CM, Wright AP: myc boxes, which are conserved
in myc family proteins, are signals for protein degradation
via the proteasome. Mol Cell Biol 1998, 18:5961-5969.

Sears R, Nuckolls F, Haura F, Taya Y, Tamai K, Nevins JR: Multiple
Ras-dependent phosphorylation pathways regulate Myc pro-
tein stability. Gene Dev 2000, 14:2501-2514.

Gregory MA, Qi Y, Hann SR: Phosphorylation by glycogen syn-
thase kinase-3 controls c-myc proteolysis and subnuclear
location. | Biol Chem 2003, 278:51606-51612.

Bahram F, Lehr N von der, Cetinkaya C, Larsson LG: c-Myc hot spot
mutations in lymphomas result in inefficient ubiquitination
and decreased proteasome-mediated turnover. Blood 2000,
95:2104-2110.

Jackson SP: Sensing and repairing DNA double-strand breaks.
Carcinogenesis 2002, 23:687-696.

Park S, Oh EJ, Yoo MA, Lee SH: Involvement of DNA-dependent
protein kinase in regulation of stress-induced JNK activation.
DNA Cell Biol 2001, 20:637-645.

Bailey SM, Brenneman MA, Halbrook ], Nickoloff JA, Ullrich RL,
Goodwin EH: The kinase activity of DNA-PK is required to
protect mammalian telomeres. DNA Repair (Amst) 2004,
3:225-233.

Hande MP: DNA repair factors and telomere-chromosome
integrity in mammalian cells. Cytogenet Genome Res 2004,
104:116-122.

Hosoi Y, Tatanabe W, Nakagawa K, Matsumoto Y, Enomoto A,
Morita A, Nagawa H, Suzuki N: Up-regulation of DNA-depend-
ent protein kinase activity and Spl in colorectal cancer. Int|
Oncol 2004, 25:46-468.

Nguyen DC, Parsa B, Close A, Magnusson B, Crowe DL, Sinha UK:
Overexpression of cell cycle regulatory proteins correlates
with advanced tumor stage in head and neck squamous cell
carcinomas. Int | Oncol 2003, 22:285-1290.

Sakata K, Matsumoto Y, Satoh H, Oouchi A, Nagakura H, Koito K,
Hosoi Y, Hareyama M, Suzuki N: Clinical studies of immunohis-
tochemical staining of DNA-dependent protein kinase in
oropharyngeal and hypopharyngeal carcinomas. Radiat Med
2001, 19:93-97.

Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K,
Hamakawa H: Up-regulation of DNA-dependent protein
kinase correlates with radiation resistance in oral squamous
cell carcinoma. Cancer Sci 2003, 94:894-900.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

http://www.molecular-cancer.com/content/7/1/32

Stronati L, Gensabella G, Lamberti C, Barattini P, Frasca D, Tanzarella
C, Giacobini S, Toscano MG, Santacroce C, Danesi DT: Expression
and DNA binding activity of the Ku heterodimer in bladder
carcinoma. Cancer 2001, 92:2484-2492.

Yu ZJ, Sui JL, Ding YQ, Cao ZS, Zhou PK, Wu DC: Expression of
DNA-PK in hepato- and cholangio-neoplasms and its signifi-
cance. Zhonghua Gan Zang Bing Za Zhi 2004, 12(11):652-655.
Tonotsuka N, Hosoi Y, Miyazaki S, Miyata G, Sugawara K, Mori T,
Ouchi N, Satomi S, Matsumoto Y, Nakagawa K, Miyagawa K, Ono T:
Heterogeneous expression of DNA-dependent protein
kinase in esophageal cancer and normal epithelium. Int | Mol
Med 2006, 18:441-447.

Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW: DNA-PK, the
DNA-activated protein kinase, is differentially expressed in
normal and malignant human tissues.  Oncogene 1999,
18:3114-3126.

Oka A, Takashima S, Abe M, Araki R, Takeshita K: Expression of
DNA-dependent protein kinase catalytic subunit and Ku80 in
developing human brains: implication of DNA-repair in neu-
rogenesis. Neurosci Lett 2000, 292:167-170.

Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G,
Bredberg A: Expression of DNA-dependent protein kinase in
human granulocytes. Cell Res 2004, 14:331-340.

Holgersson A, Erdal H, Nilsson A, Lewensohn R, Kanter L: Expres-
sion of DNA-PKcs and Ku86, but not Ku70, differs between
lymphoid malignancies. Exp Mol Pathol 2004, 77:1-6.

An |, Xu QZ, Sui JL, Bai B, Zhou PK: Down-regulation of c-myc
protein by siRNA-mediated silencing of DNA-PKcs in HeLa
cells. Int | Cancer 2005, 117:531-537.

An J, Xu QZ, Sui JL, Bai B, Zhou PK: Silencing of DNA-PKcs alters
the transcriptional profile of certain signal transduction
genes related to proliferation and differentiation in HelLa
cells. Int | Mol Med 2005, 16:455-462.

Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bed-
ford JS: Deficiency in the catalytic subunit of DNA-dependent
protein kinase causes down-regulation of ATM. Cancer Res
2005, 65:1670-1677.

Fukushima S, Kinoshita A, Puatanachokchai R, Kushida M, Wanibuchi
H, Morimura K: Hormesis and dose-response-mediated mech-
anisms in carcinogenesis: evidence for a threshold in carcino-
genicity of non-genotoxic carcinogens. Carcinogenesis 2005,
26:1835-1845.

Calabrese EJ: Cancer biology and hormesis: human tumor cell
lines commonly display hormetic (biphasic) dose responses.
Crit Rev Toxicol 2005, 35:463-582.

Corzo C, Corominas JM, Tusquets |, Salido M, Bellet M, Fabregat X,
Serrano S, Sole F: The MYC oncogene in breast cancer pro-
gression: from benign epithelium to invasive carcinoma. Can-
cer Genet Cytogenet 2006, 165:151-156.

Dimova |, Raitcheva S, Dimitrov R, Doganov N, Toncheva D: Corre-
lations between c-myc gene copy-number and clinicopatho-
logical parameters of ovarian tumours. Eur | Cancer 2006,
42:674-679.

Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E,
Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A:
Augmentation of tumor angiogenesis by a Myc-activated
microRNA cluster. Nature Genet 2006, 38:1060-1065.

Burbano RR, Assumpcao PP, Leal MF, Calcagno DQ, Guimaraes AC,
Khayat AS, Takeno SS, Chen ES, De Arruda Cardoso Smith M: C-
MYC locus amplification as metastasis predictor in intesti-
nal-type gastric adenocarcinomas: CGH study in Brazil. Anti-
cancer Res 2006, 26:2909-29 14.

Chan KL, Guan XY, Ng |O: High-throughput tissue microarray
analysis of c-myc activation in chronic liver diseases and
hepatocellular carcinoma. Hum Pathol 2004, 35:1324-1331.

Um JH, Kwon JK, Kang CD, Kim M), Ju DS, Bae JH, Kim DW, Chung
BS, Kim SH: Relationship between antiapoptotic molecules
and metastatic potency and the involvement of DNA-
dependent protein kinase in the chemosensitization of met-
astatic human cancer cells by epidermal growth factor
receptor blockade. | Pharmacol Exp Ther 2004, 311:1062-1070.
Feng J, Park ], Cron P, Hess D, Hemmings BA: Identification of a
PKB/Akt hydrophobic motif Ser-473 kinase as DNA-depend-
ent protein kinase. | Biol Chem 2004, 279:41189-41196.
Yamaguchi K, Lee SH, Eling TE, Baek SJ: Identification of nonster-
oidal anti-inflammatory drug-activated gene (NAG-1) as a

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10378696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10378696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11885563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11885563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11343379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11343379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11343379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16142313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16142313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15187232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10713166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10713166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10713166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9742113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9742113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9742113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11018017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11018017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11018017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15162024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15162024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15254745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15254745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11383649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11383649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11383649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11745306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11745306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11745306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16865228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16865228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16865228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10340383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10340383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10340383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11018303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11018303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11018303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15353130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15353130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15929110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15929110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15929110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16077955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16077955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16077955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15975961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15975961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15975961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16422392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16422392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16527609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16527609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16878133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16878133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16878133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16886612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16886612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16886612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15668888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15668888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15668888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262962

Molecular Cancer 2008, 7:32

48.

novel downstream target of phosphatidylinositol 3-kinase/
AKT/GSK-3(3 pathway. | Biol Chem 2004, 279:49617-49623.
Slezak BP, Hatch GE, DeVito M, Diliberto JJ, Slade R, Crissman K,
Hassoun E, Birnbaum LS: Oxidative stress in female B6C3FI
mice following acute and subchronic exposure to 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD). Toxicol Sci 2000,
54:390-398.

http://www.molecular-cancer.com/content/7/1/32

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10774821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10774821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10774821
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Materials and methods
	Cell culture and siRNA transfection
	Antibodies
	2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment
	Cell growth and radiosensitive analyses
	Immunoblotting analysis and coimmunoprecipitation (CoIP)
	Determination of c-Myc protein stability

	Results
	DNA-PKcs modulates c-Myc protein expression and cell proliferation
	DNA-PKcs affects ubiquitination and stability of c-Myc protein
	GSK3 activity is necessary for the regulation of DNA-PKcs on c-Myc protein stability
	Phosphorylation level of Akt and GSK3 proteins is associated with DNA-PKcs expression status

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

