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Abstract

Background: Mutation of a tumor suppressor allele leaves the second as backup. Not necessarily
so with p53. This homo-tetrameric transcription factor can become contaminated with mutant p53
through hetero-tetramerization. In addition, it can be out-competed by the binding to p53 DNA
recognition motifs of transactivation-incompetent isoforms (AN and ATA-isoforms) of the p53/
p63/p73 family of proteins. Countermeasures against such dominant-negative or dominant-
inhibitory action might include the evolutionary gain of novel, transactivation-independent tumor
suppressor functions by the wild-type monomer.

Results: Here we have studied, mostly in human HCT116 colon adenocarcinoma cells with an
intact p53 pathway, the effects of dominant-inhibitory p53 mutants and of Aex2/3p73, a tumor-
associated ATA-competitor of wild-type p53, on the nuclear transactivation-dependent and extra-
nuclear transactivation-independent functions of wild-type p53. We report that mutant p53 and
Aex2/3p73, expressed from a single gene copy per cell, interfere with the stress-induced
expression of p53-responsive genes but leave the extra-nuclear apoptosis by mitochondrial p53
largely unaffected, although both wild-type and mutant p53 associate with the mitochondria. In
accord with these observations, we present evidence that in contrast to nuclear p53 the vast
majority of mitochondrial p53, be it wild-type or mutant, is consisting of monomeric protein.

Conclusion: The extra-nuclear p53-dependent apoptosis may constitute a fail-safe mechanism
against dominant inhibition.

Background

Lesions that can contribute to cell transformation nor-
mally activate the homo-tetrameric transcription factor
p53, primarily to stimulate genes whose products cause
senescence or apoptosis [1]. In addition, p53 can provoke
apoptosis directly through its interaction with key factors
of the apoptotic machinery at the mitochondria and in the

cytoplasm [2,3]. As a result, ideally the transformation
process is ceased. Among the p53 target genes that can
suppress cell proliferation, one of the most important is
p21Waf/Cipl (CDKN1A), whereas PUMA (p53 up-regu-
lated modulator of apoptosis) constitutes a prime candi-
date for a p53-responsive master gene of transcription-
dependent apoptosis, at least in some tissues [4,5]. In con-
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trast, transcription-independent apoptosis by p53, which
might have evolved to ascertain faithful tumor suppres-
sion in the face of lesions that temporarily compromise
transactivation [6], involves binding of p53 to Bcl-2 fam-
ily proteins outside the nucleus. Remarkably, both the
transactivation of genes and the interaction with apopto-
sis regulators are mediated through, and rely upon, the
integrity of p53's core DNA binding domain [7,8]. Tumor-
derived mutant p53 proteins are thus usually bi-dysfunc-
tional as they are predominantly mutated within this
domain.

Stresses such as DNA-damage, oncogene expression,
hypoxia, and reactive oxygen can trigger the translocation
of approximately 2% of p53 to mitochondria [9] in many
primary and some transformed cell types [6,9-12]. Nota-
bly, this seems to occur fast and precede transcriptional
effects in certain tissues [7,9,10,13,14]. Mitochondrial
p53 is primarily present at the outer mitochondrial mem-
brane where it may form, without the help of further fac-
tors, a permeabilizing, death-inducing complex [7,12].
Alternatively, it may form complexes with the anti-apop-
totic Bcl-2 and BclXL proteins [7,8]. The affinities of these
proteins for p53 are higher than for the pro-apoptotic
BH123 proteins Bax and Bak; consequently, the latter are
freed, form oligomers, and kill the cell. A further pathway
may allow pro-apoptotic Bak to be released from the anti-
apoptotic Mcl-1 or BclXL proteins upon their association
with a distinct site of the p53 DNA binding domain, and
then form oligomers and kill the cell [12]. In addition to
its mitochondrial action, p53 may bind to cytosolic BcIXL
and liberate Bax, and may then activate cytosolic mono-
meric Bax to form lethal oligomers by a mechanisms
involving transient interaction of Bax with p53's polypro-
line-rich domain [15]. Finally, p53 may act through a
combined protein interaction and transactivation mecha-
nism: The product of the p53 target gene PUMA resolves
an inactive cytosolic p53/BcIXL complex by binding to a
distinct site on BcIXL and allows the activation of Bax by
free p53 [16]. Which arm of the complex death program
is primarily active almost certainly is cell type and context-
dependent.

Mutant p53 is present at the mitochondria regardless of
apoptotic stimulus [7], suggesting that in contrast to wild-
type (wt) p53, a translocation mechanism is active for the
mutant proteins regardless of stress, or that the presence
of mutant p53 in and by itself constitutes a death stimu-
lus, as is the case with many other oncoproteins. Apart
from exhibiting a wt p53-independent oncogenic 'gain-of-
function', which at least in part seems to be mediated
through inactivating interaction with other pro-apoptotic
members of the p53 family (reviewed in [17]), studies of
Li-Fraumeni individuals with an inherited mutated allele
and of knock-in mice have clearly indicated that mutant
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proteins can act dominant-inhibitory, either through het-
ero-oligomerization with wt p53 expressed from the sec-
ond allele or through the sequestration of limiting factors
[18,19]. Clearly, these interactions can compromise the
transcriptional activity of wt p53.

Another potent mechanism of dominant inhibition
seems to employ target gene promoter occupation by
transactivation-incompetent (AN and ATA-) members of
the p53 family. Interestingly, inhibition of transactivation
by AN-p73 occupying p53 recognition motifs appears to
play an important physiological role in the protection of
developing sympathetic neurons from p53- and p63-pro-
voked apoptosis (reviewed in [20]), whereas a similar
mechanism based on aberrantly spliced p73 giving rise to
the Aex2/3p73 isoform, can be active in human tumors
(for instance, [21]). Here we began to examine to what
extent dominant inhibition by the described mechanisms
would affect the extra-nuclear apoptotic functions of p53.

Results

The following studies were performed primarily in human
HCT116 colon adenocarcinoma cells. HCT116 is a poorly
differentiated, growth factor-insensitive cell line exhibit-
ing microsatellite instability (MIN) caused by deficiency
for the essential hMLH1 mismatch repair factor. Many
forms of stress except aberrant oncogene expression can
stabilize and activate the wt p53 tumor suppressor present
in these cells and elicit the expected responses, including
apoptosis and cell cycle arrest [22-24]. 5-fluorouracil
(5FU), the mainstay chemotherapeutic for colon cancer,
induces apoptosis in a p53-dependent manner in
HCT116 cells, primarily through the interference of
FAUMP with RNA metabolism [23]. a-amanitin, which
causes a global transcription inhibition through the initi-
ation of RNA polymerase II degradation, can also provoke
HCT116 cell apoptosis. This transactivation-independent
cell death was shown to rely on p53 acting at the mito-
chondria [6].

When exponentially proliferating HCT116 cultures were
treated with a-amanitin (10 uM) and analyzed by flow
cytometry, the number of cells with a sub-2n DNA con-
tent indicative of apoptosis increased with time (see Addi-
tional file 1A). However, this increase was not as marked
as the one observed by others with the same cell type [6].
In contrast, 5FU (375 uM) induced a robust apoptosis
under similar conditions. In agreement with previous
reports [6,23,25], both agents provoked apoptosis in
dependence of p53 as HCT116 p53-/- cells failed to
respond in this manner (see Additional file 1A). Robust
cell death also ensued when HCT116 cultures were simul-
taneously treated with 5FU and a-amanitin. As expected,
inclusion of a-amanitin in the drug cocktail blocked the
strong stimulation by p53 of the p21Waf/Cip1 gene that
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was normally observed in the presence of 5FU at both the
transcript and protein levels (see Additional file 1B). Thus,
in accord with earlier findings [6], this shows that 5FU
plus a-amanitin can trigger a p53-mediated cell death in
HCT116 cultures in the absence of Pol II-mediated tran-
scriptional transactivation. This cell death was apoptotic
as it was accompanied by cytochrome c release from the
mitochondrial intermembrane space and by caspase 3
activation (see Additional file 1C).

Apoptosis by 5FU, a-amanitin, or both combined (FA
hereafter) was preceded by an increased appearance of
p53 in the mitochondrial fraction prepared by biochemi-
cal cell fractionation (see Additional file 2A). Remarkably
and in agreement with previous reports [7,9], HCT116
p53-/- cells retrovirally infected to express p53 conforma-
tional mutant 175H or DNA contact mutant 273H, had
mutant p53 in their mitochondrial fraction regardless of
stress (see Additional file 2B). To confirm the presence of
mutant p53 at the mitochondria, immune electron micro-
scopy was performed on the cell lines in the absence of
stress, and the number of gold grains at the mitochondria
was counted in a blinded study. Additional file 2C shows
that the number of mitochondria-associated grains was
significantly higher in the cell lines that express p53 when
compared to the vector-only cell line (Chi-square test: P <
0.001 for 273H and P < 0.04 for 175H). As neither mutant
can interact with the Bcl-2 family of proteins [7,8] or
transactivate genes [18], no enhanced apoptosis was
apparent in these cell lines (data not shown).

To study the effects of mutant p53 on the extra-nuclear,
mitochondrial functions of wt p53, parental HCT116 cells
(expressing wt p53) were infected, in a first set of experi-
ments and at a multiplicity of infection of <1 colony form-
ing unit per cell, with retroviral vectors expressing either
no transgene, or mutants 175H or 273H with a C-termi-
nal 26 amino acid residue truncation (175AC and
273AC). These truncated proteins were employed to be
able to distinguish exogenous and endogenous p53 in
Western immunoblots (Figure 1A), and to impair the pro-
teins for potentially confounding gain-of-function activi-
ties associated with the C-terminus (e.g. [26,27]). All p53
proteins (endogenous and exogenous) had arginine at
amino acid position 72, the major allele among Cauca-
sians and the p53 isoform that is most efficiently translo-
cated to mitochondria [11]. On average the mutant p53
proteins expressed from a single gene copy per cell were
produced at 1.5 to 2-fold higher levels than the wild-type
in these bulk-infected cultures, and the presence of the
mutant protein affected the levels of wt p53 only slightly
(Figure 1A). Wt p53 and the truncated mutants were pre-
dominantly present in the nuclear fraction (not shown).
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Like the full-length mutants, 175AC and 273AC were
present in the mitochondrial fraction of unstressed cells
(Figure 1B; compare with Additional file 2B). In contrast,
wt p53 translocated to the mitochondria in these mutant
p53-transduced cells only after 5FU treatment (Figure 1B).
175AC and 273AC, like the full-length mutants but unlike
mutant proteins with a deletion in the oligomerization
domain, were competent for homo-oligomerization, as
indicated by chemical crosslinking with Bis-maleimido-
hexane (BMH) that crosslinks sulthydryl groups, and with
glutaraldehyde (GLD) that crosslinks amino groups (Fig-
ure 1C). Interestingly, 175H and 175AC consistently
showed a weaker propensity to homo-oligomerize in this
cell type than 273H or 273AC, a tendency observed with
both BMH and GLD crosslinkings (Figure 1C). This
became also apparent in an assay of hetero-oligomeriza-
tion when the mutants were employed to co-immunopre-
cipitate, with p53 antibody DO-1, a full-length p53
carrying a mutated DO-1 epitope (Figure 1D). Thus, 273H
and 273AC seem to form stable oligomers more readily
than 175H and 175AC in HCT116 cells. Combined, these
data indicate that the presence of the mutants 175AC and
273AC at approximately two-fold increased levels com-
pared to wild-type, does not interfere with the 5FU-
induced mitochondrial translocation of wt p53.

We next asked whether the mutants, at the given average
levels of expression (see Figure 1A), can act dominant-
inhibitory on transactivation upon 5FU treatment.
Mutant 273AC was able to weaken the 5FU-induced stim-
ulation by wt p53 of the p21Waf/Cipl gene (Figure 2A).
Bax, Bak, and gapdh were neither transactivated by p53 nor
measurably affected by mutant p53. In accord with its
incompetence for oligomerization (see above), mutant
175AC failed to act dominant-inhibitory in this assay
(Figure 2A), suggesting that hetero-oligomerization rather
than competition for limiting factors was the primary
mechanism of dominant inhibition by 273AC. The dis-
crepancy in dominance between 273AC and 175AC in
HCT116 cells was conserved in transient transfections:
273AC inhibited endogenous p21Waf/Cipl protein
expression while 175AC did not (Figure 2B).

To confirm the inhibitory effect of 273AC on the induced
expression of p21Waf/Cip1, chromatin immunoprecipita-
tion (ChIP) was performed. Consistent with an inefficient
promoter occupation by the hetero-oligomers, the pro-
moter sequence of p21Waf/Cipl was less frequently pre-
cipitated with an anti-p53 antibody from cultures
expressing 273AC than from cultures harbouring vector
only. Again, no differences were observed between the
175AC and control cells (Figure 2C).

We next asked whether the observed effects of mutant

273AC on transactivation might translate into a pheno-
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Expression, mitochondrial localization, and oligomerization of mutant p53 proteins. (A) HCT 116 cells producing endogenous
wt p53 were infected with retroviruses to express, from single gene copies per cell, either empty vector or C-terminally trun-
cated 175H and 273H mutants (175AC, 273AC). p53 was detected with antibody DO-1 (1:2000) applied to |5 pg of total cell
extract. The diagram shows the intensities of the signals produced by wt p53 and the truncated proteins, determined by densi-
tometry and with the signal from wt p53 in vector-infected control cells arbitrarily set as one. (B) Western immunoblot anal-
ysis with anti-p53 antibody DO-I (1:2000) on total and mitochondrial protein prepared at 24 h after the treatment of the three
cell lines with 5FU (375 uM) or not. (C) Detection of mutant p53 oligomers in HCT | 16 p53-/- cells designed to express, again
from single gene copies, one of the indicated mutants. The AO-mutants carry a deletion in the oligomerization domain. Expo-
nentially growing cells were subjected to crosslinking by either bis-maleimidohexane (BMH) or glutaraldehyde (GLD), as spec-
ified in Materials and methods. Oligomers were detected by anti-p53 antibody DO-1 (1:2000) in 15 pg total protein samples
that were run on standard SDS-PAGE. (D) Hetero-oligomerization between mutant p53 and a full-length p53 with mutated
DO-I epitope (asterisk). HCT 116 p53-/- cells were transiently transfected with expression plasmids producing either con-
struct | (p53-22,23) plus no protein (empty vector), construct | plus construct 2 (mutants 273H or 175H, with truncated C-
terminus), or construct | plus construct 3 (mutants 273H or 175H, with deleted oligomerization domain). The deletion
mutants were immunoprecipitated with antibody DO-1, and could co-immunoprecipitate p53-22,23 only through hetero-oli-
gomerization. p53 was detected in immunoblots with the polyclonal anti-p53 antibody CM-1 (1:500).
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Figure 2

Dominant inhibition of wt p53 by the mutants |75AC and 273AC. (A) RT-PCR on the three HCT 116 cell lines infected to
express empty vector, | 75AC, or 273AC, after mock-treatment (-) or treatment with 375 mM 5FU (+) for 24 h. The expres-
sion levels of the p2IWafiCip I, bak, and bax genes, and of the gapdh control gene, are documented. (B) HCT 116 p53-/- cells
were transiently transfected to express empty vector or wt p53 in combination with one of the indicated mutants. The West-
ern blots on |5 g of total protein extract prepared at 24 h after transfection were incubated with anti-p53 antibody DO-|
(1:2000) or anti-p2| antibody (1:1000). (C) Chromatin immunoprecipitation (ChIP) assay on the three indicated cell lines.
Depicted are the relative quantities of p2/ promoter DNA precipitable with anti-p53 antibody DO-1 at 24 h after treatment
with 375 pM 5FU vs. mock treatment. INPUT shows that the total quantities of p2/ promoter DNA in the cell samples were
similar. (D) Colony formation assay on HCT 16 cells infected with empty vector or vector expressing |75AC or 273AC. One
thousand live cells were seeded onto 10 cm dishes and were mock-treated or received between 10 uM and 0.5 uM etoposide.
After 10 days in culture, colonies were fixed and stained with crystal violet, as described in Materials and methods.
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type. The seeding of 1,000 live cells of the respective cell
lines onto 10 cm dishes and the maintenance of these cul-
tures under stress-free conditions resulted in approxi-
mately equal numbers of colonies. However, when the
cells were exposed to different sub-lethal concentrations
of the DNA-damaging drug etoposide, only cells that
expressed mutant p53 were able to grow colonies at a
threshold concentration of the drug, and again, 175AC
proved less dominant than 273AC in this assay (Figure
2D). Etoposide was chosen as the stressor because it
induces primarily cell cycle arrest whereas 5FU induces
primarily apoptosis in HCT116 cells [23,28]. Altogether,
the data suggest that p53 mutant 273AC expressed from a
single gene copy and produced, on average, at approxi-
mately 1.5-times the level of endogenous wt p53, can act
dominant-inhibitory on transactivation and the suppres-
sion of colony formation by wt p53 in stressed HCT116
cells. 175AC may be impaired in these assays owing to its
lower propensity to oligomerize.

Like with the parental HCT116 cells (see Additional file
2A), treatment of the cell lines HCT116-LRNL (vector-
only control), HCT116-175AC, and HCT116-273AC with
a-amanitin, 5FU, or both, resulted in the accumulation of
endogenous wt p53 in the mitochondrial fraction (Figure
3A). In a next set of experiments, we quantified the apop-
tosis experienced by the three cell lines by two different
means. Cell death provoked by a-amanitin, 5FU, or FA
within 12 or 24 h (early apoptosis) was measured flow-
cytometrically by the binding of PE-conjugated Annexin V
to phosphatidyl-serine on non-fixed cells; necrotic cells
were excluded by counterstaining with propidium iodide.
Subsequently, DNA fragmentation as an indicator of late
apoptosis was quantified by determining the numbers of
cells with a sub-2n DNA content in cultures with 48 h of
drug exposure. The results are summarized in Figure 3B.
Neither drug was able to induce significant apoptosis
within 12 h. However, by 24 h and 48 h apoptosis was
present in the drug-treated cultures, and a concomitant
increase of the cytoplasmic cytochrome c levels was
observed in all three cell lines (Figure 3C). Importantly,
neither in the cultures that were seeing 5FU alone (p53 at
mitochondria, transcription intact) nor in the cultures
with a-amanitin (p53 at mitochondria, transcription
blocked) was a dominant-inhibitory effect of mutant p53
detectable. This pointed to the possibility that, in contrast
to the transactivation of p21 (see Figure 2A), the mito-
chondrial apoptotic function of p53 is resistant to domi-
nant inhibition.

To further study whether dominant inhibition might
spare the extra-nuclear apoptosis by p53, we resorted to
the artificial p53DD mini-protein consisting of the oli-
gomerization domain and a small fragment from the N-
terminus (aa 1-14 and 302-390) of mouse p53 [29].
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p53DD has been shown to act strongly dominant-inhibi-
tory in cells of mouse and human origin (for instance,
[30-32]). We generated HCT116 cells that contain a single
copy of the p53DD gene by retroviral bulk infection and
tested them for dominant inhibition and apoptosis. Fig-
ure 4A shows that p53DD is expressed and can induce sta-
bilization of the endogenous wt p53. Figure 4B
documents that the stress-induced transactivation of p21
is compromised in the HCT116-p53DD cells, in accord
with dominant inhibition and with results reported previ-
ously [30-32]. Notably, p53DD like 273H failed to inhibit
transactivation-independent apoptosis in these cells (Fig-
ure 4C), lending further credence to the suggestion that
the mitochondrial apoptotic function of p53 is resistant to
dominant inhibition in HCT116 cells.

One explanation for the impairment of mutant p53 to
interfere with wt p53 at the mitochondria might have
been that the mutant cannot efficiently contaminate
mitochondrial p53 oligomers through hetero-oligomeri-
zation, for instance because the mechanism that translo-
cates wt p53 to mitochondria upon stress is selective for
wt tetramers. Notably, we were unable to co-immunopre-
cipitate mutant and wt p53 from the mitochondrial frac-
tion. We therefore decided to examine the state of p53
oligomerization in this fraction. Consistent with previous
findings [33], the presence of Bax oligomers after apop-
totic stimulus was readily detectable in total cell protein
sample and the mitochondrial fraction by chemical
crosslinking with BMH and subsequent immunoblot
analysis, documenting that this procedure can detect oli-
gomers in the mitochondrial fraction (Figure 5A). Simi-
larly, p53 oligomers were detected in the total cell protein
sample of HCT116 cells expressing either wt p53, 273H,
or 175H. In contrast, no or only very few p53 oligomers
were found in the mitochondrial fractions of either cell
type under identical conditions (Figure 5B). High molec-
ular weight bands indicative of p53 being trapped in meg-
acomplexes were only observed in total cell extracts but
not mitochondrial fractions (see Additional file 4), sug-
gesting that a substantial p53 loss through this mecha-
nism is unlikely.

BMH crosslinks sulfhydryl groups while glutaraldehyde
(GLD) crosslinks amino groups. To confirm the absence
of detectable p53 oligomers in the mitochondrial fraction,
a similar study was performed with GLD. As shown in Fig-
ure 5B, GLD was able to crosslink p53 in total cell protein
samples but not in the mitochondrial fraction. To test
whether this was limited to HCT116 cells, we next
employed human MCF7 breast adenocarcinoma cells
with an intact wt p53 pathway. 5FU induced mitochon-
drial translocation of p53 in MCF7 cells (Figure 5C). As in
HCT116 cells, the mitochondrial fraction of MCF7 cells
was devoid of oligomeric p53 upon BMH of GLD
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Figure 3

Mitochondrial localization of p53 and apoptosis in HCT | 16 cells infected to express mutant p53. (A) Western blots on 15 pg
of total cellular protein (t) or mitochondrial protein (mt) prepared from the indicated cell lines at 24 h after mock-treatment
or exposure to oi-amanitin (10 uM; A), 5FU (375 uM; F), or both combined (FA). p53 was detected with anti-p53 antibody
DO-1 at a dilution of 1:2000. p53-AC: one of the indicated AC-forms of mutant p53. (B) Percentage of apoptosis measured by
flow cytometry in cultures of the indicated cell lines. The cells were either mock-treated or drug-treated as specified under.
Apoptosis at the 12 and 24 h time points (early apoptosis) was determined by measurement of Annexin V binding as detailed in
Materials and methods. The apoptosis at 48 h (late apoptosis) was determined by measurement of the cells with a sub-2n DNA
content. (C) Western blot on cytoplasm prepared from cultures of the indicated cell lines at 48 h after mock- or drug-treat-
ment. Cytoplasmic accumulation of cytochrome c (cyto c) as a hallmark of apoptosis became apparent after staining of the blot
with anti-cytochrome c antibody at a dilution of 1:1000. Vector: HCT 16 cells infected with vector-only. 175AC: HCT 116 cells
infected with retroviral vector expressing mutant |75H with a deleted C-terminus. 273AC: HCT | 16 cells infected with retro-
viral vector expressing mutant 273H with a deleted C-terminus.
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Figure 4

Dominant inhibitory effect of p53DD on transcription but not mitochondrial apoptosis. (A) Western immunoblot on 30 ug of
total protein extract from HCT 1 16 cells expressing vector-only or p53DD, documenting the expression levels of endogenous
wt p53 and p53DD. p53DD was detected with antibody PAb421 (1:200); loading control B-actin was detected with anti-B-actin
antibody diluted at 1:5000. (B) RT-PCR on total RNA prepared from the indicated cell lines at 24 h after mock-treatment or
treatment with 375 uM 5FU. The primers were specific for the p53-regulated p2/ transcript and for the gapdh transcript as a
control. (C) Percentage of apoptosis in the indicated cell lines and at 48 h after mock-treatment or exposure to o.-amanitin (10
uM; A), 5FU (375 uM; F), or both combined (FA). Apoptosis was measured by determining the numbers of cells with a sub-2n
DNA content after Pl staining, as described in Materials and methods.
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Figure 5

p53 monomers and oligomers in the cell and at the mitochondria. (A) HCT 1 16 cells treated with the apoptosis-inducing drug
5FU (375 puM) for 24 h show more oligomers of the apoptotic BH 123 protein Bax in the mitochondrial fraction. These were
detected in a standard SDS-PAGE after chemical crosslinking with BMH and subsequent immunoblotting with anti-Bax antibody
sc-493 at 1:500 dilution (See Materials and methods for details). Total: total cell extract; mito: mitochondrial fraction. Oligo:
oligomers; mono: monomers. (B) Analogous study of p53 oligomerization in the indicated cell lines and after treatment with
5FU. BMH: bis-maleimidohexane; GLD: glutaraldehyde. Again, oligomers were detected in a standard SDS-PAGE; the anti-p53
antibody was DO-1 (1:2000). wt p53: HCT 1 16 cells infected with vector-only. 273H, 175H: HCT 116 p53-/- cells infected with
a retroviral vector producing either mutant 273H or 175H. (C) Wt p53 in MCF-7 cells translocates to the mitochondria upon
treatment with a-amanitin (10 uM; A), 5FU (375 uM; F), or both combined (FA). Cultures were mock-treated or treated as
indicated for 24 h, and were then fractionated as described in Materials and methods. 15 pg of total protein (t) or mitochon-
drial protein (mt) were subjected to Western immunoblot analysis with either anti-p53 antibody DO-1 (1:2000) or anti-cyto-
chrome oxidase IV (OX IV) antibody (1:1000). (D) In analogy to (a) and (b), MCF-7 cells were treated with 5FU for 24 h, and
p53 oligomerization in the cells and in the mitochondrial fraction was monitored by standard SDS-PAGE and immunoblotting
after BMH or GLD crosslinking. p53 was detected with antibody DO-1 (1:2000). (E) Mutant p53DD does not translocate to
the mitochondria. In HCT 1 16 cells retrovirally infected to express p53DD, endogenous wt p53 is stabilized and mitochondria-
associated upon 5FU treatment whereas p53DD is not.
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crosslinking while oligomers were readily detectable in
the total cell protein sample (Figure 5D). Combined,
these data suggest that the majority of mitochondrial p53,
be it wild-type or mutant, is monomeric. We cannot
exclude that mitochondrial p53 consists of unstable oli-
gomers, or that a small fraction of p53 is present at the
mitochondria as tetramers and is trapped in megacom-
plexes after crosslinking. In support of the conclusion that
mitochondrial p53 is mostly monomeric, p53DD capable
of forming immuno-precipitable hetero-oligomers with
wt p53 in HCT116-p53DD cells, was not detectable at the
mitochondria whereas wt p53 was (Figure 5E).

For the reasons detailed above, we had employed C-termi-
nally truncated versions of mutant p53 and shown that
these, although capable of dominance towards wt p53-
mediated transactivation of genes, failed to interfere with
the transcription-independent apoptosis by p53 at the
mitchondria. To study the effects of full-length mutants,
expression plasmids producing HA-tagged full-length
175H, 273H and also 248W as another common tumor-
associated conformational mutant were generated. All
mutants were expressed to approximately equal levels
upon transfection into HCT116 p53-/- cells (see Addi-
tional file 3A). In a first study we determined the ratio of
mutant vs. wt p53 expression plasmids that knocked
down the transactivation by wt p53 of the endogenous
p21 gene (see Additional file 3B). All mutants including
175H were able to efficiently block p21 activation, indi-
cating that 175H, unlike its truncated variant 175AC, was
exerting dominance efficiently. This ratio of vector/wt p53
or mutant/wt p53 plasmid was then used to transfect cul-
tures and determine the levels of transcription-independ-
ent apoptosis by p53. The results are summarized in
Additional file 3C. p53-negative cultures receiving vector-
only produced background levels of apoptosis (6-8%).
Cultures transfected with mutant p53 plasmids alone
showed apoptosis at or even below background (not
shown). In contrast, wt p53 expression alone entailed sig-
nificant cell death (23%). Notably, over-expression of
mutant p53 to levels sufficient to inhibit p21 transactiva-
tion nonetheless allowed significant transcription-inde-
pendent apoptosis to occur (14-16%). The reduction of
apoptosis in cells receiving mutant p53 plasmid in addi-
tion to wt p53 plasmid may reflect anti-apoptotic func-
tion(s) of over-produced mutant p53. Combined, we
interpret these results to support that the transcription-
independent mitochondrial apoptosis by p53 in HCT116
cells is relatively resistant to dominant inhibition by
mutant p53.

Dominant inhibition through hetero-tetramerization
does not seem to be very efficient, compared with domi-
nant inhibition through target gene promoter occupation
by protein isoforms of the p53 family that lack the trans-
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activation domain [34,35]. For instance, the ATA-p73 iso-
forms are among the known strong transcriptional
competitors of p53, both in the tumor and normal tissue
developmental setting. To test whether tumor-associated
Aex2/3p73 [21] can compromise mitochondrial p53-
mediated apoptosis, HCT116 cells were retrovirally trans-
duced to express this isoform (Figure 6A). Notably,
although the dominant inhibition of the p53-dependent
stimulation of p21 transcription by Aex2/3p73 was even
stronger than the one produced by p53DD (Figure 6B),
there was no inhibition of transcription-independent
apoptosis (Figure 6C). In summary, our data thus suggest
that the extra-nuclear apoptotic functions of p53 at the
mitochondria are relatively resistant against dominant
inhibition through hetero-tetramerization and promoter
occupation.

Discussion

p53 binds to its DNA recognition motif as a tetramer;
monomers can not function as a transcription factor [36].
Multimeric transcription factors, in contrast to mono-
meric, can be subject to dominant inhibition not only
through i) the sequestration of limiting factors by an over-
produced mutant, or ii) promoter-occupation by a trans-
activation-defective isoform, but also through iii)
contamination of the multimer by mutated monomers.
Although the latter two mechanisms have been docu-
mented to be active against p53 in vitro and in vivo
(reviewed in [18,37,38], some major conflicting observa-
tions have for some time challenged the concept of dom-
inant-negative action against p53. Doubtlessly, the
observation that of the 159 annotated human tumors
which had been studied for loss-of-heterozygosity by mid-
2007, and which each expressed one out of 90 distinct
mutated p53 alleles, approximately 60% have lost the
wild-type allele (Olivier and Hainaut in [39]), makes a
case against the global importance of dominance. Simi-
larly negative was the observation that approximately
50% of the tumors that develop in Li-Fraumeni patients
with one inherited mutated full-length p53, have lost
their wild-type allele [40,41]. On the other hand, there are
several important observations in strong favour of domi-
nance. For example, while only 50% of the Li-Fraumeni
tumors with a mutated full-length p53 are wt p53-defi-
cient, this is true for almost 100% of the Li-Fraumeni
tumors with an inherited p53 allele mutated to produce
no protein [40,41].

Strong support for dominant inhibition comes also from
studies on transgenic mice, although in this system dom-
inance can be somewhat more difficult to assess, mostly
for two reasons. First, the two p53 mutations introduced
into the mouse germ line by knock-in in two central stud-
ies [42,43], 172H and 270H (corresponding to human
175H and 273H, respectively), display additional, wt p53-
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Dominant inhibitory effect of Aex2/3p73 on transcription but not mitochondrial apoptosis. (A) Western immunoblot on 30 pg
of total protein extract from HCT 116 cells expressing vector-only or Aex2/3p73, documenting the expression of Aex2/3p73.
p73 was detected with monoclonal antibody cocktail p73Ab-4 (1:200). (B) RT-PCR on total RNA prepared from the indicated
cell lines at 24 h after mock-treatment or treatment with 375 uM 5FU. The primers were specific for the p53-regulated p2 1/
transcript and for the gapdh transcript as a control. (C) Percentage of apoptosis in the indicated cell lines and at 48 h after
mock-treatment or exposure to o-amanitin (10 uM; A), 5FU (375 uM; F), or both combined (FA). Apoptosis was measured by
determining the numbers of cells with a sub-2n DNA content after Pl staining, as described in Materials and methods.

independent oncogenic functions (gain-of-function) that
may superimpose dominant-negative effects. Second,
whereas human p53+/- cells almost always loose their wt
allele in the course of transformation, p53+/- cells from
mice often retain it [44] indicating that in mice, in con-

trast to humans, gene dose reduction can impair critical
p53 functions to a degree as to mimic, with respect to
tumor development, complete p53-deficiency. Nonethe-
less, careful studies of the efficacy of known wt p53 activ-
ities in primary fibroblasts from 172H/+ and 270H/+
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mice, compared to cells from -/+ animals, have clearly
demonstrated that the mutant proteins can act dominant-
negative [42,43]. Combined, the available data clearly
indicate that hetero-tetramerization can incapacitate wt
P53 as a transcription factor [1,18,37,38]. The degree of
inhibition by a mutant depends on the mutant-to-wt pro-
tein levels, the site of mutation, and the cell type
[34,35,39].

Here we have presented evidence suggesting that the extra-
nuclear, mitochondrial death pathway of p53 protein can
be resistant to dominant inhibition because mitochon-
drial p53 is mostly monomeric. This raises important
questions. For example, can monomeric p53 trigger mito-
chondrial apoptosis? Moll and colleagues have convinc-
ingly demonstrated that a mitochondrially targeted
monomeric p53 was not only capable of provoking apop-
tosis but was indeed the most efficient cell death inducer
of all tested p53 proteins [9]. That group also showed that
mitochondrially targeted p53 can induce apoptosis in
cells expressing mutant p53 [45]. So clearly, monomeric
p53 at the mitochondria can trigger apoptosis.

If the p53-mediated mitochondrial apoptosis is resistant
to dominant inhibition, why are the 40% of tumors with
a mutant p53 allele that have retained the wt allele (dom-
inant inhibition active) not dying through this pathway?
Several aspects may be relevant here. First, such tumors
may have evolved to impair this pathway through other
means, as for instance the overproduction of Bcl2/BcIXL
or down-regulation of Bax/Bak. Second, even in cells
expressing mutant p53, the translocation of wt p53 to the
mitochondria required a stress signal (see Figure 1B).
Therefore, (some) p53-dependent apoptosis may well
occur in these tumors despite of the inhibition of p53's
nuclear transactivator function by the mutant, but this
may need stress, as for example under chemotherapy, to
become apparent. The HCT116 cells used in this study
had to be exposed to genotoxic stress for p53 transloca-
tion to occur; the oncogenic deregulation present in these
cells was insufficient to act as p53 stressor, probably pri-
marily because HCT116 cells fail to express the oncogenic
stress signal mediator p14ARF [46]. Third, Chipuk and
colleagues have documented that cell types exist in which
efficient mitochondrial apoptosis by p53 is dependent
upon the transactivation of the p53 target gene PUMA.
PUMA resolves an inactive cytosolic p53/BclXL complex
and allows the activation of pro-apoptotic Bax by free
cytoplasmic p53 [16]. Thus, if tumors that co-express wt
and dominant-negative mutant p53 belong to this cell
type, extra-nuclear apoptosis induction by p53 might be
impaired despite of the resistance of mitochondrial p53 to
dominant inhibition by hetero-tetramerization. Forth,
some of these PUMA-sensitive tumors may have devel-
oped from cell types that are able to mobilize the p53-rel-
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atives p63 or p73 for the transactivation of PUMA. In such
tumors, it will make a difference whether the expressed
mutant p53 is of class I (wild-type conformation) or class
II (conformation-altered) type. Class II but not class I
mutants can bind and inhibit p63 and p73, which is con-
sidered to be one mechanism of 'gain-of-function' [17].
Consequently, tumors of this type with the genotype (wt
p53/class I mutant), but not (wt p53/class I mutant)
tumors, may exhibit a gain-of-function phenotype with
respect to the impairment of mitochondrial apoptosis.
Importantly, these inferences can be subject to experimen-
tal testing. In sum, the resistance of mitochondrial mono-
meric p53 to dominant inhibition by hetero-
tetramerization should increase the selection pressure on
a stressed tumor with a mutated p53 allele to loose the
mitochondrial apoptosis function.

Contamination of the wt p53 tetramer with mutant p53
through hetero-tetramerization is a remarkably inefficient
way to inactivate p53 [34,35] whereas dominant inhibi-
tion through transactivation-defective (AN or ATA) iso-
forms of, for instance, p53 or p73, is very efficient
([21,35], see also Figure 6). The latter mechanism can
involve the formation of hetero-tetramers between wt p53
and AN-p53, where one truncated protein per tetramer is
sufficient to incapacitate it for transactivation [35], and
can involve competitive promoter-occupation by AN-p53
or AN-p73 [21,35]. The extraordinary efficiency of this
inhibitory mechanism may be one reason for the fact that
it has gained important roles in several physiological
processes. For example, AN-p73 is a very efficient and per-
haps the primary inhibitor of p63-mediated apoptosis
during neuronal development, and of p53-mediated
apoptosis in response to adult neuron injury and neuro-
degeneration [20]. With this efficacy of inhibition, it is no
surprise that ATA-isoforms of p73 have also been found in
tumor cells. One might thus speculate that the ATA-p73-
resistant apoptotic function of mitochondrial p53 has
evolved, at least in some cell types, as part of a fail-safe
mechanism against the powerful dominant-negative
effects of these molecules.

Monomeric p53 not only escapes dominant inhibition
through hetero-tetramerization but also ubiquitylation
through the E3/E4 ubiquitin ligase MDM?2, as MDM?2
binds exclusively to tetrameric p53 [47]. On the other
hand, (multi-)mono-ubiquitylation of p53 by MDM2, as
opposed to poly-ubiquitylation associated with p53 deg-
radation, can promote mitochondrial p53 translocation
[48], and in accord with this, the apoptosis- and tetramer-
ization-defective p53 mutant 337C [49] occurring in Li-
Fraumeni patients fails to translocate to the mitochondria
upon stress (our unpublished observation). Thus, the
recent finding that cytoplasmic p53 - mono-ubiquit-
ylated by cytoplasmic MDM2 - travels to the mitochon-
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dria without shuttling MDM?2 [48], might suggest that
monomerization of p53 occurs in stressed cells some-
where between this modification and p53's final destina-
tion at the mitochondria.

Conclusion

Mutant p53 can compromise transactivation by wild-type
p53 through hetero-tetramerization, and p53/p63/p73
isoforms lacking a transactivation domain through com-
petitive promoter-occupation as well as hetero-tetrameri-
zation. p53 has evolved to command a second,
transcription-independent pathway of apoptosis induc-
tion at the mitochondria. This second pathway - although
probably less efficient than full apoptosis by p53, pro-
voked by both pathways in concert, - is resistant against
dominant inhibition in HCT116 cells. Moreover, mito-
chondrial p53 - in contrast to nuclear - is mostly mono-
meric. Thus, the extra-nuclear p53-dependent apoptosis
may constitute a fail-safe mechanism against dominant
inhibition.

Methods

Plasmids, chemicals, and antibodies

pLRNL-175AC, pLRNL-175A0, pLRNL-273AC, pLRNL-
273A0 pLRNL-175H and pLRNL-273H have been
described elsewhere [50]. Full-length mutant p53 genes
175H, 273H and 248W were cloned into expression plas-
mid pCMV-pA. Plasmid pLXSNp53DD was kindly pro-
vided by Moshe Oren, Rehovot, Israel. Plasmid p73A2/3
B-pcDNA-3.1 was kindly provided by Thorsten Stiewe,
Wiirzburg, Germany. The p73A2/3 B insert was cut out
with BamHI and subcloned into pLRNL. The drugs a-
amanitin, 5-fluorouracil (5-FU) and etoposide were from
Sigma (St Louis, USA), as were propidium iodide for DNA
content analysis, glutaraldehyde and crystal violet for fix-
ation and colony staining, the B-actin monoclonal anti-
body, and the peroxidase-conjugated secondary anti-
mouse and anti-rabbit antibodies. The crosslinker BMH
was from Pierce (Rockford, USA). G418 and the transfec-
tion reagent Nanofectin I were purchased from PAA
(Pasching, Austria). The p53 monoclonal antibodies DO-
1 and PAb421, and puromycin were purchased from Cal-
biochem (San Diego, USA); the p53 polyclonal antibody
CM-1 was from Biocare Medical (Pike Lane, USA); the
p73Ab-4 antibody cocktail (clones ER-13 + ER-15 +GC-
15) was purchased from Lab Vision Corporation (Fre-
mont, USA); the monoclonal cytochrome c antibody
(clone 7H8.2C12) was from BD Biosciences (Franklin
Lakes, USA); the cytochrome c oxidase subunit [V mono-
clonal antibody (10G8) was from Molecular Probes
(Eugene, USA) and the anti-HA antibody 12CA5 was from
Sigma (St. Louis, USA). The monoclonal caspase-3 anti-
body (8G10) was purchased from Cell Signaling Technol-
ogy (Boston, USA). The monoclonal p21 antibody was
from BD Pharmingen (Franklin Lakes, USA). The polyclo-
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nal Bax antibody (sc-493) was acquired from Santa Cruz
Biotechnology (Santa Cruz, CA). Protein G Sepharose (4
Fast Flow) was from GE Healthcare (Uppsala, Sweden).
The Annexin V:PE apoptosis detection kit was purchased
from BD Biosciences (Franklin Lakes, USA).

Cell culture, viruses, and transfection

293GP retrovirus producer cells, MCF-7, and H1299 cells
were cultured in DMEM, and HCT116 cells and deriva-
tives in McCoy's 5A medium, all supplemented with 10%
FCS and grown in a humidified 7% CO, atmosphere at
37°C. Retroviruses were produced in the 293GP producer
line after a 1:1 transfection with a vector coding for the
stomatitis virus G protein and either empty retroviral vec-
tor or vector expressing one of the p53 mutants, p53DD,
or Aex2/3p73. The viruses were harvested 48 h after trans-
fection. The supernatant was filtered through a 0.45 uM
filter (Renner, Germany). Virus stocks were titered on 293
cells and frozen in aliquots at -80°C. For infection, cul-
tures were incubated with virus stocks at a multiplicity of
infection (MOI) of approximately 0.1 colony-forming
units (cfu)/cell to assure transfer of only one transgene per
infected cell. Infection was carried out in the presence of 4
pg/ml polybrene (Sigma) for 4 h, and virus-infected cells
were selected in 400 pg/ml G418, beginning at 48 h after
infection, for approximately 7 days. Exponentially grow-
ing cultures that had been out of selection for at least 2
days were drug-treated as outlined in the main text and
figure legends. As transfection reagent, Nanofectin I from
PAA (Pasching, Austria) was employed according to the
manufacturer's recommendation.

Flow cytometry analysis of DNA content and apoptosis
Twenty-four h prior to drug treatment, cells were seeded
in six-well dishes to approximately 30% confluency. At
the indicated time points, the cells on the dishes were har-
vested by trypsinization, washed in PBS, resuspended in
200 pl of 0.9% NaCl, squeezed through a 23.5-gauge nee-
dle into 1.8 ml of methanol, and fixed overnight at-20°C.
Cells were resuspended in PBS supplemented with RNase
A (25 pg/ml) at approximately 10° cells per ml, and were
stained with PI (25 pg/ml) for >1 h at 4°C. DNA fluores-
cence was measured with a Becton Dickinson FACSCanto
(Bedford, USA) and the data were analyzed with BD FAC-
SDiva software from Becton. FACS detection of Annexin
V:PE at apoptotic cells was done according to the protocol
supplied with the Annexin V:PE apoptosis detection kit
from BD Biosciences (Franklin Lakes, USA).

Colony formation assay

For colony formation assays, 103 live cells (counted with
a FACSCanto) were seeded onto 10-cm dishes and grown
for 24 h. The cultures were then incubated in the presence
of etoposide for 10 days. Colonies were washed with PBS,
fixed with 1.25% glutaraldehyde for 20 min, washed
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again and stained with 1% crystal violet in PBS for 1 h at
room temperature.

Preparation of subcellular fractions and immunoblot
analysis

Mitochondria protein fractions were prepared and tested
essentially as described before [25]. In brief, mitochon-
dria were isolated with the Mitochondria Isolation Kit for
Mammalian Cells (Pierce, Rockford, USA), following the
supplier's protocol. The centrifugation step at 700 g was
repeated three times. Mitochondria were lysed in an SDS-
lysis buffer heated to 100°C, containing 100 mM Tris-HCI
(pH 6.8), 100 mM DTT, 4% SDS, and 20% glycerol. 15 g
of mitochondrial protein were subjected to 8 or 13% SDS-
PAGE and analyzed by Western blotting. For immunoblot
analysis, cells were lysed in the SDS-lysis buffer heated to
100°C. Samples containing 15 or 30 pg of total cellular
protein were subjected to 8, 10, or 13% SDS-PAGE and
transferred to a PVDF membrane (Immobilon-P; Milli-
pore, Bedford, USA). Signals were detected upon over-
night incubation of the membranes with one of the
indicated antibodies, followed by a final incubation with
a peroxidase-conjugated secondary anti-mouse (1:2000)
or anti-rabbit (1:2000) antibody and Pierce ECL Western
Blotting Substrate (Rockford, USA), performed as speci-
fied by the supplier.

Cytochrome c release

Cells were treated with the indicated drugs, and nuclei
and mitochondria were again separated from the cytosolic
fraction with the Mitochdria Isolation Kit for Mammalian
Cells from Pierce (three centrifugation steps at 700 g, one
centrifugation step at 3000 g, one centrifugation step at
12000 g). The cytosolic fraction was then concentrated
using Microcon® Centrifugal Filter Devices YM-10 (Milli-
pore, USA) for 10,000 nominal molecular weight limit,
performed as specified by the supplier. Concentrated sam-
ples were mixed with SDS-lysis buffer, heated to 100°C,
and analyzed by Western blotting.

RNA analysis

Cells were seeded in 10 cm-dishes and treated 24 h later
with 5-FU. One day after drug-treatment medium was
removed and solution D (236.4 g guanidinium thiocy-
anate; Sigma, USA, in 293 ml water, 17.6 ml 0.75 M
sodium citrate pH 7.0, and 26.4 ml 10% sarcosyl, 0.72%
2-mercaptoethanol) was added. Cells were scraped off
and 0.1 ml of 2 M sodium-acetate pH 4, 1 ml of water-sat-
urated phenol (Roth, Germany), and 0.2 ml of chloro-
form-isoamylalcohol (49:1) were added, mixed, and
cooled on ice for 15 min. After centrifugation (10,000 g,
4°C, 20 min) the aqueous phase was collected and precip-
itated with isopropanol overnight. After a further centrif-
ugation (10,000 g, 20 min, 4°C), RNA was redissolved in
solution D and precipitated with isopropanol at -20°C for
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1 h. The pellet was washed in 70% ethanol and dissolved
in DEPC-water. The RNA was digested with RNase-free
DNase I (Roche, Germany) for 60 min at 37°C, and 4 pg
was used for the first-strand cDNA synthesis with Super-
Script™I (Invitrogen, USA) as specified by the manufac-
turer. Semiquantitative RT-PCR analysis was performed
with HotStarTaq (Qiagen, Germany), using the primers:
p21 (for: ggcggragaccagcatgacagatt; rev: atgaagccggeccac-
ccaacctc; Ty: 64°C), bak (for: taggcgctggggagactgataact; rev:
aggcttggaggcttctgacacg; T,: 65°C), bax (for: ccccgagag-
gtctttttccgagtg; rev: gaaaaatgcccatgteccccaatc; T, 65°C),
and gapdh (for: tggtatcgtggaaggactcatgac; rev: agtccagt-
gagcttcccgttcage; Ty: 64°C).

Immune electron microscopy

Whole cells were fixed in 4% formaldehyde/0.05% glutar-
aldehyde, dissolved in 0.1 M cacodylat buffer (pH 7.4) at
RT, and stored overnight at 4°C. Pellets were resuspended
in 2% low-melting point agarose at 40°C and solidified
on ice. Whole cells were fixed to the agarose gel with the
formaldehyde/glutaraldehyde fixative (see above). After
washing the gel with 0.1 M phosphate buffer pH 7.2,
small blocks (maximum 2 x 2 x 2 mm3) were cut out and
dehydrated by the processive-lowering-of-temperature-
method, using the following ethanol series and tempera-
tures: 30%, 0°C; 50%, -20°C; 70, 90, 100% at -35°C; for
1 h each. Dehydrated gel blocks were infiltrated and
embedded with the acrylate resin Lowicryl K4M (Poly-
sciences, Eppelheim, Germany) at -35°C. The resin was
UV-polymerized for 1 day at -35°C, 1 day at 0°C, and 1
day at RT. Ultrathin sections (70-80 nm) were placed on
droplets (30 pl) of the following: glycine (50 mM in PBS);
blocking solution; anti-p53-antibody DO-1 or IgG con-
trol diluted in blocking solution; blocking solution; goat
anti-mouse antibody coupled to 10 nM colloidal gold
(Aurion, Netherlands); blocking solution; PBS; 2.5% glu-
taraldehyde in 0.1 M phosphate buffer; PBS; and water.
The blocking solution contained 0.5% cold water fish gel-
atine, 0.5% BSA, 0.01% Tween-20 (all from Sigma), dis-
solved in PBS. The incubations with the antibodies were
carried out overnight at 4°C in a wet chamber. Finally, the
sections were dried and stained with uranyl acetate and
methylcellulose. All intact mitochondria detected at
68,000x magnification in randomly chosen fields were
analysed with morphometric software (Analysis, SIS, Ger-
many).

Chromatin immunoprecipitation and protein co-
immunoprecipitation

Cells were seeded and 24 h later treated with 5-FU. The
ChIP analyses were performed with the Chromatin
Immunoprecipitation Assay Kit from Upstate (Lake
Placid, USA) according to the manufacturer's recommen-
dation, with the following modifications. 2.5 ug p53-anti-
body (DO-1) or irrelevant antibody, linked to Protein G
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sepharose 4 Fast Flow™, were used for immunoprecipita-
tion. For PCR, 2 ul out of 50 ul of DNA extractions were
employed. The primer sequences and PCR conditions
used to amplify the corresponding promoter fragments
were as follows: p21 (for: acctttcaccattcccctac; rev: geccaag-
gacaaaatagcca; Ty: 56 °C); U6 (for: ggectatttcccatgattcc; rev:
atttgegtgtcatccttgc; T,: 56°C). For protein co-immunopre-
cipitation, HCT116 cultures at a density of approx. 50%
were transiently transfected by Nanofectin I (PAA, Aus-
tria) with the different expression plasmids, and 24 h later
the truncated p53 protein with the intact DO-1 epitope
was immunoprecipitated with antibody DO-1, following
our standard IP protocol [51]. The full-length p53 with a
defective DO-1 epitope that was co-precipitated along
with the truncated p53 could be detected in a Western blot
with the polyclonal p53 antibody CM-1.

Chemical crosslinking

Total protein extracts were prepared by lysing the cells in
a buffer containing 10 mM Tris pH 7.6, 140 mM Nac(l,
0.5% Nonidet P-40 (NP-40), and proteinase inhibitor
cocktail (Sigma, USA). After incubation for 30 min at 4°C
the samples were centrifuged at 13.000 rpm for another
30 min at 4°C. For BMH crosslinking, whole cell lysate
was incubated with 0.2 mM BMH (bis-maleimidohexane;
Pierce) according to the provided protocol. After an incu-
bation of 1 h at RT, monomers and multimers were sepa-
rated on SDS-polyacrylamide gels and detected with p53
antibody DO-1 or Bax antibody sc-493. Mitochondria
prepared with the Mitochondria Isolation Kit for Mamma-
lian Cells (Pierce), were resuspended in the BMH conjuga-
tion-buffer and incubated with BMH (final concentration:
1 mM) at 37°C for 1 h. For crosslinking with glutaralde-
hyde (GLD), whole cell lysates were incubated with
0.0025% GLD for 15 min at RT, as described before [49].
Isolated mitochondria were resuspended in PBS and incu-
bated with 0.0025% GLD for 15 min at 37°C. Finally,
monomers and multimers were again separated on SDS-
polyacrylamide gels and detected with the respective anti-
bodies.
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Additional material

Additional file 1

o-amanitin and a-amanitin plus 5-fluorouracil can provoke a p53-
mediated, transactivation-independent apoptosis in HCT116 cells.
(A) Exponentially growing cultures of HCT116 and HCT116 p53-/- cells
were mock-treated (m) or exposed to a-amanitin (10 uM; A), 5FU (375
UM; F), or both combined (FA). At the indicated time points, the percent-
age of apoptotic cells was determined by measuring the numbers of cells
with a sub-2n DNA content after PI staining, as detailed in Materials and
methods. (B) RT-PCR were performed on RNA from HCT116 cells after
24 h of drug treatment, as indicated, and the relative levels of the p53-
responsive p21 and the control gapdh transcripts were determined. West-
ern blot analysis confirmed the lack of stimulation of p21 under conditions
of transactivation repression by a-amanitin. p53 was detected with DO-
1 at a dilution of 1:2000; loading control f-actin was detected with anti-
Pactin antibody diluted at 1:5000, and p21 was detected with anti-p21
antibody diluted at 1:1000. (C) Induction of apoptosis in HCT116 cells
by 5FU and a-amanitin plus 5FU is mediated by cytochrome c (cyt.c)
release and caspase 3 (casp3) activation. 15 g of cytoplasmic protein (for
cyt.c) or 30 ug of total protein (for casp3) from cells treated in the indi-
cated way for 48 h were subjected to immunoblot analysis. Anti-cyto-
chrome c antibody and anti-caspase 3 antibody (detecting both the pro-
caspase and the activated caspase) were diluted at 1:1000.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-7-54-S1.pdf]

Additional file 2

Presence of wt and mutant p53 in the mitochondrial fractions of
HCT116 cultures in dependence of treatment. (A) HCT116 cultures
were mock-treated (m) or treated with 10 uM a-amanitin (A), 375 uM
5FU (F), or a-amanitin plus 5FU (FA) for 24 h; the cells were fraction-
ated and the quality of the fractionation was tested as described in Mate-
rials and methods. 15 ug of total protein (t) or mitochondrial protein (mt)
were subjected to Western immunoblot analysis with either anti-p53 anti-
body DO-1 (1:2000) or anti-cytochrome oxidase IV (OX IV) antibody
(1:1000). (B) HCT116 p53-/- cells were bulk-infected with retroviruses
at a multiplicity of infection of <1 pfu/cell to express either p53 full-length
mutant 175H or 273H from single gene copies per cell. The cells were
mock-treated (-) or treated with 375 pM 5FU for 24 h (+), and where
then fractionated and analyzed by immunoblotting (15 ug protein). total
= total cell extract; cyto = cytoplasmic; mito = mitochondrial fraction.
Again, proteins were detected with anti-p53 and anti-cytochrome oxidase
antibodies. (C) Immune electron microscopy detects mutant p53 at the
mitochondria of HCT116 p53-/- cells retrovirally infected to express
empty vector, 175H or 273H. Gold grains (10 nm; arrows) indicative of
the binding of anti-p53 antibody DO-1 were more frequently detected at
mitochondria (mt) in cells harboring mutant p53 than in cells with no
p53. The diagram outlines the numbers of grains counted in a blinded
study at 105 mitochondria from randomly chosen microscopic fields; P
values were determined with the Chi-square test.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-

4598-7-54-S2.pdf]
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Additional file 3

Effect of full-length mutant p53 over-production on wt p53-medi-
ated p21 expression and transcription-independent apoptosis. (A)
HCT116 p53-/- cultures were transfected with empty vector or vector
expressing HA-tagged full-length versions of 175H, 273H and 248W.
p53 was detected with monoclonal anti-HA antibody 12CA5 (1:1000);
loading control f-actin was detected with anti-f-actin antibody diluted at
1:5000. (B) Transient transfection of HCT116 p53-/- cultures with vec-
tor alone, or wt p53 plasmid plus vector plasmid or mutant p53 plasmid
at aratio of 1:3. p53 was detected with antibody DO-1 (1:2000); mutant
p53 was detected with anti-HA antibody 12CA5 (1:2000). Loading con-
trol f-actin was detected with anti-f-actin antibody diluted at 1:5000.
(C) Exponentially growing HCT116 p53-/- cultures were transfected as
in B, but under inclusion of 0.1 ug plasmid expressing green fluorescent
protein (pC-EGFP) to allow an estimate of the relative transfection effi-
ciencies. The transfection efficiencies were approximately equal. Cultures
were then exposed to a-amanitin (10 uM; A), or a combination of -
amanitin and 5FU (375 uM; FA). At 48 h after treatment, the cultures
were analyzed for cells with a sub-2n DNA content (shown in percent of
cells) by flow cytometry. Error bars denote standard deviations from three
experiments.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-7-54-S3.pdf]

Additional file 4

Detection of p53-containing protein megacomplexes following
BMH crosslinking in total cell extract but not mitochondrial frac-
tion. Detection of p53-containing protein megacomplexes following BMH
crosslinking in total cell extract but not mitochondrial fraction. Total pro-
tein and mitochondrial cell extracts (15 ug) from HCT116 cultures
expressing 273H were analyzed by standard SDS-PAGE after chemical
crosslinking with BMH and subsequent immunoblotting of the complete
gel (including wells and stacking gel) with anti-p53 antibody DO-1 at
1:2000 dilution. Total: total cell extract; mito: mitochondrial fraction.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-7-54-84.pdf]

Acknowledgements

We thank Gabi Kiefer, Institute of Anatomy, for excellent technical assist-
ance with electron microscopy. This work was supported by German
Research Foundation (DFG) Grant RO 1201/10-1 to KR.

References

2.

Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell
Biol 2007, 8:275-283.

Moll UM, Wolff S, Speidel D, Deppert W: Transcription-inde-
pendent pro-apoptotic functions of p53. Curr Opin Cell Biol 2005,
17:631-6. Epub 2005 Oct 13..

Chipuk JE, Green DR: Dissecting p53-dependent apoptosis. Cell
Death Differ 2006, 13:994-1002.

Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan |, MacLean KH,
Han J, Chittenden T, lhle JN, McKinnon P), Cleveland JL, Zambetti GP:
Puma is an essential mediator of p53-dependent and -inde-
pendent apoptotic pathways. Cancer Cell 2003, 4:321-328.
Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlech-
ner M), Adams |M, Strasser A: p53- and drug-induced apoptotic
responses mediated by BH3-only proteins puma and noxa.
Science 2003, 302:1036-8. Epub 2003 Sep 18..

Arima Y, Nitta M, Kuninaka S, Zhang D, Fujiwara T, Taya Y, Nakao M,
Saya H: Transcriptional blockade induces p53-dependent

20.

21.

22.

23.

24,

25.

26.

27.

http://www.molecular-cancer.com/content/7/1/54

apoptosis associated with translocation of p53 to mitochon-
dria. | Biol Chem 2005, 280:19166-76. Epub 2005 Mar 7..

Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P,
Moll UM: p53 has a direct apoptogenic role at the mitochon-
dria. Mol Cell 2003, 11:577-590.

Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C,
Pan H, Kessler H, Pancoska P, Moll UM: WT p53, but not tumor-
derived mutants, bind to Bcl2 via the DNA binding domain
and induce mitochondrial permeabilization. | Biol Chem 2006,
281:8600-6. Epub 2006 Jan 26..

Marchenko ND, Zaika A, Moll UM: Death signal-induced localiza-
tion of p53 protein to mitochondria. A potential role in apop-
totic signaling. | Biol Chem 2000, 275:16202-16212.

Sansome C, Zaika A, Marchenko ND, Moll UM: Hypoxia death
stimulus induces translocation of p53 protein to mitochon-
dria. Detection by immunofluorescence on whole cells. FEBS
Lett 2001, 488:110-115.

Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M: The
codon 72 polymorphic variants of p53 have markedly differ-
ent apoptotic potential. Nat Genet 2003, 33:357-65. Epub 2003
Feb 3..

Leu JI, Dumont P, Hafey M, Murphy ME, George DL: Mitochondrial
p53 activates Bak and causes disruption of a Bak-Mcll com-
plex. Nat Cell Biol 2004, 6:443-50. Epub 2004 Apr | I..

Erster S, Mihara M, Kim RH, Petrenko O, Moll UM: In vivo mito-
chondrial p53 translocation triggers a rapid first wave of cell
death in response to DNA damage that can precede p53 tar-
get gene activation. Mol Cell Biol 2004, 24:6728-6741.

Zhao Y, Chaiswing L, Velez M, Batinic-Haberle I, Colburn NH, Ober-
ley TD, St Clair DK: p53 translocation to mitochondria pre-
cedes its nuclear translocation and targets mitochondrial
oxidative defense protein-manganese superoxide dismutase.
Cancer Res 2005, 65:3745-3750.

Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD,
Schuler M, Green DR: Direct activation of Bax by p53 mediates
mitochondrial membrane permeabilization and apoptosis.
Science 2004, 303:1010-1014.

Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR:
PUMA couples the nuclear and cytoplasmic proapoptotic
function of p53. Science 2005, 309:1732-1735.

Li Y, Prives C: Are interactions with p63 and p73 involved in
mutant p53 gain of oncogenic function? Oncogene 2007,
26:2220-2225.

Roemer K: Mutant p53: gain-of-function oncoproteins and
wild-type p53 inactivators. Biol Chem 1999, 380:879-887.
Iwakuma T, Lozano G: Crippling p53 activities via knock-in
mutations in mouse models. Oncogene 2007, 26:2177-2184.
Miller FD, Kaplan DR: To die or not to die: neurons and p63. Cell
Cycle 2007, 6:312-7. Epub 2007 Feb 3..

Stiewe T, Theseling CC, Putzer BM: Transactivation-deficient
Delta TA-p73 inhibits p53 by direct competition for DNA
binding: implications for tumorigenesis. | Biol Chem 2002,
277:14177-85. Epub 2002 Feb |3..

Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP,
Sedivy JM, Kinzler KW, Vogelstein B: Requirement for p53 and
p2l to sustain G2 arrest after DNA damage. Science 1998,
282:1497-1501.

Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L,
Williams |, Lengauer C, Kinzler KW, Vogelstein B: Disruption of
p53 in human cancer cells alters the responses to therapeu-
tic agents. | Clin Invest 1999, 104:263-269.

Kaeser MD, Pebernard S, Iggo RD: Regulation of p53 stability and
function in HCTI116 colon cancer cells. | Biol Chem 2004,
279:7598-605. Epub 2003 Dec 9..

Mahyar-Roemer M, Fritzsche C, Wagner S, Laue M, Roemer K: Mito-
chondrial p53 levels parallel total p53 levels independent of
stress response in human colorectal carcinoma and glioblas-
toma cells. Oncogene 2004, 23:6226-6236.

Frazier MW, He X, Wang ], Gu Z, Cleveland JL, Zambetti GP: Acti-
vation of c-myc gene expression by tumor-derived p53
mutants requires a discrete C-terminal domain. Mol Cell Biol
1998, 18:3735-3743.

Lanyi A, Deb D, Seymour RC, Ludes-Meyers JH, Subler MA, Deb S:
'Gain of function' phenotype of tumor-derived mutant p53
requires the oligomerization/nonsequence-specific nucleic
acid-binding domain. Oncogene 1998, 16:3169-3176.

Page 16 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1476-4598-7-54-S3.pdf
http://www.biomedcentral.com/content/supplementary/1476-4598-7-54-S4.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17380161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16226451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16226451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16543937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12667443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12667443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16443602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16443602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16443602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10821866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10821866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10821866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12567188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12567188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12567188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15254240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15254240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15254240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16151013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16151013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16151013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10494837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10494837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17264677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11844800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11844800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11844800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10430607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10430607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10430607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14665630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14665630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671396

Molecular Cancer 2008, 7:54

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Mahyar-Roemer M, Roemer K: p21 Wafl/Cipl can protect
human colon carcinoma cells against p53-dependent and
p53-independent apoptosis induced by natural chemopre-
ventive and therapeutic agents. Oncogene 2001, 20:3387-3398.
Shaulian E, Zauberman A, Ginsberg D, Oren M: Identification of a
minimal transforming domain of p53: negative dominance
through abrogation of sequence-specific DNA binding. Mol
Cell Biol 1992, 12:5581-5592.

Gottlieb E, Haffner R, von Ruden T, Wagner EF, Oren M: Down-reg-
ulation of wild-type p53 activity interferes with apoptosis of
IL-3-dependent hematopoietic cells following IL-3 with-
drawal. EMBO J 1994, 13:1368-1374.

Sheard MA, Uldrijan S, Vojtesek B: Role of p53 in regulating con-
stitutive and X-radiation-inducible CD95 expression and
function in carcinoma cells. Cancer Res 2003, 63:7176-7184.

Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, D'Orazio
J, Fung CY, Schanbacher CF, Granter SR, Fisher DE: Central role of
p53 in the suntan response and pathologic hyperpigmenta-
tion. Cell 2007, 128:853-864.

Jiang P, Du W, Heese K, Wu M: The Bad Guy Cooperates with
Good Cop p53: Bad Is Transcriptionally Up-Regulated by
p53 and Forms a Bad/p53 Complex at the Mitochondria To
Induce Apoptosis. Mol Cell Biol 2006, 26:907 1-82. Epub 2006 Sep
25..

Nicholls CD, McLure KG, Shields MA, Lee PW: Biogenesis of p53
involves cotranslational dimerization of monomers and
posttranslational dimerization of dimers. Implications on
the dominant negative effect. | Biol Chem 2002, 277:12937-45.
Epub 2002 Jan 22..

Chan WM, Siu WY, Lau A, Poon RY: How many mutant p53 mol-
ecules are needed to inactivate a tetramer? Mol Cell Biol 2004,
24:3536-3551.

Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran
TE, Shakked Z: Structural basis of DNA recognition by p53
tetramers. Mol Cell 2006, 22:741-753.

Sigal A, Rotter V: Oncogenic mutations of the p53 tumor sup-
pressor: the demons of the guardian of the genome. Cancer
Res 2000, 60:6788-6793.

Blagosklonny MV: p53 from complexity to simplicity: mutant
p53 stabilization, gain-of-function, and dominant-negative
effect. FASEB 2000, 14:1901-1907.

Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW, Yi SY,
Brachmann RK: Inactive full-length p53 mutants lacking domi-
nant wild-type p53 inhibition highlight loss of heterozygosity
as an important aspect of p53 status in human cancers. Car-
cinogenesis 2007, 28:289-98. Epub 2006 Jul 21..

Varley |M, Thorncroft M, McGown G, Appleby ], Kelsey AM, Tricker
K], Evans DG, Birch JM: A detailed study of loss of heterozygos-
ity on chromosome 17 in tumours from Li-Fraumeni
patients carrying a mutation to the TP53 gene. Oncogene
1997, 14:865-871.

Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker K|, Varley
JM: Cancer phenotype correlates with constitutional TP53
genotype in families with the Li-Fraumeni syndrome. Onco-
gene 1998, 17:1061-1068.

Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant M, Valentin-
Vega YA, Terzian T, Caldwell LC, Strong LC, EI-Naggar AK, Lozano
G: Gain of function of a p53 hot spot mutation in a mouse
model of Li-Fraumeni syndrome. Cell 2004, 119:861-872.
Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT,
Crowley D, Jacks T: Mutant p53 gain of function in two mouse
models of Li-Fraumeni syndrome. Cell 2004, 119:847-860.
Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D,
Donehower LA: Retention of wild-type p53 in tumors from
p53 heterozygous mice: reduction of p53 dosage can pro-
mote cancer formation. EMBO J 1998, 17:4657-4667.

Palacios G, Moll UM: Mitochondrially targeted wild-type p53
suppresses growth of mutant p53 lymphomas in vivo. Onco-
gene 2006, 25:6133-9. Epub 2006 May 8..

Lavelle D, Chen YH, Hankewych M, DeSimone J: Histone deacety-
lase inhibitors increase p21(WAFI) and induce apoptosis of
human myeloma cell lines independent of decreased IL-6
receptor expression. Am | Hematol 2001, 68:170-178.

Marston NJ, Jenkins JR, Vousden KH: Oligomerisation of full
length p53 contributes to the interaction with mdm2 but not
HPV E6. Oncogene 1995, 10:1709-1715.

48.

49.

50.

51,

http://www.molecular-cancer.com/content/7/1/54

Marchenko ND, Wolff S, Erster S, Becker K, Moll UM: Monoubiq-
uitylation promotes mitochondrial p53 translocation. EMBO
J 2007, 26:923-34. Epub 2007 Feb I..

Atz ], Wagner P, Roemer K: Function, oligomerization, and con-
formation of tumor-associated p53 proteins with mutated
C-terminus. | Cell Biochem 2000, 76:572-584.

Fritzsche C, Zeller G, Knaup KX, Roemer K: No anti-apoptotic
effects of single copies of mutant p53 genes in drug-treated
tumor cells. Anticancer Drugs 2004, 15:679-688.

Boese A, Sauter M, Galli U, Best B, Herbst H, Mayer |, Kremmer E,
Roemer K, Mueller-Lantzsch N: Human endogenous retrovirus
protein cORF supports cell transformation and associates
with the promyelocytic leukemia zinc finger protein. Onco-
gene 2000, 19:4328-4336.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 17 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1448088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1448088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1448088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14612511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14612511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14612511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17350573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17350573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17350573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17000778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17000778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17000778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16793544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16793544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11023974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11023974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11023974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16861262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16861262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16861262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9047394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9047394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9047394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9764816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9764816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15607981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15607981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15607980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15607980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9707425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9707425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9707425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11754398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11754398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11754398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7753547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7753547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7753547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17268548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17268548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980608
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Discussion
	Conclusion
	Methods
	Plasmids, chemicals, and antibodies
	Cell culture, viruses, and transfection
	Flow cytometry analysis of DNA content and apoptosis
	Colony formation assay
	Preparation of subcellular fractions and immunoblot analysis
	Cytochrome c release
	RNA analysis
	Immune electron microscopy
	Chromatin immunoprecipitation and protein co- immunoprecipitation
	Chemical crosslinking

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

