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Abstract

Background: Despite recent progress in the identification of genetic and molecular alterations in
prostate cancer, markers associated with tumor progression are scarce. Therefore precise
diagnosis of patients and prognosis of the disease remain difficult. This study investigated novel
molecular markers discriminating between low and highly aggressive types of prostate cancer.

Results: Using 52 microdissected cell populations of low- and high-risk prostate tumors, we
identified via global cDNA microarrays analysis almost 1200 genes being differentially expressed
among these groups. These genes were analyzed by statistical, pathway and gene enrichment
methods. Twenty selected candidate genes were verified by quantitative real time PCR and
immunohistochemistry. In concordance with the mRNA levels, two genes MAP3K5 and PDIA3
exposed differential protein expression. Functional characterization of PDIA3 revealed a pro-
apoptotic role of this gene in PC3 prostate cancer cells.

Conclusions: Our analyses provide deeper insights into the molecular changes occurring during
prostate cancer progression. The genes MAP3K5 and PDIA3 are associated with malignant stages of
prostate cancer and therefore provide novel potential biomarkers.

Background

Prostate cancer is the most frequent cancer diagnosed in
men (20.3% of the total), followed by lung (17.2%) and
colorectal cancer (12.8%) [1]. Measuring prostate specific
antigen (PSA) has been a matter of routine to detect pros-
tate cancer, but is insufficient to distinguish between dif-

ferent tumor grades. The Gleason Grading System is
commonly used for histology-based grading of prostate
cancer tissue [2]. Since prostate tumors are often multifo-
cal, the Gleason Score (GS) is the sum of the two most
prevalent tumor patterns, which are graded 1 (CA1) as the
most differentiated and 5 (CA5) as the least differentiated
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pattern of cancerous glands. Other methods for sub-clas-
sification have been described in recent reports [3]. These
indicate that translocations fusing the strong androgen-
responsive gene TMPRSS2 with ERG or other oncogenic
ETS factors may facilitate prostate cancer development. It
has been proposed that the presence or absence of this
genetic rearrangement may be used, much like the
Gleason grading system, as a diagnostic tool to extract
prognostically relevant sub-classifications of this cancer

[4].

The discrimination between different tumor grades is
important with respect to treatment decisions: Currently,
many men who are diagnosed with GS 6 prostate cancer
are often "over"-treated and risk suffering from urinary
and sexual dysfunction [5]. Therefore, it is important to
develop a sensitive and specific diagnostic tool to distin-
guish between different tumor grades. To address this
problem, many groups have recently started to profile
gene expression levels in prostate tumor tissues to identify
deregulated genes during disease progression. However,
although many of these have addressed the question of
molecular differences between normal, tumor, benign
prostatic hyperplasia (BPH), and the putative precursor
lesion prostatic intraepithelial neoplasia (PIN), little is
still known about molecular changes between low- and
high-risk tumors [6-9].

In the present study, we performed microarray-based gene
expression profile analysis of 65 microdissected tissues
comprising 25 samples of GS 6, 27 of GS 8-10 and 13 non
cancerous samples. We sought to identify biological
markers of distinct functional groups for the discrimina-
tion between low- and high-risk tumors. Overall, we
found 20 genes with a significant alteration in expression
between high-risk compared to low-risk tumors. Two of
these genes exhibited Gleason grade associated protein
expression in tumor tissues, which could serve as a valua-
ble diagnostic tool in the future.

Results

mRNA expression analysis revealed large expression
differences between GS 6 and GS 8-10 tumors

To selectively isolate pure populations of prostate epithe-
lial cancer cells with different Gleason Scores, we first
applied laser-capture microdissection. We monitored the
gene expression levels by hybridization of twice-amplified
RNA to cDNA microarrays representing ~37500 mapped
genes. In total, we hybridized 65 RNA samples derived
from 13 benign and 52 prostate cancer tissue comprising
25 samples with Gleason Score (GS) 6 and 27 samples
with GS 8-10 (Table 1). After quality assessment of micro-
array hybridizations, we subjected gene expression pro-
files to SAM [10]. Numbers of deregulated genes
identified by SAM analyses are summarized in Table 2,
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Table I: Characteristics of study population

Stage N= median age
Benign 13 63
GS6 25/0* 60
GS8 13/4* 66
GS9 13/2%

GS 10 1/0%

* matched benign

and complete gene lists are provided (see additional file 1
and additional file 2).

For the identification of grade-discriminating genes, we
compared the expression levels of GS 6 with GS 8-10
tumors. SAM analysis revealed 1141 up-regulated and 54
down-regulated non-redundant genes in advanced
tumors (FDR 5%; see additional file 1). For validation, we
compared our data with an independent study from True
and coworkers, who reported 86 genes as deregulated dur-
ing tumor progression from low to high GS [6]. Of these,
we identified 24 genes (28%) which all displayed the
same tendency as in the original report (see additional file
3). Another comparison to the study of Lapointe and cow-
orkers [7], who described 41 genes to be associated to a
higher Gleason score revealed an overlap of six genes
(BGN, COL1A2, COL3A1, PLA2G2A, SPARC, VCAN).

To identify biological processes associated with tumor
progression, we performed gene ontology analysis with
genes differentially regulated between low- and high-risk
tumors. In order to extract highly significant canonical
pathways, each gene symbol was mapped to its corre-
sponding gene object in the IPA Knowledge Base, and net-
works were generated. Significant canonical pathways
were related to actin-mediated processes, e.g. regulation of

Table 2: Number of differentially expressed genes (FDR < 5%)

Comparison (SAM test) up down
Normal <> Tumor 243 2390
Normal <> Tumor (GS6) 463 2016
Normal <> Tumor (GS8-10) 454 2001
Tumor (GS6) <> Tumor (GS8-10) 1141 54
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actin-based motility mediated by Rho-family GTPases (11
of 92 annotated genes, p = 5.23E-03) and actin cytoskele-
ton signaling (19 of 221 annotated genes, p = 1.4E-02). In
addition, various metabolic processes, including oxidative
phosphorylation (22 of 158 annotated genes; p = 8.95E-
06) and protein ubiquitination (19 of 205 annotated
genes; p = 5.6E-03) were deregulated in high-risk tumors.
In order to extract as many genes as possible involved in
apoptotic processes we used two further GO analysis tools
(FatiGO [11] and GOstat [12]) and identified a set of 46
genes associated with apoptosis (GOstat p = 0.00033; see
additional file 4).

Additionally, we compared gene signatures between nor-
mal and tumor tissue, which lead to the identification of
> 2500 deregulated genes (FDR 5%) of which 2390 genes
were down and 243 up-regulated (see additional file 2).
We performed separate SAM analyses between normal
and GS 6 or GS 8-10 and revealed 2016 and 2001 down-
regulated as well as 463 and 454 up-regulated non redun-
dant genes (Table 2). Of these, 1197 genes were deregu-
lated with the same tendency in both tumor groups.
Interestingly, three genes (VCAN, CLK1 and TMEM16G)
revealed opposite expression levels in these comparisons.
VCAN and CLK1 were found to be significantly down-reg-
ulated in GS 6, but up-regulated in high-risk tumors in
comparison to normal tissue. In agreement with these
results, over-expression of VCAN and CLK1 between pri-
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mary prostate cancer and metastatic cancer has recently
been described [9]. In contrast TMEM16G, for which the
microarray findings were supported by qRT-PCR data,
showed the opposite trend. TMEM16G was found up-reg-
ulated between normal and GS 6 tissue, but down-regu-
lated between normal and GS 8 as well as between GS 6
and GS 8 tissues. In a recent study, TMEMI16G was
described as a prostate-specific plasma membrane protein
promoting cell-cell contact in the prostate cancer cell line
LNCaP [13].

Validation of selected genes by qRT-PCR

Based on the microarray gene expression differences
between GS 6 and GS 8-10 tumors (see additional file 1),
68 genes were validated in the same cohort via quantita-
tive real time PCR (see additional file 5). B2M (p2-
microglobulin) was used as a housekeeping gene due to
its even expression in all analyzed patient groups (Figure
1A). We focused on a selection of genes that are linked to
cancer-relevant gene ontology categories like apoptosis,
cell morphology, metabolism and ubiquitylation. For
example, 24/68 selected genes are functionally associated
to apoptosis (see additional file 4).

In the qRT-PCR analysis of the 68 genes, 23 were signifi-
cantly deregulated between low- and high-risk tumors
(Wilcoxon p < 0.1; see additional file 5). Twenty of these
(87%; Table 3) were in concordance with the microarray
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Validation of PDIA3 and MAP3K5 mRNA expression via qRT PCR. (A) The housekeeping gene -2 microglobulin
(B2M) was chosen due to its even expression (mean Ct value) in each analyzed group (benign, GS 6 and GS 8-10 tissue). (B, C)
Mean normalized expression levels (dCt) of GS 6 and GS 8-10 was determined for PDIA3 (B) and MAP3K5 (C). Results showed
a significant increase of transcript abundance levels in GS 8-10 tumors in comparison to GS 6 tumors.
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Table 3: qRT-PCR verified differentially expressed genes between GS 6 and GS 8-10

No. Gene RZPD ID IMAGEID GOID GO term Microarray qRT PCR
symbol
q-value (%) fold change p-value (%) fold change
ANXAS IMAGp998G| 66470 GO:0006916 anti-apoptosis 0.00 1.47 0.10 4.28
518
2 APLP2 IMAGp998M0 248618 GO:0016021 transmembrane 0.94 122 6.10 2.83
3537
3 COLIA2 IMAGp998D0 271448 GO:0001501  skeletal 0.40 1.18 5.12 2.02
9597 development
4 CRIMI IMAGp998K| 267780 GO:0016021 transmembrane 0.00 1.20 8.46 3.23
3587
5 ECHSI IMAGp998LI 32898 GO:0006635 fatty acid beta- 243 1.18 5.48 1.89
2154 oxidation
6 HMGBI RZPDp20IFO 6067961 GO:0006915 apoptosis 0.00 1.40 3.25 4.68
834D
7 MAP3K5 IMAGp99802 28450 GO:0006915 apoptosis 0.17 1.35 6.94 2.98
2144
8 NGFRAP| IMAGp998O1 347367 GO:0007275 multicellular 0.00 1.32 0.59 3.95
6794 organismal
development
9 NPMI RZPDp202Bl 3996837 GO:0006950 response to 0.00 1.30 2.59 3.07
29D stress
10 NuBI RZPDpl096A 6064678 GO:0006511  ubiquitin- 0.64 1.12 5.87 1.62
0718D dependent
protein
catabolic
process
Il PDIA3 RZPDpl1096G 5561830 GO:0006915 apoptosis 1.29 1.43 3.05 2.40
0216D
12 PLA2G2A IMAGp998NI 297804 GO:0006644 phospholipid 0.50 1.75 4.92 3.00
3665 metabolic
process
13 ROCKI RZPDp20ICI 5575521 GO:0006915 apoptosis 0.17 1.17 0.00 9.76
129D
14 TEGT RZPDpl096F 160553 GO:0006915 apoptosis 0.00 1.32 0.73 2.77
101D
15  TMEMI6G IMAGp998DI| 1895393 GO:0016021 transmembrane 0.00 0.66 4.37 0.35
84645
16  TMEM69 IMAGp998I22 293085 GO:0016021 transmembrane 3.78 1.08 4.56 2.77
653
17 TRAF4 RZPDp20IHO 5541746 GO:0006915 apoptosis 429 1.26 8.58 2.59
728D
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Table 3: qRT-PCR verified differentially expressed genes between GS 6 and GS 8-10 (Continued)

18 VCAN RZPDp1096C 201932 GO:0007155 cell adhesion 0.00 1.31 7.06 2.92
062D

19 Vvcp IMAGp998O1 123873 GO:0006915 apoptosis 1.29 1.18 7.88 2.75
olr19

20 VDACI IMAGp998D0 129751 GO:0008632 apoptotic 0.00 1.51 0.30 5.4l
8136 program

results. Thirty-three genes were determined as non-signif-
icant and 12 genes exhibited Ct values below detection
level. Deregulation of the apoptotic process plays a major
role in tumorigenesis and influences therapeutic outcome
[14]. In total, 11 of 20 significantly verified genes are
involved in apoptotic processes (PDIA3, MAP3KS5,
ANXAS5, VDAC1, NGFRAP1, TEGT, NPM1, VCP, TRAF4,
HMGBI, and ROCK1). The two genes MAP3K5 and PDIA3
were selected for in-depth analysis because of their associ-
ation to apoptosis and previous findings in cancer studies.
QRT-PCR expression patterns of PDIA3 and MAP3K5 are
given in Figure 1B and 1C.

Immunohistochemistry demonstrates Gleason-grade
associated protein expression of MAP3K5 and PDIA3

To confirm our data at the protein level, we performed
immunohistochemical analysis of the proteins MAP3K5
and PDIA3 representing the largest functional group

MAP3K5
p <001
N 100 98 50 30 30 36
Mean 077 176 090 1.20 1.80 1.19
o |
X 3 m3
§ S @2
£ o 1 o
8 o oo
h S -
o |
B PIN CA3 CA3 CA4 CA5
GS6 GS8
Figure 2

(apoptosis) of validated genes. Specificity of antibodies
was controlled using western blotting (data not shown).
Protein expression levels in tumor tissue samples were
scored according to a 4 point scoring system. Lowest
expression levels of MAP3K5 and PDIA3 proteins were
seen in benign epithelial cells (Figure 2). In agreement
with the transcript analyses, MAP3K5 exhibited a signifi-
cant Gleason grade-associated protein expression (p <
0.01, Wilcoxon signed rank test). Highest expression lev-
els were observed in Gleason pattern 4 regions (mean 1.8)
whereas Gleason pattern 3 (mean 1.2) and Gleason pat-
tern 5 tumor regions (mean 1.19) displayed lower immu-
noreactivity. Of note, we also observed significant protein
overexpression in prostate intraepithelial neoplasia (PIN)
and in regions of inflammation (data not shown), which
is in agreement with the described involvement of
MAP3K5 with inflammation processes. Immunostaining
was observed in the cytoplasm.

PDIA3
p <0.065
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IHC analysis of Gleason grade-associated protein expression of PDIA3 and MAP3KS5. Summary of PDIA3 and

MAP3KS5 protein expression quantification in tissue samples. Paraffin tissue sections were stained according to a standard IHC
protocol using a staining automate and immunoreactivity of the different Gleason patterns identified in each specimen were
scored by an uropathologist according to a 4 point scale (no - 0, weak - I, intermediate - 2 and strong - 3 staining). For both
antigens immunoreactivity was higher in tumors than in benign epithelium in accordance with the gene expression and real-
time PCR data. Within the different tumor patterns staining intensity increased from CA3 to CA4 and decreased in the most
dedifferentiated CA5 tumor regions. Interestingly, PDIA3 staining intensity in CA 3 regions within GS6 tumors (CA3 CS6) and
within GS8 tumors (CA3 GS8) differed significantly, whereas this was not observed with MAP3KS5. (B: Benign tissue; CA3:
Gleason pattern 3, CA4: Gleason pattern 4, CA5: Gleason pattern 5).
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PDIA3 also showed a grade-associated protein expression
(p < 0.065, Wilcoxon signed rank test; Figure 2). Expres-
sion was significantly increased in tumor cells compared
to benign epithelium. Among different Gleason patterns
in the tumors, Gleason pattern 4 (GP4) showed the high-
est expression level. Interestingly, expression levels of
PDIA3 in Gleason pattern 3 (CA3) seem to depend on the
accompanying Gleason pattern in the tumor. PDIA3
expression was higher in presence of higher Gleason pat-
terns (CA3 in GS 8 tumors, e.g. CA3 associated with CA5;
mean score 1.97) than in tumors with uniform Gleason
pattern 3 (CA3 in GS6 tumors; mean score 1.74). Immu-
nostainings showed cytoplasmic and perinuclear localiza-
tion of PDIA3. In advanced tumors, PDIA3 and MAP3K5
displayed a heterogeneous staining pattern and the vari-
ances of intensity distributions were higher. Representa-
tive pictures of PDIA3 and MAP3KS5 in different tissue
regions are shown in Figure 3, where AMACR serves as a
positive control for tumor cells [15].

MAP3K5

http://www.molecular-cancer.com/content/8/1/130

Decreased apoptotic activity upon knockdown of PDIA3
in prostate cancer cell lines

MAP3K5 and PDIA3 were found to be proteins associated
with apoptotic processes via pathway analysis. Unlike
MAP3KS5, whose pro-apoptotic and inflammatory role in
context of tumorigenesis is well established [16,17], the
function for PDIA3 in apoptosis has been largely unex-
plored. To investigate an apoptosis-related function of
PDIA3 we performed siRNA-based knockdown in the
human prostate cancer cell lines PC3 and LNCaP. 48
hours after siRNA treatment (20 nM or 40 nM) the knock-
down efficiency was determined by qRT-PCR (Figure 4A).
Induction of apoptosis was mediated by three different
stimuli. Staurosporine (STS), Fenretinide (FenR) and Tap-
sigargin (TG) are known to activate apoptosis via distinct
mechanisms [18-20]. Each stimulus activated the apop-
totic pathway reflected by activation of caspase 3 and/or
caspase 7 (Figure 4B). PDIA3 siRNA treatment revealed a
significant decrease of caspase activation in PC3 cells with
all stimuli in comparison to control siRNA treated cells. In
LNCaP cells similar results were obtained, but were only

PDIA3

CA3

CA4

Figure 3

IHC analysis for the proteins AMACR, MAP3KS5 and PDIA3. Representative IHC pictures are shown for AMACR,
MAP3KS5 and PDIA3. AMARC was used as a marker for confirmation of the tumor. MAP3K5 and PDIA3 IHC revealed cyto-
plasmatic localization of both antigens and higher expression in tumors as compared to benign epithelium. Gleason pattern
CA4 displayed highest staining levels, compared with CA3 (lower midst and right pictures; magnification upper panel: 400%;

lower panel: 200%).
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Figure 4

siRNA mediated knockdown of PDIA3 decreased apoptosis in prostate cancer cell line. (A) Knockdown efficiency
measured via qRT PCR 48 h after transfection with 20 nM siRNA. (B) PC3 cells were treated with 20 nM scrambled siRNA
control and PDIA3 siRNA. 48 h after transfection induction of apoptosis was performed with | uM Staurosporine (STS), 20 uM
Fenretinide (FenR) or 1.5 uM Tapsigargin (TG) for 6 and 24 hours. Apoptosis was measured by determining caspase activation
and compared to untreated control. Bar heights and error bars are means and upper range of triplicate samples relative to

control treatment. * P < 0.05 (unpaired t-test).

Page 7 of 12

(page number not for citation purposes)



Molecular Cancer 2009, 8:130

significant after STS induction (data not shown). These
results indicate a novel, pro-apoptotic role for PDIA3 in
prostate cancer cells.

Discussion

Recent studies showed that it is important to include dif-
ferent tumor stages of prostate cancer in gene expression
analyses to be able to find new diagnostic and prognostic
markers [6,8,9]. Here, we generated gene expression pro-
files of tissues from low-risk (GS 6) and high-risk prostate
tumors (GS 8-10) tissues. In contrast to most other pub-
lished studies, all tissue samples were carefully microdis-
sected before RNA isolation. The comparison of these
profiles revealed that both tumor subgroups differ by a
large number of genes, most of which are up-regulated in
high GS tumors. A comparison with another published
data set [6] suggested that these results reflect a general
trend in transcriptional activation in advanced prostate
tumors. However, it cannot be fully ruled out that system-
atic changes introduced by different extents of stromal
cells [8] in the microdissected material as well as two
rounds of RNA amplification contribute to this bias.

Among the detected genes many are involved in path-
ways, which are known to be altered in tumor progression
such as apoptosis, morphologic changes, metabolism,
and ubiquitin-mediated protein degradation. Twenty rep-
resentatives of these processes were verified via qRT-PCR,
and a set of genes discriminating between less and more
aggressive tumor forms was identified. One of the hall-
marks of aggressive cancer is the imbalance between cell
survival and apoptosis. Our gene ontology analysis
revealed that a pronounced number of apoptosis-related
genes exhibited expression changes between low- and
high-risk prostate tumors. Thus, for validation, we
focused our analysis on up-regulated anti-apoptotic genes
and key players of apoptotic signaling and verified the
expression level of 11 selected genes. These data were sup-
ported by the analysis of protein expression levels for
MAP3K5 and PDIA3 by IHC. MAP3K5 and PDIA3 were
also identified in other prostate cancer profiling studies
[6,7,9,21]. MAP3KS5 (also known as apoptosis signal-reg-
ulating kinase 1; ASK1) has been widely accepted as one
of the key components regulating reactive oxygen species
(ROS) - induced JNK and p38 activation leading to differ-
entially regulated apoptosis [22]. ROS - dependent activa-
tion of MAP3K5 also plays a critical role in innate
immune responses through production of proinflamma-
tory cytokines [23]. There is considerable evidence sug-
gesting that oxidative stress contributes to the
pathogenesis of prostate cancer [24,25]. Given that mito-
chondria are a major source of reactive oxygen species
(ROS), altered mitochondrial bioenergetics might induce
MAP3KS5 over-expression and contribute to the malignant
progression of prostate tumors. In concordance with this

http://www.molecular-cancer.com/content/8/1/130

hypothesis, we also found a significant number of dereg-
ulated genes involved in oxidative phosphorylation and
mitochondrial dysfunction.

Like MAP3K5, PDIA3 (protein disulfide isomerase A3) is
a member of the endoplasmatic reticulum stress signaling
pathway also known as unfolded protein response (UPR),
and its expression level increases in response to cellular
stress due to its function as a chaperone [26]. Recently
published data connected PDIA3 to the apoptotic process
and demonstrated an anti-apoptotic effect of PDIA3 in the
melanoma cell line A375 after induction of ER stress [27].
In contrast, our study suggested a decrease of caspase
activity due to down regulation of PDIA3 in prostate can-
cer cell lines. This result suggests that the observed
increase of PDIA3 in this study is most likely due to ele-
vated cellular stress. But besides the role as a chaperone,
PDIA3 might function as a pro-apoptotic protein in the
prostate. Taking our IHC data of PDIA3 into account,
PDIA3 protein concentration decreases significantly in
CA5 compared to CA4 tissues and expression data com-
paring localized with metastatic prostate cancer showed a
down-regulation of PDIA3 [9]. These findings support the
idea that down regulation of PDIA3 might play a role in
late onset of prostate cancer progression. A lack of PDIA3
expression also correlates with increased tumor invasion
and advanced stage of gastric cancer and has therefore
been proposed to be a negative prognostic marker [28].

In addition to its role in the ER stress pathway, PDIA3 has
recently gained attention due to its function as a compo-
nent of the peptide-loading complex of the major histo-
compatibility complex (MHC) class I pathway [29,30]. In
PDIA3 deficient mice this complex is impaired and nega-
tively influences presentation of antigenic peptides. This
may help tumors to escape from immune surveillance by
cytotoxic T cells [31].

The results of our IHC analysis point to a potential use of
PDIA3 as a diagnostic marker: PDIA3 expression of
Gleason pattern 3 tumors is higher in the presence of a
Gleason pattern 5 tumor than in presence of another
Gleason pattern 3 tumor. Additionally, PDIA3 and
MAP3K5 have been found to be significantly (FDR 5%)
up-regulated in tumors harboring a TMPRSS2 - fusion
protein (data not shown). This underlines the opportu-
nity to use PDIA3 and MAP3KS5 as discriminating biomar-
kers in respect to histological grading system and gene
arrangement classification.

In summary, this study validated a set of 20 genes, which
discriminated between low and high Gleason grade pros-
tate tumors. These genes comprise important functional
processes well known to be involved in tumor progression
such as apoptosis, morphological changes, metabolism
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and others. In addition, we show a grade-associated pro-
tein expression of MAP3K5 and PDIA3. In particular, high
PDIA3 protein levels in Gleason pattern 3 cancers may
indicate the presence of more aggressive tumor foci in the
same tissue and could be of diagnostic value, possibly as
part of a larger molecular signature.

Materials and methods

Tissue specimens

Frozen and paraffin-embedded prostate tissue samples
were obtained from previously untreated patients who
had undergone radical prostatectomy after tumor diagno-
sis in a PSA based screening program performed in Tyrol
by the Department of Urology, Medical University of
Innsbruck [32]. The study was approved by the ethics
committee at the Medical University of Innsbruck. Imme-
diately after surgery, the prostate specimens were cooled
in ice/water and brought to the pathologist who per-
formed a rapid section and isolated a prostate slice that
was embedded in Tissue-Tek OCT Compound (Sakura,
Tokyo, Japan), snap frozen in liquid nitrogen and stored
at -80°C until use. The rest of the prostate was fixed and
paraffin-embedded according to standard procedures.

Tissue microdissection

For isolation of total RNA, frozen sections were stained
with hematoxylin and eosin for pathological analysis and
exact localization of the tumors. Parallel unstained slides
were used for microdissection. These were pre-treated for
1 min in each of the following pre-cooled solutions: 75%
ethanol, RNase-free water, 100% ethanol (twice) and
xylene (twice), and air dried. Laser-capture microdissec-
tion was performed on a Pix Cell II microdissection
microscope (Arcturus, Sunnyvale, CA, USA) using 2,000-
5,000 laser impulses corresponding to approximately 15
000 - 30 000 cells for each sample. Tumor samples were
isolated from a cohort of Gleason score 6 tumors
(Gleason pattern 3) and a group of Gleason score 8 - 10
tumors (Gleason patterns 4 and 5). Benign epithelial cell
samples were microdissected apart from tumor foci from
histopathologically normal regions of the same speci-
mens. After microdissection, total RNA was isolated using
the PicoPure isolation kit (MDC, Sunnyvale, USA) accord-
ing to the protocol of the supplier. Quality control was
done employing the Agilent Bioanalyzer 2100 system
(Agilent Technologies, Waldbronn, Germany).

Microarray analysis

20 ng of RNA isolated from laser-capture microdissected
epithelial prostate cells of tissues from patients who had
undergone radical prostatectomy were subjected to a two-
round amplification using the MessageAmpTM II aRNA
Amplification Kit (Applied Biosystems/Ambion, Austin,
USA). The quality of amplified RNA (aRNA) fragments
was assessed by microcapillary electrophoresis using the

http://www.molecular-cancer.com/content/8/1/130

Agilent Bioanalyzer 2100 system. Two micrograms of
aRNA were subjected to microarray hybridization as
described in [33]. Briefly, aRNA was reverse transcribed
using SuperScript Il reverse transcriptase (Invitrogen, San
Diego, CA, USA) and labeled with Cy5-dUTP. Each sam-
ple was compared to a common reference (Universal
Human Reference RNA; Stratagene, La Jolla, CA, USA)
labeled with Cy3-dUTP. Hybridizations were done using
the platform Human Unigene3.1 cDNA Array 37.5K v1.0
(NCBI, GEO, GPL3050) representing estimated 22,000
transcripts. Data were analyzed using the GenePix 4.0
software (Axon Instruments, Foster City, USA). Low qual-
ity measurements were excluded from further analysis.
Raw expression values were pre-processed using Array-
Magic [34] and thereby normalized using the VSN
method [35].

Data analysis and data mining

Significance Analysis of Microarrays (SAM) was applied to
identify genes differentially regulated between normal tis-
sue, tumor tissue GS 6 and GS > 8 [10]. A two class
unpaired SAM test with 1000 permutations was used. The
False Discovery Rate (FDR) was set below 5%. Results
from the SAM analysis were imported into FatiGO [11]
and Ingenuity Pathways Analysis (IPA) software (Ingenu-
ity Systems, Redwood City, CA, USA) to identify gene
ontologies that were significantly over- or under-repre-
sented. MatchMiner software [36] was used to match gene
entries between different microarray studies.

Quantitative real-time RT-PCR validation

Verification of expression of selected genes was performed
via quantitative real-time RT-PCR using the ABI Prism
7900 HT Sequence Detection System (Applied Biosys-
tems, Foster City, CA, USA) and the Universal Probe
Library System (Roche, Basel, Switzerland). Ct values were
extracted by using the SDS-software (Applied Biosys-
tems). The expression level of the housekeeping gene f3-2-
microglobulin was used for normalization, calculated
with the 2-44Ct method [37]. Gene expression differences
between GS 6 and GS 8-10 tumors were analyzed using t-
test. A list of examined genes including mean Ct values of
each analyzed group and corresponding primers is given
in additional file 5.

Immunohistochemical analysis

For validation of expression at the protein level, we used
immunohistochemistry (IHC) on corresponding paraffin-
embedded tissue specimens from the same patient cohort.
Immunohistochemistry was performed with 5 pm paraf-
fin tissue sections employing the Ventana Discovery - XT
staining automat (Roche). Standard CC1 pre-treatment
and antigen retrieval was followed by incubation with
antibody solution for 1 hr, choice of amplification kit,
universal antibody solution for 60 min, staining with DAP
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map kit and counter stain for 4 min with haematoxylin II
bluing reagent (all from Roche). For expression analysis of
MAP3KS5 (ASK1) protein the mouse monoclonal antibody
EP553Y (Abcam Limited, Cambridge, MA, USA) was used
at a dilution of 1:40 for the PDIA3 protein the mouse
monoclonal antibody MaPERp571 (Abcam) at a dilution
of 1:10. Specificity of staining was controlled by including
a control antibody (DAKO Cytomation, Glostrup, Den-
mark). Immunoreactivity was then scored by a uropathol-
ogist and stratified according to the histology and the
Gleason pattern of the specimens using a 4 point scaling
system: 0, no staining, 1, weak staining, 2, intermediate
staining, 3, strong staining,.

RNA interference and apoptosis assay

The human prostate cancer cell line PC3 and LNCaP were
purchased from ATCC (Manassas, VA, USA) and cultured
in RPMI 1640 or HAMs F12 medium, respectively. The
medium was supplemented with 50 units/ml penicillin,
50 pg/ml streptomycin sulphate, 1% nonessential amino
acids, and 10% FBS (all from GIBCO/BRL, Gaithersburg,
MD, USA).

PDIA3 siRNA (target sequences, see additional file 6) was
purchased from Dharmacon (Lafayette, CO, USA) and
evaluated against a scrambled siRNA control (Qiagen,
Hilden, Germany). The siRNA knockdown experiments
were performed by plating 0.8 x 104 cells PC3 cells in a 96-
well plate (NUNC, Roskilde, Denmark) overnight. For
transfection, siRNA and Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA) were diluted separately and incubated
for 5 min at room temperature. The two solutions were
mixed and incubated for 20 min at room temperature.
siRNA-Lipofectamine 2000 mixture was then added to the
cells, and the plate was mixed by gentle rocking. Trans-
fected cells were incubated at 37°C and 5% CO, for 48 h.
Knockdown efficiency was verified by qRT PCR.

Induction of apoptosis was performed by adding the indi-
cated amounts of Staurosporine (Roche, Mannheim, Ger-
many), Fenretinide (Sigma, Munich, Germany) or
Tapsigargin (Sigma) for 6 and 24 hours, respectively. Con-
trol cells were left untreated. Activation of apoptosis was
determined by measuring caspase 3 and 7 activities using
Caspase-Glo 3/7° Assay (Promega, Madison, WI, USA) fol-
lowing the manufacturer's protocol.

Data deposition

The microarray data sets reported in this paper have been
deposited MIAME compliant to NCBI Gene Expression
Omnibus (GEO) database (accession no. GSE15484).
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Additional material

Additional file 1

Differentially expressed genes between GS 6 and GS 8-10 prostate cancer.
A two class unpaired SAM test with 1000 permutations was performed to
identify genes differentially regulated between GS 6 and GS > 8 tumors.
The False Discovery Rate (FDR) was set below 5%. Genes were assigned
using RZPD ID, gene symbol and gene name.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-130-S1.PDF]

Additional file 2

Differentially expressed genes between prostate normal and cancer tissue.
A two class unpaired SAM test with 1000 permutations was performed to
identify genes differentially regulated between normal and cancer tissue.
The False Discovery Rate (FDR) was set below 5%. Genes were assigned
using RZPD ID, gene symbol and gene name.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-130-S2.PDF]

Additional file 3

Differentially expressed genes between tumors of high versus low Gleason
score across independent datasets. Intersection of differentially expressed
genes between high- and low risk prostate cancer with microarray data of
True et al. 2006 [6] and Lapointe et al. 2004 [7].

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-130-S3.PDF]

Additional file 4

Selected genes linked to apoptosis and differentially expressed genes
between tumors of high versus low Gleason score. Gene ontology analyses
(FatiGO, Ingenuity, GOstat) were performed to link differentially
expressed genes between high versus low Gleason score to the gene ontology
apoptosis (GO:0006915, GO:0008219). Statistical data from the micro-
array experiment were included.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-

4598-8-130-S4.PDF]
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Additional file 5

Genes analyzed by quantitative real-time PCR. In total, 68 genes were
analyzed by qRT-PCR in order to validate expression differences between
tumors of high (GS8-10) and low (GS6) Gleason scores. p-values from
the statistical analysis are shown. In addition, fold change, mean Ct val-
ues of both tumor groups and the primer sequences of the gene-specific
assays are indicated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-130-S5.PDF]|

Additional file 6

Sequences of siRNAs (Dharmacon smartPool On-Target plus) used for
knockdown of PDIA3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-130-S6.PDF]
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