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Abstract

Background: Susceptibility to basal cell carcinoma results from complex interactions between
ultraviolet radiation exposure and genetic factors. The GLII oncogene is believed to play a role in
the genesis of these tumors. We determined whether GLII polymorphisms were risk factors for
developing basal cell carcinoma, either alone or in combination with patterns of past sun exposure,
and whether there were functional differences among different GLII haplotypes.

Results: GLII genotypes at ¢.2798 and c.3298 from 20| basal cell carcinoma patients were
compared to 20| age and sex-matched controls. Neither genotype nor haplotype frequencies
differed between cases and controls. However, the odds of developing basal cell carcinoma on the
trunk compared to the head/neck appeared somewhat lower with carriers of the c.3298GC than
the CC genotype. There was no evidence for interactions between skin type, childhood
sunburning, average adult sun exposure, adult sunbathing, or intermittency of sun exposure and
GLII haplotype. Additionally, we found no significant differences in transcription activation or cell
transforming ability among the four GLII haplotypes.

Conclusion: These results suggest that different GLI| genotypes alone or in combination with past
sun exposure patterns as assessed in this study do not affect basal cell carcinoma risk.

Background bility to BCC is believed to result from complex interac-
Basal cell carcinoma (BCC) is the most common malig-  tions between environmental ultraviolet (UV) radiation
nancy in Caucasians. Although mortality associated with ~ exposure and genetic factors [1]. Polymorphisms in genes
BCC is low, BCC accounts for significant morbidity and  encoding detoxifying enzymes (cytochrome p450 and
places a large burden on the health care system. Suscepti-  glutathione S-transferase), the melanocortin 1 receptor,
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Agouti signaling protein, tyrosinase, and Patched 1
(PTCH1) have been associated with BCC risk [2-5]. How-
ever, polymorphic loci in genes that determine suscepti-
bility for many patients who develop BCC and account for
the phenotypic variability of BCC remain to be identified.

Dysregulation of the Sonic hedgehog signal transduction
pathway plays an important role in the pathogenesis of
BCC, presumably based on constitutive activation of GLI
family transcription factors [6-8]. Indeed, transgenic mice
expressing GLI1 in cutaneous keratinocytes develop BCCs,
providing evidence that GLI1 plays a role in the genesis of
BCC [9].

Polymorphic loci of unknown functional significance
have been identified in GLI1, including c.2651A>C
(D884A), ¢.2798G>A (G933D), ¢.3034G>T (G1012V),
and ¢.3298G>C (E1100Q) [10,11]. None of these loci lies
in a known functional domain of GLI1, however, nucle-
otides ¢.2798, c.3034, and c.3298 flank the carboxy termi-
nal acidic transactivation domain (c.3060 - ¢.3273) [12].
Theoretically, amino acid differences in these residues
could affect the conformation or function of this domain
and be associated with disease based on altered transcrip-
tional regulation by GLI1. Since GLI1 expression appears
to play a fundamental role in the genesis of BCC, we deter-
mined whether any of the GLI1 genotypes represent risk
factors for developing BCC alone or in combination with
past sun exposure patterns and whether functional differ-
ences exist among the haplotypes. We find that different
GLI1 genotypes alone or in combination with past sun
exposure patterns as assessed in this study do not affect
BCC risk.

Methods

Study design and subjects

A frequency-matched case control study was conducted
from February to November 2007. Controls were
matched to cases on sex and age (20-39 years, 40-59, 60-
69, 2 70). In an attempt to even the distribution among
age categories, we chose broader intervals where we
expected fewer cases and narrower ones where we
expected more.

In accord with the Declaration of Helsinki protocols,
institutional IRB approval was granted from the North-
western University Feinberg School of Medicine and Chil-
dren's Memorial Hospital prior to study initiation.
Written informed consent was obtained from each subject
prior to enrollment. Eligible cases were recruited from
non-Hispanic Caucasian patients presenting to the North-
western Memorial Faculty Foundation Dermatology clinic
for Mohs resection of histologically confirmed non-meta-
static BCC. Eligible controls that had no history of skin
cancer were also recruited from non-Hispanic Caucasian
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patients presenting to the same clinic. Individuals who
had a known genetic disease or syndrome were excluded.
Information collected included age, sex, skin type, and
BCC location. Fitzpatrick skin type was ascertained by the
patient's response to a standardized question [13]. BCC
location was recorded as head/neck, trunk, or extremity.

Single Nucleotide Polymorphism (SNP) analysis

Two buccal swabs (Whatman Omniswab, Florham Park,
NJ) were obtained from consenting cases and controls.
Genomic DNA was extracted using the QIAmp DNA mini
kit (Qiagen, Valencia, CA). Two SNPs in the GLI1 gene
(c.2798G>A and ¢.3298G>C) were analyzed via matrix-
assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS) by the Translational
Genomics Research Institute (TGen, Phoenix, AZ). The
€.2651A>C (D884A) SNP was not analyzed based on its
rare occurrence. The ¢.3034G>T (G1012V) SNP was not
analyzed because it has only been observed in the Asian
population [11].

Assessment of sun exposure

A validated sun exposure questionnaire was completed by
cases (N = 201) and controls (N = 201) in clinic [14-17].
Estimates for each of four aspects of sun exposure were
determined (1. average adult sun exposure, 2. adult sun-
bathing score, 3. childhood sunburning, and 4. intermit-
tency score). A measure of the lifetime average sun
exposure in hours/day beginning at age 20 years is
referred to as the average adult sun exposure. Within each
age range a weighted average number of hours of exposure
per day was calculated. These averages were combined
across the age ranges as a weighted average with weights
proportional to the number of years the subject spent in
each age range. The adult sunbathing score serves as a
measure of time that is spent with a large area of the body
exposed to the sun. Nominal categories were converted to
a numerical score for each age range as never = 0, rarely =
1, occasionally = 2, and often = 3. A weighted average of a
subject's age-range-specific scores was calculated based on
the number of years spent in each age range. Childhood
sunburning was defined as erythema for >48 hours or blis-
tering and recorded as yes or no. The intermittency score
provides a measure of the proportion of sun exposure
received on non-working days. Intermittency was assessed
based on the absolute value of the difference between the
weekend and weekday hours of exposure for a subject. An
absolute value was determined for each of the age ranges
in which a subject had spent time, and the values were
combined across the age ranges as a weighted value based
on the number of years the subject spent in each age
range.
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Functional analysis

For CAT assays, GLI1 cDNA expression constructs that
included nucleotides 231 through the polyA tail were pre-
pared in the pM plasmid (Clontech, Palo Alto, CA) for
each of four haplotypes (c.2798G>A and ¢.3298G>C).
The sequence of all constructs was confirmed by auto-
mated sequence analysis. A total of 4 ug of DNA was trans-
fected into Hela cells in each experiment using
Lipofectamine reagent (Gibco-BRL, Rockville, MD),
including 1 pg of pG5CAT reporter plasmid (Clontech,
Palo Alto, CA), 1 ug of pSV-B-galactosidase (Promega,
Madison, WI), 0-250 ng of GLI1 effector plasmid, and
pBluescript carrier DNA (Stratagene, La Jolla, CA) in an
amount to make up the difference. CAT assays were per-
formed as described by the manufacturer (Clontech, Palo
Alto, CA). CAT activity was quantitated by scintillation
counter and was normalized by measuring [3-galactosi-
dase activity spectrophotometrically.

For transformation assays, pLTR-GLI1 expression con-
structs containing each of the haplotypes in the pLTR-2
vector were prepared [18]. The sequence of all constructs
was confirmed by automated sequence analysis. RK3E
cells (American Type Culture Collection CRL1895, Man-
assas, VA) were transfected with 3 pg of each of the pLTR-
GLI1 constructs using 12 pl of Lipofectamine reagent in
0.3 ml of OptiMEM (Gibco-BRL, Rockville, MD) [18].
Cells were incubated for 5 hr at 37 °C before the OptiMEM
was replaced with fresh culture media. Cells were incu-
bated for two to four weeks and foci were counted.

Statistical analysis

Hardy-Weinberg Equilibrium at each locus and estimates
of linkage disequilibrium between loci were assessed
using standard methods [19]. We assessed associations
between BCC and potential risk factors (e.g., genotypes or
sun exposure variables) using unconditional logistic
regression models that adjusted for the matching varia-
bles. Interactions between potential risk factors were
assessed similarly. We assessed associations between BCC
location and genotype or exposure variables using uncon-
ditional polytomous logistic regression models applied
only to cases. These models regarded the three possible
locations as outcomes and the other variables as predic-
tors. These polytomous models were also adjusted for the
matching variables. Both the case-control logistic regres-
sion and case-only polytomous logistic regression meas-
ured associations with odds ratios (OR), and provided
corresponding confidence intervals (CI) and two-tailed
statistical tests. All regression calculations were carried out
with SAS version 9.1 statistical software (SAS Institute,
Inc., Cary, NC).

Analyses of possible associations of sun exposure varia-
bles or genotype with skin type were always adjusted for
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case-control status. Association of childhood sunburning
with skin type was assessed with the Cochran-Armitage
trend test. Associations of continuous sun exposure varia-
bles with skin type were assessed using tests for linear
trend embedded in an analysis-of-variance model. Associ-
ations of GLI1 genotypes with skin type were assessed
with the Cochran-Mantel-Haenszel test. These calcula-
tions were carried out with either SAS version 9.1 or with
StatXact 6 (Cytel Software Corporation, Cambridge, MA).

Results

Characteristics of cases and controls

419 of 443 subjects (95%) interviewed met eligibility cri-
teria, and 402 of 419 eligible individuals (96%) were
enrolled. Buccal swabs, assessment of Fitzpatrick skin
type, and sun-exposure questionnaires were obtained
from 201 cases and 201 controls. Controls were fre-
quency-matched to cases for age and sex (Table 1). The
slight matching imbalances arose from an excess of female
controls in the 40-59 age class and an excess of cases of
both sexes in the >70 age class. The location of the BCC
was head/neck in 157 (78%), trunk in 25 (12%), and
extremity in 19 (10%). With the limited data available, we
saw no evidence that the site distribution was related to
either age or to sex.

GLII genotype and haplotype frequencies among cases
and controls

GLI1 genotype distributions for nucleotides ¢.2798 and
¢.3298 for both the cases and controls were consistent
with Hardy-Weinberg Equilibrium (cases: ¢.2798 p = 0.4,
€.3298 p = 0.8; controls: ¢.2798 p = 0.06, c.3298 p = 0.2).
The genotype frequencies were not significantly different
between the cases and controls at ¢.2798 or c.3298
whether adjusted for age and sex or not (Additional file
1). Estimated haplotype frequencies were also not signifi-
cantly different. Since we found no evidence for an associ-
ation between haplotype and BCC, we combined cases
and controls to estimate haplotype frequencies for the

Table |: Matching of Cases and Controls for Age and Sex

Cases Controls
N % N %

Total 201 100 201 100
Age (years)

20-39 14 7 10 5

40-59 55 27 65 32

60-69 56 28 58 29

>70 76 38 68 34
Sex

female 91 45 96 48

male 110 55 105 52
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population; ¢.2798A;c.3298C = 0.58, ¢.2798A;c.3298G =
0.001, ¢.2798G;c.3298C = 0.08, and ¢.2798G;c.3298G =
0.34.

To estimate variability in GLI1 genotype distributions
among different control groups, we compared the c.2798
and ¢.3298 genotype frequencies in our controls with a
published historic control group consisting of a healthy
Australian population with no evidence of BCC or other
cancers [10]. We did not find evidence for any differences
in the genotype distribution between our controls and the
historic controls at ¢.2798 (p = 0.6). However, we found
that the genotype distribution at ¢.3298 differed between
the two groups (p = 0.006).

It has been suggested that different mechanisms mediate
the development of truncal BCC compared with BCC on
other sites. Therefore, we looked for associations between
GLI1 genotype with primary site. We found no evidence
for an association between the c.2798 genotype and BCC
location (Additional file 2). However, the odds of devel-
oping BCC on the trunk compared with the head/neck
region was lower for carriers of the GC than the CC geno-
type at ¢.3298. The power of this association is limited by
the small number of truncal cases.

Skin type and sun exposure estimates for cases and
controls

Skin type distribution (N = 402) was not significantly dif-
ferent among cases and controls, whether adjusted for age
and sex or not (Additional file 3). Although OR estimates
point in the direction of a slight protective effect against
developing BCC for individuals with skin types III + IV
compared to I + II, we do not have evidence that skin type
is associated with BCC (p = 0.32 when adjusted for age
and sex). Skin type was not associated with BCC location
(Additional file 4), and we did not find evidence for inter-
actions between skin type and GLI1 genotype that affect
BCC risk (Additional file 5).

There was not an association between any of the sun-
exposure variables and BCC or between the adult sun-
bathing score or childhood sunburning and BCC location
whether adjusted for age and sex or not (Additional files
3, 4). Longer average adult sun exposure appeared to
reduce the odds of BCC developing on the trunk com-
pared to the head/neck (p = 0.05) (Additional file 4),
while intermittency appeared to be associated with BCC
site (p = 0.04) and with increased odds of developing BCC
on the extremities compared to the head/neck (p = 0.02)
(Additional file 4). There was not evidence for interac-
tions between patterns of past sun exposure and either
GLI1 genotype or haplotype (data not shown).
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Functional analyses of the different GLI1 haplotypes

We tested the ability of each of the GLI1 haplotypes to
activate transcription and transform RK3E cells in culture.
We found no significant differences in activity among the
four haplotypes by either of these assays (Figure 1). Intro-
duction of point mutations that change a specific residue
in the acidic transactivation domain of GLI1 significantly
reduced GLI1-induced transactivation of the pG5CAT
reporter (c.3345 T>G and ¢.3346 T>C [F1048A]), demon-
strating that the assay is sensitive enough to detect func-
tional differences caused by single amino acid changes.
These results support the conclusion that different GLI1
haplotypes function similarly.

Discussion

We did not find evidence that different GLI1 genotypes
alone or in combination with past sun exposure patterns
affect BCC risk. Additionally, we found no significant dif-
ferences in transcription activation or cell transforming
ability among the four GLI1 haplotypes.

The genotype distribution of our controls differed from a
historic control group at ¢.3298. It is unclear whether the
differences represent variation within the US Midwest
population or inherent differences in the genetic distribu-
tion between distinct populations world-wide. In either
case, it will be important to carefully select internal con-
trols for future studies that assess GLI1 genotype frequen-
cies.

It is not entirely surprising that skin type distribution and
sun exposure estimates did not differ between our cases
and controls since associations between these and BCC
have been inconsistently reported [14,16,17]. We recog-
nize that recall bias may limit the validity of the sun-expo-
sure estimates and reduce their value in determining
associations between BCC and specific past sun exposure
patterns. Similar to other studies, participants self-admin-
istered the questionnaire in clinic to reduce the introduc-
tion of bias. In contrast to the other studies, we compared
BCC patients to individuals who were generally well and
without BCC. It is not clear why this comparison would
give negative results. It is also possible that perceptions of
sunbathing practices or genetic heterogeneity differ
between individuals in different populations, sometimes
limiting the discriminating value of the questionnaire.
Finally, it is possible that UV radiation played a limited
role in the development of BCC in the population that
was assessed.

Conclusion

GLI1 genotypes function similarly and do not affect BCC
risk either alone or in combination with past sun exposure
patterns.
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Figure |

Different GLII haplotypes function similarly. A. Different GLII haplotypes activate transcription of a CAT
reporter comparably in Hela cells. The GLI| haplotypes are indicated along the abscissa with the amount transfected (ng)
in each experiment. CAT activity, normalized by measuring [3-galactosidase activity spectrophotometrically (Promega, Madison,
WI), is indicated on the ordinate. Bars represent the means derived from three independent experiments. *indicates p < 0.05
calculated using a test of difference between means, comparing 2798G;3298G with the corresponding amount of each of the
other haplotypes. B. Different GLII haplotypes transform RK3E cells comparably. The p value represents a test of dif-
ference between means, comparing 2798G;3298G with each of the other GLI| haplotypes.
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