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Abstract

Background: CDId-restricted iINKT cells are protective against murine melanoma B16F10-Nex2
growing subcutaneously in syngeneic C57BI/6 mice as inferred from the fast tumor development in
CDId-KO in comparison with wild type animals. CDId glycoproteins are related to the class |
MHC molecules, and are involved in the presentation, particularly by dentritic cells (DC), of lipid
antigens to iNKT cells. In the present work we attempted to identify the endogenous lipid mediator
expressed in melanoma cells inducing such immunesurveillance response and study the possibility

of protecting animals challenged with tumor cells with lipid-primed DC.

Results: Crude cytosolic and membrane fractions from in vivo growing melanoma contained iNKT-
stimulating substances. Lipids were then extracted from these cells and one of the fractions (i.e.
F3A) was shown to prime bone marrow-derived dendritic cells (BMDC) to stimulate iNKT murine
hybridoma (DN32D3) cells to produce IL-2. The active fraction was analyzed by electrospray
ionization-mass spectrometry (ESI-LIT-MS) and both iGb3 and iGb4 were identified along with
GM3. When iGb3 was incubated with BMDC and tested with DN32D3 cells, IL-2 was equally
produced indicating iINKT cell activation. GM3 consistently inhibited this response. To assess the
antitumor response-induced by iGb3, a cytotoxicity assay in vitro was used with [3H]-thymidine
labeled B16F10-Nex2 cells. At target/effector (iGb3-activated iNKT) cell ratio of 100-!-100-4tumor
cell lysis was shown. The antitumor activity in vivo was tested in mice challenged i.v. with BI6F|0-
Nex2 cells and treated with iGb3- or a-galactosylceramide-primed DCs. A 4-fold lower tumor load

in the lungs was observed with either treatment.

Conclusion: Our results show the expression of globo and isoglobohexosylceramides in murine
melanoma B16F10-Nex2. The expression of iGb3 and its precursor, iGb4, on tumor cells may
prime an effective iINKT cell-dependent antitumor response, modulated negatively by GM3 which
is also produced in these cells. iGb3-primed BMDC exerted a significant iNKT cell-mediated anti-

tumor activity in mice challenged with melanoma cells.
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Background

Murine tumors are poorly immunogenic in syngeneic
mice that display the same set of major antigens and show
a high degree of autologous antigen tolerance. Tumor
cells grow silently in the syngeneic host until the immune
system is activated either by exogenous elicitors or endog-
enous products of apoptotic and necrotic tumor cells. The
host outcome is then determined by the imbalance
between tumor cell destruction and growth, in most cases
tending to the second condition, with deadly metastases.
Attempts at combating the tumor cells have used proin-
flammatory cytokines, particularly IL-12. A gene gun-
mediated skin transfection with IL-12 gene resulted in
regression of established primary and metastatic syn-
geneic murine tumors [1]. The protective effect by IL-12
required CD8*, but not CD4+ T cells. A tumor-specific
immunological memory against a secondary tumor chal-
lenge was also observed. It is clear now that IL-12 stimu-
lates diverse resistance mechanisms in tumors depending
on the cell type, tumor microenvironment, and mouse
strain [2]. It is well recognized the association of 1L-12
with NK cells to produce IFN-y, a potent antitumor agent
acting directly against tumor cells [3] or upon macro-
phage activation. This seems to represent the immunolog-
ical core of the defense mechanisms against syngeneic
murine melanoma B16F10. Cui et al. [4] examined the
immune cellular response in B16 melanoma, Lewis lung
carcinoma, and FBL3 erythroleukemia elicited by IL-12
administration and found that Va14-Ja.18NKT cells were
mainly implicated in tumor rejection.

Natural killer T (NKT) cells are subsets of lymphocytes
expressing the T-cell receptor (TCR) and surface markers
characteristic of NK cells such as NK1.1. Type I NKT cells
express an invariant T cell receptor a-chain, Va 14-Ja. 18
in mice and Va 24-Ja 18 in humans [5]. These cells are
activated by lipid antigens presented by CD1, a molecule
similar to MHC class I molecule. Type II NKT cells like-
wise require CD1 but have a more diverse TCR repertoire
and do not recognize the most potent glycolipid known to
activate NKT cells, the a-galactosylceramide (o-GalCer),
derived from the marine sponge Agelas mauritianus.
Rodents have a single CD1d gene whereas humans have 3
more CD1 antigen-presenting molecules. NKT cells have
innate-like responses which may include secretion of both
IFN-y (Th-1) and IL-4 (Th-2) cytokines. Seino et al [6]
showed that a-GalCer induced expansion of Va14 NKT
cells promoting inhibition of murine lung cancer. Toura
et al. [7] showed that a-GalCer-pulsed dendritic cells
(DC) exerted a potent antitumor cytotoxic activity against
tumor metastasis mediated by NKT cells. Besides a-Gal-
Cer, many other lipids have been described to activate
NKT cells such as glycosphingolipids from Sphingomonas
spp [8], the galactosyldiacylglycerol of Borrelia burgdorferi
[9], surface lipophosphoglycan of Leishmania donovani
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[10], and the Mycobacterium leprae phosphatidylinositol
tetramannoside [11].

A lysosomal glycosphingolipid, isoglobotrihexosylcera-
mide (iGb3) was found to be stimulatory in both mouse
and human NKT cells [12]. Its expression in peripheral tis-
sues could induce NKT cell activation under pathophysio-
logical conditions such as cancer and autoimmune
disease [13]. The presence of iGb4 was also detected in
human thymus using mass spectrometry (MS) [14]. Mice
deficient in B-hexosaminidase B (a lysosomal enzyme that
converts iGb4 into iGb3) showed impaired NKT-cell
development [12]. More recently, MS has been used to
generate a database for glycosphingolipids from mouse
thymus and among the identified species, only iGb3 is a
stimulatory ligand of NKT cells [15].

In our study, we explored the anti-tumor effect of NKT
cells and identified iGb3 and iGb4 as glycolipids from
murine melanoma B16F10- Nex2 cells, the former being
able to activate NKT DN32D3 hybridoma cells to exert
antitumor responses in vitro and in vivo.

Methods

Reagents

Isoglobotri- and tetrahexosylceramide (iGb3 and iGb4)
were purchased from Alexis - Biochemical, PA and mono-
sialoganglioside 3 (GM3) from Matreya, PA. The a-galac-
tosylceramide (o-GalCer) was provided by Dapeng Zhou,
MD Anderson Cancer Center, Houston, TX. Solvents and
reagents used for high performance thin layer chromatog-
raphy (HPTLC) were purchased from Merck, Germany:
methanol, chloroform, precoated Silica Gel-60 HPTLC
plates (10 x 10 cm); orcinol reagent (0.5 g orcinol in 100
ml 3 M sulfuric acid); resorcinol reagent (200 mg resorci-
nol in 80 ml HCI and 0.25 mL 0.1 M copper sulfate, and
water to 100 ml); iodine.

Mice

Inbred male 6-8 week-old C57Bl/6 mice (WT) were pur-
chased from the Center for Development of Experimental
Models, Federal University of Sao Paulo (UNIFESP).
CD1d knockout (KO) mice of C57Bl/6 genetic back-
ground were provided by Ricardo T. Gazzinelli (Rene
Rachou Institute, Fiocruz, Belo Horizonte Brazil). KO ani-
mals were bred and maintained at the Animal Facility of
Cellular Biology Division/Experimental Oncology Unit,
UNIFESP. All animals were maintained in spf (specific
pathogen-free) conditions, and were used in accordance
with Animal Ethics Committee of UNIFESP, protocol no.
01561/2004.

Cell Lines and Culture Conditions
The murine melanoma B16F10-Nex2 was subcloned at
the Experimental Oncology Unit (UNONEX) from the
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cell line B16F10 obtained from Ludwig Institute for Can-
cer Research (Sao Paulo, Brazil). CD1d-transfected B6
mouse C57SV fibroblasts [16] and the NKT DN32D3
hybridoma [17] were provided by Ricardo T. Gazzinelli
(Fiocruz, Belo Horizonte, Brazil). Hybridoma cells were
maintained in 50% RPMI-1640 medium and 50% o-
MEM medium (both from GIBCO), supplemented with
5% heat-inactivated fetal calf serum (FCS), 2 mM L-
glutamine, 100 U/ml penicillin/streptomycin and 50 uM
2-mercaptoethanol (all reagents from Invitrogen, Brazil).
Other cell lines were maintained in RPMI-1640 medium
supplemented with 10% FBS, 10 mM N-(2-hydroxye-
thyl)-piperazine-N'-2-ethanesulphonic acid (HEPES), 24
mM sodium bicarbonate (both from Sigma, St.Louis,
MO), 40 mg/ml gentamycin (Schering-Plough, Sao Paulo,
Brazil), pH 7.2. All cells were maintained at 37°C in
humidified atmosphere containing 5% CO,.

Dendritic cell differentiation from murine bone marrow
progenitors (BMDC)

Femurs from C57Bl/6 WT and KO mice were collected,
muscular tissue removed, and bones were washed sequen-
tially with 70% ethanol, iodide alcohol and PBS supple-
mented with gentamycin 40 mg/ml, penicillin 100 U/ml,
streptomycin 100 pg/ml (PBS gen/pen/str). After cutting
both ends of the femurs, the bone marrow was flushed
out with PBS gen/pen/str and the cells were centrifuged at
1,200 rpm for 5 min. The cells were suspended in 10 ml/
femur of RPMI 1640 supplemented with 10% of FCS,
non-essential aminoacids (50x), 50 uM 2-mercaptoetha-
nol (all from Gibco, Minneapolis, MN), 30 ng/ml murine
rGM-CSF, and 10 ng/ml murine rIL-4 (both cytokines
from PeproTech, Mexico) and placed in Petri tissue cul-
ture dishes (100 mm, Corning, NY). The cultures were fed
with complete medium every 3 d after gently swirling the
plates and replacing 80% of the spent medium. After 6-7
days of culture, large numbers of typical dendritic cells
were released. These cells were thereafter pulsed with a-
GalCer, iGb3 or lipid fractions extracted from B16F10-
Nex2 tumor cells.

Phenotypic analysis of mature BMDC

Bone marrow-derived dendritic cells (BMDC) were plated
in 96-well plates (TPP, Switzerland) and stimulated with
200 ng/ml LPS (Sigma, Sao Paulo, Brazil) or 200 ng/ml
LPS associated to IFN-y 100 U (PeproTech, Mexico) for 24
h. Cells were harvested and incubated with normal
murine serum for 30 min on ice to block Fc receptors and
inhibit nonspecific staining. After 2 rounds of PBS wash-
ing, 5 x 105 to 100 cells/sample were incubated for 1 h on
ice with combinations of the following antibodies (1:30
dilution), purchased from Pharmingen (San Diego, CA):
anti-CD86 (B7.2)-PE, anti-MHC-II-FITC, anti-CD1d-
FITC, biotinylated anti-CD11c (revealed with streptavi-
din-PE). Surface fluorescence was measured on a FACS
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Calibur flow cytometer (BD Biosciences, Sio Paulo, Bra-
zil), and data analyzed by the CellQuest Pro software
(Becton Dickinson, San Jose, CA).

Subcellular fractions from in vivo grown murine melanoma
B16F10-Nex2 cells

WT mice were inoculated subcutaneously with 5 x 104
B16F10-Nex2 murine melanoma cells. Tumor volumes
were measured every 3 days using a caliper and the for-
mulaV=0.52 (D x d2), where D and d are long and short
tumor diameters respectively. Tumors were excised at
1,500 mm3 and maintained frozen at -80°C. Cytosolic and
membrane fractions were obtained by freezing-thawing
tumors in liquid nitrogen. Lysed tumors were suspended
in 50 ml PBS, filtered in nylon mesh and centrifuged at
441 g for 5 min for debris removal. The supernatant was
then submitted to ultracentrifugation at 100,000 g for 90
min. The cytosolic fraction is represented by the resulting
supernatant, and the pellet resuspended in RPMI 1640
medium supplemented with 10% FCS and 2% of DMSO,
contained the membrane fraction. Total protein was meas-
ured in both fractions, as described [18]. To isolate lipid
fractions from B16F10-Nex2 tumor cells, frozen tumors
were lyophilized and 200 mg (dry weight) were extracted
3x with chloroform/methanol (2:1, v/v). The suspension
was centrifuged in glass tubes (Pyrex) for 30 minutes at
1,764 g, the supernatant was collected, dried in nitrogen
stream and this fraction was named F1A. The pellet was re-
extracted 3x with chloroform/methanol/water (1:2:0.8, v/
v/v) and the material was processed as described for F1A.
This fraction was named F2A. From FI1A, we obtained 2
more fractions by Folch's partition [19]. The upper aque-
ous phase was named F3A and the lower phase F4A. F4A
was  extracted with  chloroform/methanol/water
(1:100:100, v/v/v) and centrifuged in glass tubes for 30
minutes at 1,764 g and 4°C, generating two more frac-
tions, F5A (upper phase) and F6A (lower phase). All 6
fractions were solubilized in chloroform/methanol (1:1,
v/v) and desalted on C18 Sep-Pac Plus Columns (Waters
Corporation, Millford, MA), according to the manufac-
turer's instructions. All supernatants were dried under
nitrogen stream and stocked in a glass desiccator before
use (Fig. 1).

HPTLC resolution of fractions F3A and F4A

Fractions F3A and F4A were dissolved in chloroform/
methanol (1:1, v/v), sonicated on a water bath for 30 sec-
onds, and 1 mg/ml (dry weight) was applied on HPTLC
silica plates (Sigma). The mobile phase was chloroform/
methanol/water (60: 35: 8, v/v/v). Run HPTLC plates were
revealed with orcinol reagent (for hexose detection),
resorcinol-HCL reagent (for sialyl-containing carbohy-
drates) and iodine vapor (for total lipids). Ganglioside
GM3 and isogloboside iGb3 (5 png/ml), used as standards,
were visualized with these reagents, and Ry values deter-
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Scheme for lipid extraction of B16F10-Nex2 murine melanoma. Six fractions (FIA to F6A) were obtained from

lyophilized subcutaneously grown tumors.

mined. Tumor F3A and F4A fractions were chromato-
graphed and at the Ry values corresponding to GM3 and
iGb3 the silica was scraped off and extracted with chloro-
form: methanol (1:1, v/v), then centrifuged for 30 min at
1,764 g. The supernatant was collected and dried under
nitrogen stream. Preparative fractions isolated from F3A
and F4A chromatographies were called iF3A and iF4A,
respectively. The iF3A and iF4A fractions were dissolved in
chloroform: methanol (1:1, v/v), sonicated for 30 sec-
onds, resolved on silica gel 60 A TLC plates (10 x 10 cm,
0.25 mm, Merck) and compared with GM3 and iGb3
standards.

In vitro stimulation of NKT DN32D3 hybridoma cells with
-GalCer, iGb3 and fractions of tumor Bl6F10-Nex2

On the 6t day of ex-vivo culture, BMDCs were stimulated
with a-GalCer (0.01-10 ng/ml) in complete medium
(RPMI 1640 supplemented with 10% FCS, 50 uM 2-mer-
captoethanol, 2 mM glutamine, gentamycin 40 mg/ml,
penicillin 100 U/m], streptomycin 100 pg/ml, and 10 mM
HEPES) for 24 h. The NKT hybridoma DN32D3 (5 x 104)
cells were co-cultured with 5 x 104 BMDC, stimulated or
not, in 96-well flat bottom microplates (TPP) in tripli-
cates, in a total volume of 200 pl/well. After 18 h at 37°C
and 5% CO,, supernatants were collected for IL-2 meas-
urement by ELISA. The same method was applied for
stimulation of BMDCs with iGb3 (0.5-100 pg/ml),
cytosolic fraction (0.008-3.41 mg protein/ml), membrane
fraction (0.007-1.1 mg protein/ml), F3A fraction (15-
1,000 pg/ml), iF3A fraction (1-100 pg/ml) and iF4A frac-
tion (5-50 pg/ml). A few experiments were also carried

out with CD1d-transfected fibroblasts as antigen-present-
ing cells, stimulated as described for BMDCs.

Measurement of IL-2 by ELISA

Enzyme-linked immunosorbent assay (ELISA) plates were
coated with 2 pg of murine anti-IL-2 monoclonal anti-
body in 50 pl binding buffer (0.1 M Na,HPO,, pH 9.0)
and incubated overnight at room temperature. After 3
rounds of washings (with PBS containing 0.05% Tween-
20), plates were blocked for 2 h at room temperature, with
PBS containing 1% bovine serum albumin and 0.05%
Tween-20. After washing, 50 pl/well of murine recom-
binant IL-2 at 0.032-4 ng/ml diluted in PBS-1% BSA, or
100 pl/well of culture supernatant were added and incu-
bated overnight at 4°C. Plates were washed and biotin-
conjugated murine anti-IL-2 monoclonal antibody (50
ng/100 pl/well) was added, following incubation for 2 h
at room temperature, washing and further incubation for
1 h at room temperature with 50 pl/well of HRP-strepta-
vidin (1:1000, diluted in PBS - 1% BSA). Reaction was
revealed by addition of 50 pl/well of 5 ml citrate-phos-
phate buffer pH 5.5, 2 ml water, 2 mg OPD and 10 pl
H,0,. A solution of 4N H,SO, (50 pl/well) was used to
terminate the reaction. Absorbance was measured at 490
nm. All reagents were purchased from Pharmingen, San
Diego, CA.

Separation of neutral and negatively charged
glycosphingolipids

Tumor lysate and F3A fraction were chromatographed in
a strong anion-exchange (SAX) resin (POROS 50 HQ,
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Applied Biosystems, Sao Paulo, Brazil) for separation of
neutral and charged glycosphingolipids. The column was
previously washed with 4 ml methanol, 2 ml 80% ace-
tonitrile/0.05% trifluoroacetic acid, and finally equili-
brated with 10 ml methanol. Samples were diluted to a
final volume of 5 ml with 100% methanol and loaded
into the column. After washing with 6 ml methanol, elu-
tion was carried out with 6 ml of 250 mM ammonium
acetate in 100% methanol. Neutral glycolipids were
recovered in the unbound fraction, whereas the eluted
fraction was composed mainly of gangliosides. All sam-
ples were dried under highly pure N, stream. The eluted
fraction was desalted in a 3-ml reverse phase cartridge
(Discovery DSC-18, Supelco, Bellefonte, PA, USA). The
cartridge was washed with 4 ml methanol, equilibrated
with 5 ml deionized water, and the samples were loaded
in 5 ml 0.1 M KCI. After washing with 10 ml water, the
samples were eluted with 10 ml methanol and dried
under highly pure N, stream.

Permethylation of glycosphingolipids

All permethylation reagents were purchased from Sigma-
Aldrich, St. Louis, MO. Permethylation of glycosphingoli-
pids was carried out as described [20]. Briefly, the samples
were dissolved in 150 puL dimethylsulfoxide (DMSO), a
few milligrams of powdered NaOH were added, and the
mixture was vortexed vigorously. Then, 80 uL of
iodomethane was added and the reaction was carried out
for 1 h at room temperature in an orbital shaker. The reac-
tion was then quenched with 2 ml water and 2 ml dichlo-
romethane was added before the mixture was vortexed.
After brief centrifugation, the aqueous phase was removed
and the organic phase was washed twice with water. The
final organic phase was dried under N, and suspended in
200 pl pure methanol for MS as follows.

Electrospray ionization-linear ion trap-mass spectrometry
(ESI-LIT-MS) analysis

Permethylated glycosphingolipids were analyzed by electro-
spray ionization-linear ion trap-mass spectrometry (ESI-LIT-
MS) as described by Li et al. [14,21]. Briefly, permethylated
samples were loaded in static nanospray tips (New Objec-
tive) and analyzed in a linear ion-trap mass spectrometer
(LTQ XL with ETD, Thermo Fisher Scientific, San Jose, CA).
The spray voltage was set from 0.7 to 1.5 kV, varying accord-
ing to the tip. After detecting the intact permethylated glycol-
ipids by MS!, tandem fragmentation (MS2-MS?*) of
individual glycolipid species was carried out manually, or by
total-ion mapping (TIM) of m/z 667 (marker of Gb3 and
iGb3) or m/z 912 (marker of Gb4 and iGb4) [14,21]. The
isolation window was set at 3 atomic mass units (a.m.u.) for
manual fragmentation and 1 a.m.u., for TIM. The collision
energy was set to 60% for either manual or TIM analysis. The
spectra were annotated manually. To calculate
the amount of iGb3 in fraction F3A we used the following
equation: A(iGb3)sample = (A(IGb3)y11cor + A(iGb3)s71)/
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[A(IGDb3))11cor + A(IGb3);,, + (2x A(Gb3)s,, where
A(iGbS)lecorr = A(iGb3)predicted/A(iGb3)max using iGb3 standard’
where A(iGb3),,; and A(iGb3),,, are the abundance (A) of
iGb3 markers m/z 211 and m/z 371, and A(Gb3),,, that of
Gb3 marker m/z 329 [21].

In vitro cytotoxicity assay

The cytotoxic effect by activated NKT DN32D3 hybrid-
oma cells on B16F10-Nex2 tumor cells was evaluated as
described [22]. B16F10-Nex2 cells (2 x 105) were incu-
bated in 25 cm3 flasks with 0.5 pCi of [3H]| thymidine
(NEN, Boston, MA) for 24 h. NKT hybridoma DN32D3
cells were activated by previous incubation with DC
primed with iGb3 (20 pg/ml) or unprimed DC for 4-6 h.
Activated NKT cells and [3H] B16F10-Nex2 cells were co-
cultured for 4 h on 96-well flat-bottom microtiter plates at
target/effector cell ratios of 1/12 to 1/400, in triplicates.
All cells were collected in a Cell Harvester and radioactiv-
ity was measured with a B-counter. The specific cytotoxic-
ity (% lysis) was calculated using the formula: (E-C)/E x
100, where E is the radioactivity (cpm) in the glycolipid-
primed DC system and C the control radioactivity value in
the unprimed DC system. Values were subtracted from the
maximum radioactivity value of unchallenged labeled
melanoma cells.

In vivo experiments

WT and CD1d-KO animals (5 per group) were inoculated
subcutaneously with 5 x 104 B16F10-Nex2 tumor cells, on
the right flank, and tumor development was observed
every 2 days for 67 days. Animals were sacrificed at maxi-
mal tumor volumes of 3 cm3. To verify the protective
effect of activated BMDCs on the pulmonary metastatic
melanoma model, WT animals were injected intrave-
nously with 5 x 104 murine melanoma cells on day 0, and
on days 2 and 4 with 5 x 105 BMDCs (from WT mice) acti-
vated in vitro for 24 h with 200 ng/ml a-GalCer, or 20 pg/
ml iGb3. A group of WT animals was treated with BMDCs
obtained from CD1d-knockout mice stimulated with 20
pg/ml iGb3. Animals were sacrificed on day 14 and the
number of lung nodules was quantified using a stereomi-
croscope. Experiments were repeated twice.

Statistical analysis

Experiments in vitro and in vivo were analyzed using the
Student's t-test. The animal survival experiment in CD1d-
KO and WT animals, was analyzed by Kaplan-Meier and
logrank test. Values of p < 0.05 were considered statisti-
cally significant.

Results

Survival of C57BIl6 WT and CD Id-KO mice upon
challenge with melanoma cells

Mice aged 6-8 weeks were injected subcutaneously with 5
x 104 B16F10-Nex2 melanoma cells and tumor growth
was recorded every 2 days during 70 days. All CD1d-KO
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mice were dead or were sacrificed with tumors at the max-
imum size allowed after 32 days. In the WT mice, tumor
development was significantly slower with 20% of mice
still alive after 70 days (Fig. 2). This result suggests that
CD1d-dependent effector cells (e.g. NKT cells) play an
important role in anti-tumor progression in this syngeneic
model.

Activation of DN32D3 hybridoma cells

We have used NK1.1* DN32D3 cells (Va14-Ja18/VB8
NKT mouse hybridoma) for stimulation in vitro. CD1d-
transfected fibroblasts, 5 x 104, plated on 96-well plate,
were pulsed with different concentrations of a-galactosyl-
ceramide (a-GalCer), a classical activator of NKT cells, for
24 h. DN32D3 cells (5 x 104 cells/well) were added to a
final volume of 200 pul in RPMI 1640 and co-cultured with
the fibroblasts for 18 h. The culture supernatant was then
collected and production of IL-2 was quantified. Alterna-
tively, we used BMDCs for antigen presentation. BMDCs
are the most efficient cell type able to present the endog-
enous ligand iGb3 that stimulates NKT cells (Zhou et al.,
2004). These cells were cultivated with 30 ng/ml GM-CSF
and 10 ng/ml IL-4 for 6 days. Half of these cells double
stained for CD11¢-PE and CD1d-FITC and this frequency
further increased after stimulation with LPS and IFN-y.
Incubation with the glycolipid also succeeded in activat-
ing NKT cells to produce IL-2 (not shown).

100 - — WT mice
—— CD1d -KO mice

80
X
< 60
2
>
-
3 40 -
[9p]

20 A

0 T T
50 60 70

Days after injection

Figure 2

CD I d-knockout mice allowed faster subcutaneous
development of B16F10-Nex2 tumors than WT
mice. Wild type mice (--) and CD I d-knockout mice (----)
were injected subcutaneously with 5 x 104 viable BI16F10-
Nex 2 cells. Animal survival was registered for 70 days. Mice
were sacrificed when tumors reached 3,000 mm3. Results are
representative of 4 independent experiments. p < 0.001.
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Stimulation of DN32D3 cells by cytosolic and membrane
fractions of B16F10-Nex2 cells

B16F10-Nex2 cells (5 x 10*) were injected subcutaneously
in C57Bl/6 mice and the tumor was excised when its vol-
ume reached 1,500 mm3. The tumor cells were lysed by
freezing/thawing, centrifuged at low speed and the super-
natant ultracentrifuged at 100,000 g to yield cytosolic and
membrane fractions that were tested for stimulation of
NKT cells. Both fractions were added to BMDC for 24 h
and co-cultured with NKT cells.

Stimulation of NKT cells depended on the fraction con-
centration (measured as mg of protein) with rather
restricted amounts for optimal IL-2 production (Fig. 3).
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Figure 3

Stimulation of DN32D3 NKT cells by cytosolic and
membrane fractions of murine melanoma B16F10-
Nex2. BMDCs were pulsed with different concentrations of
(A) Cytosolic and (B) Membrane fractions, both extracted
from in vivo growing murine melanoma B16F[0-Nex2.
Primed BMDCs were co-cultured with NKT hybridoma cells
as described in Material and Methods, and the IL-2 produc-
tion was measured in the supernatants by ELISA. Ctr,
DN32D3 cells stimulated with untreated BMDCs.
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Lipid extraction from B16F10-Nex2 tumor cells and their
ability to activate NKT cells

The lipid fractions were obtained from lyophilized subcu-
taneously grown melanoma cells as described in Fig. 1. All
fractions desalted in SepPak C18 were tested for stimula-
tion of DN32D3 NKT cells. At 250 pg/ml the F3A fraction
stimulated NKT cells to produce 1 ng/ml of IL-2. At lower
concentrations (15-30 pg/ml) 600 pg/ml of IL-2 was
secreted (not shown). It was hypothesized that both stim-
ulatory and inhibitory lipids could be present in this frac-
tion. As to fraction F4A, a restricted concentration, 28 pg/
ml, was stimulatory with low IL-2 production. The other
fractions did not give significant results and some of them
inhibited the background stimulation of NKT cells (not
shown).

Putative stimulatory and inhibitory components of
fractions F3A and F4A

HPTLC analysis of fractions F3A and F4A showed a major
component stained with orcinol (for sugars in general)
and resorcinol (for sialic acid) with R; similar to GM3.
Together with GM3, another component appeared which
showed a running Ry similar to iGb3 already reported to
stimulate NKT cells [12,13]. To detect the latter, lipid frac-
tions were resolved by preparative HPTLC developed with
C-M-W (60:35:8, v/v/v), The TLC samples with R corre-
sponding to Gb3/iGb3 were scrapped off and were iso-
lated by washing with C-M (2:1, v/v) and centrifugation,
further washing (3x) of pellet with C-M (1:1, v/v) and
finally 3 washes with C-M (1:2, v/v). All washes were dried
and plotted on a new HPTLC plate. On Fig. 4A, a single
band of R; similar to the iGb3 standard was stained with
orcinol (iF3A). The same procedure was used for fraction
F4A yielding iF4A (Fig. 4B). Fractions iF3A (5 pg/ml) and
iF4A (25 pg/ml) stimulated NKT cells to produce 60 pg/
ml and 150 pg/ml of IL-2, respectively. In contrast, GM3
markedly inhibited the basal production of IL-2 by
unstimulated NKT cells, even at 0.035 ng/ml (not shown).

ESI-LIT-MS analysis of fraction F3A lipid components

Fraction F3A was permethylated and examined by ESI-
LIT-MS. Several singly-charged ion species were observed
at the 1300-1600 m/z range (Fig. 5A). These ions were
compatible with GM3 species bearing N-acetyl- or N-glyc-
olylneuraminic acid (AN-Ac/Me-N-glycolyl = 30 m/z) and
different lipid moieties. To confirm this initial prediction,
the major peak at m/z 1372 (monoisotopic mass at m/z
1371.8) representing a singly-charged ion species with
sodium adduct ([M - H + 2 Na|*) was subjected to MS?2
and MS? fragmentation (Fig. 5B-C). The MS? spectrum
revealed a major daughter-ion at m/z 996.7, resulting from
the loss of N-acetylneuraminic acid (NANA). Also, two
other ions were observed at m/z 824.4 and 449.2, most
likely corresponding to sodiated NANA-Hex-Hex and
Hex-Hex fragments, respectively (Fig. 5B). To confirm the
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F3A iF3A  iGb3 GM3 F4A iF4A iGb3 GM3

Figure 4

Identification and isolation of GM3 and iGb3
fromF3A and F4A. A) Fractions 20 ug, GM3 5 pg and
iGb3 5 pg were chromatographed and stained with orcinol.
The region corresponding to Gb3/iGb3 in an F3A prepara-
tive HPTLC was scraped off and extracted with C-M (I:1).
The concentrated extract was examined by HPTLC and
revealed with orcinol (iF3A). B) The same procedure as in
(A) was used to examine F4A and generate iF4A. Arrows
indicate bands with R; corresponding to GM3 (double band)
in F3A and F4A; * the same for Gb3/iGb3.

GM3 nature of m/z 1372, the major daughter-ion species
observed at m/z 996.7 was subjected to MS3 fragmentation
(Fig. 5C). Two daughter-ions observed at m/z 792.6 and
548.6, most likely corresponding to the sodiated Hex-Cer
and C34:1(OH),-ceramide fragments, respectively, cor-
roborated the presence of a ceramide moiety, probably
containing sphingosine (d18:1) and palmitic acid
(C16:0) (Fig. 5C). Fig. 5D depicts the key fragments
observed in the MS2 and MS3 spectra of the major GM3
species of fraction F3A.

Due to the high amount of GM3 species, the original
(non-permethylated) fraction F3A was fractionated using
a SAX column to separate neutral and charged glycosphin-
golipids. The neutral glycosphingolipids (NGSLs) recov-
ered in the flow-through fraction were permethylated
(pMe) and analyzed by ESI-LIT-MS. Two major peaks at
m/z 1215 (pMe Galo1-3/4GalpB1-4GlcB1-1Cer) (Fig. 6A)
and at m/z 1460 (pMe GalNacf1l-4Galal-3/4Galp1-
4GlcB1-1Cer) (Fig. 6C) were detected by total-ion map-
ping (TIM) of m/z 667 (marker of Gb3 and iGb3) or m/z
912 (marker of Gb4 and iGb4). The fragmentation of m/z
1215 gave rise to m/z 667 (pMe Gala.1-3/4GalB1-4GIcB1-
) with loss of ceramide, followed by loss of glucose (Glc)
corresponding to m/z 445 (pMe Gala1-3/4Gal-). The last
fragmentation gave rise to m/z 371 (1.3% relative abun-
dance) and m/z 211 (3.4% relative abundance), which are
markers characteristic of iGb3, as well as the predominant
peak at m/z 329 (100% of relative abundance), a marker
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Electrospray ionization-linear ion trap-mass spectrometry (ESI-LIT-MS) of the major glycolipid species from
F3A fraction. A) MS! spectrum of permethylated F3A. B) MS2 spectrum of the singly-charged ion species ([M -H + 2 Na]*) at
m/z 1371.8 observed in A. C) MS3 spectrum of the major daughter-ion species at m/z 996.7 observed in B. D) Summary of key
fragments observed in the MS? and MS3 spectra of permethylated GM3 species at m/z 1372. For simplification, the proposed
GM3 structure is depicted without permethylation. m/z, mass to charge ratio.
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ESI-LIT-MS analysis of GM3-depleted permethylated neutral glycolipids of F3A fraction. A) Total ion-mapping of
miz 667, marker of Gb3 and iGb3. B) MS* spectrum of the daughter-ion m/z 445 obtained after MS3 fragmentation (not shown)
of the parent-ion at m/z 1215 observed in A. The fragments at m/z 371 (3.4%) and m/z 211(1.3%) are typical of iGb3, whereas
the fragment at m/z 329 (100%) is a marker of Gb3. C) Total ion-mapping (TIM) of m/z 912, marker of Gb4 and iGb4. D) MS*
spectrum of the daughter-ion m/z 43| obtained after MS3 fragmentation (not shown) of the parent-ion at m/z 1460 observed in
B . The fragments at m/z 329 (2.5%), m/z 357 (1.4%), and m/z 369 (2.7%) are characteristic of iGb4, whereas the fragment at m/

z 315 (100%) is a marker of Gb4. m/z, mass to charge ratio.

of Gb3 (Fig. 6B). These peaks and those at m/z 227, 259,
315,413, and 415 are consistent with those found by Li et
al. (2008), who described the fragmentation of the nonre-
ducing terminal disaccharide-1-ene of iGb3 and Gb3. The
results showed, therefore, that F3A contains a mixture of
iGb3 and Gb3. The amount of iGb3 in the sample was cal-
culated (see equation below), corrected according to the
A(iGb3),;; in iGb3 (expected/maximum = 100/79 = 1.27,
correction factor).

A(iGb3)ymple = (A(IGb3) 11 corr + A(IGb3)371) /[A(IGD3) 211 corr + A(IGb3)37; + 2x
A(Gb3) 0] = (1.65 + 3.4) /[1.65 + 3.4 + 2x 100] = 0.025(2.5%).

Fragmentation of m/z 1460 (Fig. 6D) involved primarily a
loss of ceramide giving rise to m/z 912 (pMe GalNacp1-
4Gala1-3/4Galp1-4GlcB1-), followed by loss of glucose,
m/z 690 (pMe GalNacB1-4Galal-3/4GalfB1-), and finally
loss of N-acetyl-galactosamine, with remaining pMe dis-
accharide Gala1/4Gal and Gala1/3Gal (m/z 431). Frag-
mentation  of  these  generated  markers of
isoglobotetraosylceramide (iGb4), m/z 329 (2.5%), m/z
357 (1.4%) and m/z 369 (2.7%), and a major peak char-
acteristic of globotetraosylceramide (Gb4) at m/z 315. Dif-
fering from the MS analysis of iGb3/Gb3, that of iGb4/
Gb4 is not quantitative. A summary of the fragmentation
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sequences of permethylated NGSLs from fraction F3A is
shown on Fig. 7.

Stimulation of DN32D3 cells with iGb3

Since iGb3 was identified in F3A fraction of melanoma
cells and since the fraction also contained GM3 which
exerted an inhibitory activity on NKT cell stimulation we
tested the effect in this system of purified iGb3. On Fig. 8A
it is shown that iGb3 was able to stimulate NKT cells in a
dose-dependent manner being presented by BMDCs.
When compared to a-GalCer, however, iGb3 was 100-
fold less potent in terms of NKT cell stimulation and IL-2
production, but could still be used in microgram quanti-
ties for in vivo tests.

DC cells incubated with 1 pg/ml of iGb3 and analyzed by
FACS showed increased expression (50%) of CD1d and
slight increase of CD80 and CD86 (data not shown).

In vitro iGb3 cytotoxicity assay in BI6F10-Nex2 cells
B16F10-Nex2 cells were incubated with [3H] thymidine
for 24 h and co-cultured for 4 h with DN32D3 NKT cells
activated by BMDCs primed with iGb3 (20 pg/ml) or
unprimed. The NKT (effector) cells were added at rates of
12 to 400 cells per tumor cell (target). At 100-200 iGb3-
activated NKT effector cells to 1 target cell ratio there was
a net 40% lysis of the tumor cells (Fig. 8B) after subtrac-
tion of the control lysis with no exogenous activation of
NKT cells.

http://www.molecular-cancer.com/content/8/1/116

In vivo anti-tumor protection of BMDC primed with iGb3
and -GalCer

Effective treatment of mice challenged intravenously with
B16F10-Nex2 cells was investigated using BMDCs primed
with iGb3 (20 pg/ml) and o-GalCer (200 ng/ml). Mice
were injected with 5 x 104 melanoma cells/100 pl/animal
and treated on days 2 and 4 with BMDCs primed with gly-
colipids. On Fig. 9A we show that animals treated with a-
GalCer and iGb3-primed BMDCs had 4-fold fewer nod-
ules than animals treated with unprimed DC. Clearly on
Fig. 9B we show that lungs of animals treated with BMDC-
glycolipids have very few nodules when compared to the
control animals. These results show that iGb3 similarly
with a-GalCer can display anti-tumor activity when pre-
sented by BMDCs. That the anti-tumor effect depended on
cytotoxic NKT cells is inferred from the inability of iGb3-
treated BMDCs from CD1d-KO mice to show any protec-
tive activity (not shown).

Discussion

NKT cells are at the edge of innate and adaptive immunity,
and have important roles in infectious diseases, autoim-
munity and cancer modulating activity, either promoting
or inhibiting tumor development. Clearly different sub-
types, time of activation, soluble or cell-bound ligands are
involved in these contradictory effects. Generally, anti-
tumor activities are linked to direct cytotoxicity of type I
NKT cells expressing perforin, Fasl, TRAIL, but mainly
IFN-y that activates other immune cells such as DCs, NK

iGb3/Gb3 from F3A (neutral glycolipids permethylated, FNa+)
miz 1215 mmp 667 wmmp 445 mmp 371, 211 (iGb3), 329 (Gb3)

Gala1-3/4Galp1-4Glcp1-1Cer e Galc1-3/4Galp1-4Glc-OH

—  Galal-3/4Gal-1-ene

iGb4/Gb4 from F3A (neutral glycolipids permethylated, FNa+)
m/z 1460 mmmp 912 mmmp 690 mmp 431 mmp 369,357,329 (iGb4),

GalNAcp1-4Gala1-3/4Galp1-4Glcp1-1Cer
GalNAcp1-4Gala1-3/4Galp1-4Glc-OH

GalNAcp14Gala1-3/4Gal-1-ene

Figure 7

315 (Gb4)

——

——

—e-  OHGalat1-3/4Gal-1-ene

Summary of fragmentation products in positive-ion mode ion trap-mass spectrometry of permethylated neu-
tral glycolipids of fraction F3A. iGb3 and Gb3 as well as iGb4 and Gb4 are recognized by the fragmentation of the disac-
charide-1-ene ions (m/z 445 and m/z 431, respectively). F, fragment ions; FNa+, fragment with Na+ adduct.
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iGb3-stimulated DN32D3 NKT cells are cytotoxic to
B16F10-Nex2 melanoma cells. A) BMDCs were pulsed
with iGb3 for 24 h, co-cultured with DN32D3 NKT cells for
I8 h, and IL-2 production was measured in the supernatant
by ELISA. The results are representative of three independ-
ent experiments. B) BMDCs were primed with 20 pg/ml
iGb3 for 24 h and co-cultured with NKT hybridoma cells for
4 h. BI6F10-Nex2 cells were previously incubated with 5 nCi
of [3H] thymidine for 24 h. Melanoma and NKT cells were
co-cultured at the target/effector cell ratio indicated and the
cytotoxic (lytic) effect was measured as described in Material
and Methods.

cells and T cells [23]. These cells also produce IL-4 upon
activation with a-GalCer in the mouse, but after initial
stimulation, NKT cells are polarized for the production of
IL-4 with simultaneous increase in serum IgE levels, thus
modulating the immune response toward a Th2 pheno-
type [24]. Type II NKT cells are regulatory cells that sup-
press CD8+ CTL-mediated antitumor activities. In a model
of tumor recurrence the CD8+ T cell-mediated immuno-
surveillance was suppressed by IL-13 producing CD1d-
restricted CD4+ T cells [25]. We also found evidence that
regulating NKT cells could be involved in the immune
response against B16F10-Nex2 melanoma in the mouse

http://www.molecular-cancer.com/content/8/1/116
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In vivo antitumor effects of a-GalCer and iGb3. A) In
vivo protection by a-GalCer (200 ng/mL) and iGb3 (20 pg/ml)
against lung colonization by BI6F10-Nex2 melanoma cells (|
% |0%) injected i.v. in C57BI/6 mice (5 animals/group). Glycol-
ipid-primed BMDC:s or unprimed BMDCs were administered
on days 2 and 4 after challenge. Ctr, control, unprimed naive
BMDCs; B) Lungs representative of animals treated with
unprimed and glycolipid-primed BMDC:s after |13 days of
tumor challenge. The experiments are representative of at
least 2 independent experiments. *p < 0.05, compared to the
control.

by the protective effect exerted by the neutralization of IL-
13 using an IL-13Ra2-Fc chimera, enhanced by IL-12 [26].

In the present work, it is evident that type I NKT cells
(invariant or iNKT) play an important role in the protec-
tion against B16F10-Nex2 melanoma cells based on the
enhanced tumor progression in CD1d-KO animals. At a
limited density of tumor cells, WT mice showed increased
survival and after 70 days of tumor challenge, 20% of ani-
mals were still alive. IFN-y-producing iNKT cells seem-
ingly play a role in anti-tumor protection by activating
other cytotoxic lymphocytes mainly through Th1 cytokine
cascades. Rejection of tumor was also observed when the
activation of iNKT cells by yet unidentified tumor-derived
ligands fostered a CD4+ and CD8+ adaptive immune
response [27].
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For a CD1d-restricted protective response of iNKT cells in
the B16F10-Nex2 system, endogenous lipid components
of tumor cells should be recognized and we hypothesized
that they could be glycosphingolipids expressed on tumor
cells, particularly iGb3. Apparently, Va.14 TCR in iNKT
cells befits the foreign archetype ligand a-GalCer and the
recently described endogenous iGb3 [12,13] by adopting
two different conformations [28]. Although iGb3 has
been described as a candidate for the main endogenous
ligand of iNKT cells the biochemical fractionation of nat-
ural antigens is hampered by their low abundance in the
starting materials used. In fact, iGb3 was not found in
mouse or human thymus or DCs using a sensitive HPLC
assay [29]. Another report claimed that humans lack iGb3
due to the absence of a functional iGb3 synthase [30]. It
would seem, based on these reports, that iGb3 is unlikely
to be a physiologically relevant NKT cell-selecting ligand
in mouse and humans. In contrast to these reports, how-
ever, isoglobo and globo series tetraglycosylceramides
have recently been identified in human thymus, and iGb3
and iGb4 have been identified in the mouse thymus using
the more sensitive ESI-LIT-MS [14,15,21]. As pointed out
by Li et al. [21] in relation to the pseudogene hypothesis
of human iGb3 synthase, mRNA transcripts for iGb3 syn-
thase in human thymus have otherwise been recently
detected and a full-length cDNA has been cloned (unpub-
lished data).

In B16F10-Nex2 cells iNKT stimulating components were
present in the cytoplasm and cell membrane fractions.
Orcinol- and resorcinol-reacting glycolipids were
extracted from the subcutaneously grafted tumor with a
predominance of GM3 as expected for murine melanoma
cells. The fractions obtained after Folch's partition also
showed the presence of a glycolipid with the same R; of
iGb3 standard in HPTLC. The amount was quite small but
a preparative chromatography succeeded in the enrich-
ment of this species. Both GM3 and neutral glycolipids
had their presence confirmed in the permethylated form
by ESI-MS. Fragmentation of a predominant peak from
GM3 by MS2 and MS3 showed the presence of N-acetyl-
neuraminic acid and C34:1-(OH),-ceramide, most likely
containing sphingosine (d18:1) and palmitic acid
(C16:0). Other species with different lipid moieties were
also shown in permethylated derivatives and are compat-
ible with the double band in HPTLC, a common charac-
teristic of GM3 [31]. The disproportionate amount of
GM3 in relation to iGb3 may explain the low NKT cell
stimulation of melanoma lipid fractions containing a
mixture of these glycolipids. Indeed, GM3 showed inhib-
itory activity of NKT cells [32] and it is generally accepted
that gangliosides are immunosuppressive cell surface
molecules often present in high concentrations in tumor
cells. These molecules may inhibit the immune response
that is implicated in tumor rejection. B16 murine

http://www.molecular-cancer.com/content/8/1/116

melanoma sublines with pharmacologically decreased
concentration of gangliosides produced fewer tumors in
mice than untreated cells [33]. Moreover, a GM3-conju-
gated vaccine induced anti-tumor activity against B16
melanoma in vitro and in vivo, and this effect was anti-
body-dependent [34]. Here, we observed that with
nonprimed BMDC, the background production of IL-2 by
NKT cells was completely inhibited by GM3.

Even considering the low amounts of isoglobotri- and iso-
tetrahexosyl ceramides (iGb3 and iGb4) in mammalian
cells they were identified in B16F10-Nex2 melanoma
along with predominant globotrihexosyl and globotetra-
hexosyl ceramide (Gb3 and Gb4) components by ion trap
mass spectrometry. Functionally, only iGb3 can stimulate
NKT cells [12] but iGb4 is converted to iGb3 in cells
expressing [-hexosaminidase B thus increasing the
amount of reactive ligands. Hexb-/- DCs fail to generate
iGb3 in the lysosome because they lack the f-hexosamin-
idase B required to remove the terminal GalNAc from
iGb4 [35].

In vitro, exogenous addition of iGb3 to BMDCs aiming at
iNKT cell activation was 100-fold less effective than a-Gal-
Cer as measured by IL-2 production. We found that iGb3
at 1 pg/ml or a-GalCer at 10 ng/ml activated NKT cells to
produce 1 ng/ml of IL-2. Why should then studies on
iGb3 be pursued on tumor cells apart from the fact that
these isoglobohexosylceramides be endogenous constitu-
ents of these cells possibly in higher amounts than in nor-
mal cells? In B16F10-Nex2 cells iGb3 and iGb4 (precursor
of iGb3) are natural effector molecules that may be shed
in the microenvironment and thus be processed and pre-
sented by DCs to iNKT cells able to lyse tumor cells and to
produce cytokines. This is an important component of the
immunosurveillance in C57Bl/6 mice since CD1d-KO
animals are significantly more susceptible to melanoma
growth than WT mice. This effect is regulated by GM3
which is abundantly expressed at the tumor cell surface. In
a melanoma metastatic model, however, we found that
iGb3 (20 pg/ml)-loaded CD11c¢*CD1d* BMDCs reduced
the number of lung nodules 4-fold, the same level of anti
tumor protection obtained with a-GalCer at 200 ng/ml.
Recognition that iGb3 can be protective against tumors
when presented by DCs, suggests that a Th-1 immune
response has been stimulated. Therefore iGb3 is an
important mediator of iNKT cell activation which may
contribute to host resistance to melanoma. To be used
pharmacologically modifications in iGb3 structure are
being investigated to improve its stimulatory activity. The
iGb3 analog 4"-dh-iGb3 (nonreducing terminal Gal
deoxidized at 4-OH) and 4-OH-iGb3 (additional
hydroxyl group on C4 of phytosphingosine) promoted
significantly greater IFN-y production [36]. Although 4"'-
dh-iGb3 is still less potent than a-GalCer, the latter exerts
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such a strong activation of NKT cells with a single admin-
istration that they become anergic to a-GalCer restimula-
tion for at least 30 days [37,38]. Moreover, a-GalCer may
activate iNKT cells to produce both Th-1 and Th-2
cytokines thus limiting its therapeutic effectiveness.
Chemical derivatives of a-Gal Cer with modified cera-
mides are being tested aiming at immune responses spe-
cifically directed to a Th-1 or Th-2 type [39].

It is conceivable that other components in the lipid frac-
tions of B16F10-Nex2 melanoma may activate NKT cells.
Such activity would be difficult to detect in a complex
mixture containing inhibitory GM3 species. We looked at
the neutral glycolipid fraction after removal of acidic spe-
cies and besides the globo- and isoglobohexosides identi-
fied, we also detected several dihexosylceramide species
with different ceramide composition (data not shown).
Further fractionation and structural and functional analy-
sis of the neutral glycolipid fraction and other B16F10-
Nex2 melanoma-derived lipid fractions are necessary to
explore this issue.

In conclusion, glycolipids iGb3, Gb3, iGb4 and Gb4 have
been identified in murine melanoma cells. Our results
demonstrate the important role of iNKT cells in the
immune cellular protection against susceptible animals
challenged with murine B16F10-Nex2 melanoma cells
and show the activation of these cells by iGb3 and nega-
tive modulation by GM3. BMDCs primed with iGb3 pro-
tected against tumor development and metastasis and this
effect depended on CD1d-restricted iNKTs. The present
study stimulates further investigation on the use of iGb3
and derivatives in the immunopharmacology of
melanoma and other tumors.
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