
BioMed CentralMolecular Cancer

ss
Open AcceResearch
Molecular assays for the detection of microRNAs in prostate cancer
Amara C Siva1, Luke J Nelson1, Chad L Fleischer1, Mehrdad Majlessi1, 
Michael M Becker1, Robert L Vessella2,3 and Mark A Reynolds*1

Address: 1Gen-Probe Incorporated, San Diego, CA 92121, USA, 2Department of Urology, University of Washington, Seattle, WA 98195, USA and 
3Puget Sound VA Health Care System, Seattle, WA, USA

Email: Amara C Siva - asiva@genoptix.com; Luke J Nelson - LukeN@gen-probe.com; Chad L Fleischer - ChadF@gen-probe.com; 
Mehrdad Majlessi - MehrdadM@gen-probe.com; Michael M Becker - MickB@gen-probe.com; Robert L Vessella - vessella@u.washington.edu; 
Mark A Reynolds* - MarkR@gen-probe.com

* Corresponding author    

Abstract
Background: MicroRNAs (miRNAs) are small non-coding RNAs (about 21 to 24 nucleotides in
length) that effectively reduce the translation of their target mRNAs. Several studies have shown
miRNAs to be differentially expressed in prostate cancer, many of which are found in fragile regions
of chromosomes. Expression profiles of miRNAs can provide information to separate malignancies
based upon stage, progression and prognosis. Here we describe research prototype assays that
detect a number of miRNA sequences with high analytical sensitivity and specificity, including miR-
21, miR-182, miR-221 and miR-222, which were identified through expression profiling
experiments with prostate cancer specimens. The miRNAs were isolated, amplified and quantified
using magnetic bead-based target capture and a modified form of Transcription-Mediated
Amplification (TMA).

Results: Analytical sensitivity and specificity were demonstrated in model system experiments
using synthetic mature microRNAs or in vitro miRNA hairpin precursor transcripts. Research
prototype assays for miR-21, miR-182, miR-221 and miR-222 provided analytical sensitivities
ranging from 50 to 500 copies of target per reaction in sample transport medium. Specific capture
and detection of mature miR-221 from complex samples was demonstrated in total RNA isolated
from human prostate cancer cell lines and xenografts.

Conclusion: Research prototype real-time TMA assays for microRNAs provide accurate and
reproducible quantitation using 10 nanograms of input total RNA. These assays can also be used
directly with tissue specimens, without the need for a preanalytic RNA isolation step, and thus
provide a high-throughput method of microRNA profiling in clinical specimens.

Background
MicroRNAs (miRNAs) are small non-coding RNAs of
about 21 to 24 nucleotides in length and are derived from
introns and exons of both protein-coding and non-coding
genes. Many miRNAs are conserved in sequence between

distantly related organisms and function in such essential
processes as development, proliferation, differentiation,
metabolic and signaling pathways, chromatin structure,
and apoptosis [1-3]. MiRNAs can suppress translation of
their target mRNAs via partial base pairing with the
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3'UTR, generally requiring "seed" pairing of 6 to 8 nucle-
otides. Alternatively, in the case of perfect base comple-
mentarities, they can promote degradation of target
mRNAs via the RISC complex in a process known as RNA
interference. It is currently estimated that expression of
over 50% of human protein-coding genes is mediated by
miRNAs.

MiRNAs were first linked to cancer in 2002 when Calin et
al. observed that miR-15a and miR-16-1 were down regu-
lated in the majority of chronic lymphocytic leukemia
patients [4]. Subsequent mapping of known sequences
encoding miRNAs in the human genome revealed that
greater than 50% of miRNA genes are located at fragile
chromosomal sites, minimal regions of amplification or
loss of heterozygosity, or common breakpoint regions
[5,6]. Many of the miRNA genes residing in these fragile
sites and cancer-associated genomic regions are arranged
in clusters and similarly expressed, implying polycistronic
primary transcription [5,7,8].

Expression profiling of miRNAs in cancer tissues has lead
to discovery of miRNA "signatures" that are associated
with tumor diagnosis and cancer-related staging, progres-
sion, prognosis and response to treatment [9,10]. MiRNA
expression patterns have been shown to classify tumors by
differentiation stage and tissue origin [11-13]. For diag-
nostic purposes, miRNAs could potentially be more
directly associated with gene function than mRNAs, since
they do not have to first be translated into proteins to have
a biological effect. Furthermore, miRNAs may offer greater
diagnostic sensitivity compared to proteins since they can
be detected using quantitative amplification methods,
including quantitative real-time PCR (qRT-PCR) and the
real-time transcription-mediated amplification (TMA)
methods described below.

Here we describe real-time TMA assays to detect miRNAs
for potential oncology applications. For example, in the
case of prostate cancer, prognostic markers that predict
disease outcome may be more valuable than diagnostic
markers that differentiate non-diseased tissue from
tumor. Widespread serum PSA testing currently diagnoses
both advanced prostate tumors and indolent cases; how-
ever indolent microscopic tumors do not require immedi-
ate treatment. Therefore, we selected candidate miRNA
sequences that could potentially be used to discriminate
normal tissue and/or indolent tumors from aggressive or
metastatic disease. They were selected based on their loca-
tion in or near fragile chromosomal sites that have been
linked to prostate cancer progression and based on pub-
lished reports of miRNA differential expression in prostate
cancer tissues.

Materials and methods
Cell lines and xenografts
LNCaP, DU145, PC-3 and VCaP prostate cancer lines were
obtained from the American Type Culture Collection
(Manassas, Virginia). LNCaP and DU145 cell lines were
cultured in RPMI Medium 1640 Custom (Invitrogen,
Carlsbad, California) containing 10% FBS. The PC-3 cell
line was cultured in MEM with Earle's salts (Invitrogen)
supplemented with 10% FBS, 2 mM L-glutamine, and 0.9
mM sodium pyruvate. VCaP cells were cultured in DMEM
containing 10% FBS. Freshly frozen samples of 21 human
prostate cancer severe combined immunodeficient
xenografts (LuCaPs 23.12, 23.1, 23.1AI, 35, 35V, 49, 70,
77, 78, 81, 86.2, 92, 93, 96, 96AI, 105, 115, 141, 145.1,
145.2, 153) were prepared using standard methods and
supplied by R. L. Vessella. Characterization of several of
these xenografts has been reported previously [14-16].

RNA samples
Total RNA was extracted from cell lines using the Ambion
mirVana miRNA isolation kit (Applied Biosystems Inc.,
Foster City, California) and frozen sections of xenograft
tissue using Trizol reagent (Invitrogen) according to the
manufacturer's instructions. Synthetic mature miRNAs
were purchased from Integrated DNA Technologies (Cor-
alville, Iowa). The human pre-miR-802 sequence was
obtained from the miRBase [17] of the Sanger Institute
and a synthetic hairpin precursor was synthesized using
PCR amplification of the 94 nt pre-mir-802 sequence
from LNCaP genomic DNA cloned into pBluescript II SK
(+) and expressed as an in vitro transcript.

Real-time quantitative PCR
cDNA was prepared from synthetic mature miRNAs or
total RNA using specific TaqMan Assays-on-Demand
reverse transcription primers and TaqMan miRNA Reverse
Transcription Kit (Applied Biosystems Inc.). Absolute
copy number of mature miRNAs was determined by qRT-
PCR using TaqMan Assays-on-Demand primer and probe
sets along with TaqMan Universal PCR master mix
(Applied Biosystems Inc.) for cDNA amplification. Ampli-
fication and analysis were performed on the ABI 7000
sequence detection system. Copies per cell were deter-
mined from total nanograms of RNA using an estimated
15 picograms of total RNA per cell as described [18].

Real-time transcription-mediated amplification
All buffer and enzyme reagents used in the real-time TMA
assays were APTIMA® reagents from Gen-Probe Incorpo-
rated (San Diego, California). All reactions were run in
triplicate. Amplification reactions were prepared in 96-
well microtiter plates containing specifically designed T7-
provider [19] and 3'-extender oligonucleotides together
with a common reverse primer and molecular beacon (see
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below). The plates were transferred to an Eppendorf Ther-
momixer R™ instrument and incubated at 42°C for 5 min-
utes. Next, APTIMA enzyme reagent was rapidly pipetted
into each well and a sealing card was applied to the plate.
After a brief mixing step (1 minute at 42°C), the plate was
transferred to an MJ Chromo4 instrument (Bio-Rad, Her-
cules, California) that had been pre-heated to 42°C. Flu-
orescence readings were taken every 20 seconds at 42°C
for 60 minutes. Emergence times were compared against
calibration standards to derive miRNA copy numbers. The
T7 provider oligonucleotides used in our model system
experiments each contained a 3'-(reverse polarity)-dC
nucleotide (5'-5'-phosphdiester linkage, designated "-Bl"
in the sequences below) to block 3'-extension [19]. Real-
time TMA assays used the following oligonucleotides for
the different miRNAs: for miR-21, a T7-provider
(AATTTAATACGACTCACTATAGGGAGAUAGCUUAU-
CAGA-Bl) and a 3'-extender (CG GTCG CAGAGATTAA
CTGGTACAGGGTTAAGCGTGGTCGACCGTCAACAT-
CAGT); for miR-34b, a T7-provider (AATTTAATACGACT-
CACTATAGGGAGATAGGCAGTGTCA-B1) and a 3'-
extender (CG GTCGCAGAGATTAACTGGTACAGGGT-
TAAGCGTGGTCGACCGCAATCAGCTAAT); for miR-182,
a T7-provider (AA TTT AATAC GACTCACT AT AGGG AG
ATTTGG CAATGGT-Bl) and a 3'-extender (CG GT
CGCAGAGATTAACTGGTACAGGGTTAAGCGTGGTCGA
CCG AG TGTGAGTTCT); for miR-221, a T7-provider (AA
TTT AA TACGACTCACTATAGGGAGACCACAACGGTT-
TAGC UA CAUUGUCUG-Bl) and a 3'-extender (CG
GTCG CAGAGATTAACTGGTACAGGGTTAAGCGTGG TC
GACCGGA AACCCAGCAG); for miR-222, a T7-provider
(AATTTAATACGACTCACTATAGGGAGAAG CUACAUC
UGG-Bl) and a 3'-extender (CG GTC GC
AGAGATTAACTGGTACAGGGTTAAGCGTGGTCGACCG-
GAGACCCAGTAG); and for miR-802, a T7-provider
(AATTT AAT ACGACTCACTATAGGGAGA-CA GTA
ACAAAGA-Bl) and a 3'-extender (CGGTCGCAGAGAT-
TAACTGGTACAGGG TTAAGCGTGGTCGACCGACAAG-
GATGAAT). All assays used the same reverse primer
(CGGUCGCAGAGATTAACT) and molecular beacon
labeled at the 5' end with FAM and at the 3' end with Dab-
cyl (CC GACA AGCGUGGUCGACGUCGG).

Specific target capture of miRNAs
Capture of mature miRNAs was performed using the fol-
lowing chimeric hairpin target capture oligonucleotides
(TCO) [20]: for miR-21 (TTTTTTTTTTTTUCAACAU-
CAGUCUGAUAAGCUAAAAAAAAAAAAA), for miR-182
(TTTTTTTTTTTTAGUGUGAGUUCUACCAUUG CCAAA
AAAAAAAAAAAA), for miR-221 (TTTTTTTTTTTTGAAAC-
CCAGCAGACAAUGUAGCUAAAAAAAAAAAA), for miR-
222 (TTTTTTTTTTTTACCCAGUAGCCAGAUGUAGCU
AAAAAAAAAAAA), and for miR-802 (TTTT TTT TTTTTA-
CAAGGAUGAAUCUUUGUUACUGAA AAAAAAAAAA).
The TCO was added with APTIMA Target Capture Reagent

to RNA samples in Solution Transport Medium (Gen-
Probe Inc.) and heated to 75°C for 15 minutes in a 96-
well deep well heater (model IC25 with block 620–5036,
Torrey Pines Scientific Inc., San Marcos, California) to
denature the hairpin. The reaction mixture was then
cooled to room temperature over 30 minutes to anneal
the specific miRNA to the TCO. After binding to the
miRNA, the 3' dA12 of the TCO was captured onto poly-
dT14 derivatized magnetic beads (APTIMA Target Capture
Reagent). The beads were collected using a Kingfisher96
PCR tip head (Thermo Scientific, Waltham, Massachu-
setts), washed in APTIMA wash solution, and mixed with
APTIMA amplification reagent containing amplification
and detection oligonucleotides in a 96-well PCR plate as
described above. To liberate the miRNA from the TCO,
the PCR plate was incubated at 90°C for 5 minutes and
then immediately cooled on ice for 5 minutes.

Results
Design of TMA assays for the detection of miRNAs
The amplification and detection of miRNAs is challenging
due to their short length (approximately 21 to 24 nucle-
otides), thus restricting the possible oligonucleotides that
may be used as amplification primers and detection
probes. Previous PCR amplification methods have
addressed this challenge through a variety of technical
approaches, including the incorporation of locked nucleic
acid modified nucleotide monomers for enhanced bind-
ing affinity to short sequences and the use of tailed or
hairpin primers to increase the length of the resulting
amplicons [18,21,22]. In the assays described here [19],
an extender hairpin oligonucleotide first hybridizes to the
3' end of the miRNA. Upon addition of APTIMA enzyme
reagent, the extender primer is extended to make a cDNA
complementary to the miRNA and the RNaseH activity of
the enzyme degrades the miRNA. A T7 provider oligonu-
cleotide then binds to the cDNA and is extended. The 5'
end of the T7 provider contains a promoter sequence
where T7 RNA polymerase then binds and produces mul-
tiple copies of sense RNA that include the original miRNA
sequence and an appended sequence that can be detected
using a molecular beacon or other detection probe. Lastly,
a reverse primer binds to the 3' end of the sense RNA copy
and is extended to make another antisense cDNA tem-
plate, thus allowing amplification of the sense RNA to be
repeated in a cyclic manner (Figure 1).

Real-Time TMA assays distinguish mature miRNA 
sequences
The first target sequence for miRNA assay development
was derived from searches in the regions of TMPRSS2 and
Ets family member chromosomal breakpoints (21q21.2–
21.3) because this region has been associated with aggres-
sive forms of prostate cancer [23,24]. We selected miR-
802, which resides in chromosomal region 21q22.12, due
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to its proximity to the TMPRSS2:ERG gene fusion. Our
real-time TMA assay for miR-802 assay was shown to be
specific for the synthetic mature miR-802 template when
compared to unrelated miRNAs let-7d, miR-34b and miR-
548d (Figure 2A, B, and Figure 2C). Some nonspecific
amplification was observed for the let-7d and miR-34b
targets after a threshold time (TTime) of 50 minutes (Fig-
ure 2B) and in control reactions that contained no tem-
plate (data not shown). This model system demonstrated
that 5 copies per reaction of this particular intended tar-
get, miR-802, could be detected above nonspecific back-
ground signals.

The specificity of the miR-802 assay for mature sequences
was tested on a hairpin precursor in vitro transcript since
mature processed miRNAs have different cellular func-
tions from their hairpin precursors. As shown in Figure
2D, the miR-802 assay showed good discrimination of the
mature miR-802 template from its corresponding hairpin
precursor.

Since miRNA family members can differ in sequence by 1
or more nucleotides, we next designed a model system to
demonstrate the sequence specificity of our real-time TMA
assay. A real-time TMA assay was designed to specifically
detect miR-34b and was tested against miR-34 family
members and other non-complementary miRNAs. As
shown in Figure 3, the miR-34b assay showed template-
dependent amplification at about 20 minutes with 5 × 107

input copies per reaction using miR-34b synthetic miRNA
template compared to synthetic mature miRNA family

members miR-34a and miR-34c and the unrelated miRNA
let-7d. Some cross-reactivity was seen with 5 × 107 copies
per reaction of the related species miR-34c at about 42
minutes (Figure 3B), which is approximately the time that
background signal was detected in the no template con-
trol reaction (about 45 minutes). Thus, the analytical sen-
sitivity of this assay for the miR-34b species was less than
50,000 copies per reaction.

Identification of miR-21, miR-182, miR-221 and miR-222 
targets for assay development
As mentioned in the Introduction, we prioritized several
miRNAs based on their chromosomal location, putative
mRNA target(s), and published microarray results that
show differential expression between normal and cancer
tissues. We also examined miRNA profiles of human pros-
tate cancer xenografts to determine which miRNAs were
differentially expressed compared to normal prostate tis-
sue (see Additional file 1, Additional file 2, and Addi-
tional file 3). Based on this analysis, we concluded that
miR-802 was not highly expressed in the xenografts and
was not differentially expressed between normal and
tumor samples. In contrast, we identified several miRNAs
that showed high levels of expression and/or were differ-
entially expressed in the xenografts. Four of these miR-
NAs, miR-221, miR-222, miR-21 and miR-182, were
selected for further study based on the known biological
functions of their predicted mRNA targets [25-32]. Real-
time TMA assays were developed for each of these miR-
NAs after confirming their differential expression using
commercial RT-PCR assays (see Additional file 4). As
shown in Figure 4A, our real-time TMA assays for miR-
221, miR-222, miR-21 and miR-182 showed good analyt-
ical performance. The specificity of our miR-221 assay was
demonstrated using other synthetic mature miRNAs as
targets (Figure 4B), analogous to our previous demonstra-
tion for the miR-802 assay (previous section).

miRNA copy number determination in prostate cancer cell 
lines and xenografts
Previously, miR-221 was shown to have high expression
in the PC-3 prostate cancer cell line but low expression in
the LNCaP cell line [25]. To assess the efficiency of our
real-time TMA assay for capturing and detecting miRNA
from a complex mixture, known quantities of synthetic
miR-221 were added to either Solution Transport
Medium (STM) or STM containing total RNA extracted
from LNCaP or VCaP cells (10 ng total RNA per reaction),
both of which were shown separately to contain low or
undetectable levels of endogenous miR-221 (see below).
Control reactions were run with synthetic miR-221 tran-
scripts added directly to amplification reagent (without
target capture). Capture and amplification efficiencies for
known input copy numbers of synthetic miR-221 were

Schematic of miRNA real-time TMA reactionFigure 1
Schematic of miRNA real-time TMA reaction.
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Specificity of miR-802 real-time TMA assayFigure 2
Specificity of miR-802 real-time TMA assay. A) Sequences of mature miRNAs tested. B) Amplification curves from tests 
of the miR-802 assay on various input copy numbers of synthetic miRNA targets. RFU: Relative fluorescence units. C) Calibra-
tion chart for the amplification curves in B. D) Calibration chart for the miR-802 assay tested on various copy number input of 
mature target vs. pre-miR-802 transcript.
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similar in the presence or absence of total cellular RNA
(Figure 5A, curves for "LNCaP/STM" and "VCaP/STM"
compared to "pure STM"). However, the assays that
included target capture amplified somewhat less effi-
ciently (about 10 to 20 fold) compared to the control
reactions without target capture (Figure 5A, "control
amp").

Endogenous expression levels of miR-221 were measured
in the prostate cancer cell lines LNCaP, PC-3, DU145 and
VCaP using a commercial TaqMan qRT-PCR assay (Figure
5B). We measured relatively low or undetectable levels of
endogenous miR-221 in LNCaP and VCaP cells as
reported above for our previous experiment (Figure 5A).
Results from the TaqMan qRT-PCR assays showed about
3000 copies of miR-221 per PC-3 cell and about 290 cop-
ies per DU145 cell. Similar quantitation values were deter-
mined using our research prototype miR-221 real-time
TMA assay, demonstrating analytical equivalence between
the methods (Figure 5C). These tests were also performed
on total RNA isolated from prostate cancer xenograft sam-
ples, again with similar quantitation values between the 2
assay methods (Figure 5D).

Discussion
MiRNAs may be effective biomarkers for use in clinical
diagnostics because they are extremely stable in body flu-
ids taken from patients and formalin-fixed paraffin-
embedded (FFPE) tissue sections, presumably due to their
small size and protection by the RISC complex [33-38].
One advantage of the technology is that FFPE sections, in
addition to fresh or frozen tissue, can be placed directly in
STM for convenient transport and/or storage. The miRNA
targets can then be specifically captured directly from the
STM buffer without the need for additional RNA purifica-
tion.

Although our research prototype miRNA assays per-
formed well for some sequences, other sequences showed
decreased amplification efficiencies, dependent on their
length and base content. For example, we were unable to
design an assay with acceptable sensitivity for one miRNA
containing a high percentage of A/U bases in the 3'-
extender binding region (data not shown). Increasing the
length of the 3'-extender resulted in elevated background
signals, presumably due to increased sequence overlap
with the T7-provider oligonucleotide (ie resulting in non-
specific amplification). Similarly, the need to discriminate
between closely related family members presented con-
straints on the binding regions to which the 3'-extenders
and T7-providers were designed, resulting in a trade-off
between assay sensitivity and assay specificity. New assay
chemistries are being investigated to mitigate these limita-
tions. Based on the model systems described here, our

real-time TMA assay appears to be best suited for samples
that contain at least 5000 copies of the desired target
miRNA per reaction.

According to our data, the miRNAs miR-221, miR-222,
miR-182, and miR-21 were expressed at relatively high
levels in prostate cancer xenograft specimens. Therefore,
our research prototype real-time TMA assays for these
miRNAs showed accurate and reproducible quantitation
using 10 ng of total RNA from these tissues. Similar results
were also obtained when these miRNAs were detected
directly from STM extracted clinical FFPE specimens and
urine sediments (data not shown). We are currently inves-
tigating endogenous normalization methods to provide
relative comparisons of miRNA levels between specimens.
Several miRNAs have been suggested for normalization
purposes [39].

Based on the successful results, we suggest that real-time
TMA assays could be effective tools for detecting miRNAs
that exhibit moderate to high expression in diseased tis-
sues. For example, miR-21 is reported to be commonly
overexpressed in solid tumors of the lung, breast, stom-
ach, prostate, colon, brain, head and neck, esophagus and
pancreas compared to normal tissues. Several recent stud-
ies report that miR-21 downregulates four individual
tumor suppressors: phosphatase and tensin homolog; tro-
pomyosin 1; programmed cell death 4; and maspin. By
targeting multiple tumor and metastasis suppressor genes,
miR-21 has a presumed role not only in tumor growth but
also in invasion and tumor metastasis [27-31]. Our results
for miR-21 expression in tumor xenograft samples
showed about a 5 to 25 fold upregulation in these tissues
compared to normal samples with copy numbers ranging
from 5000 to 35,000 copies per cell (see Additional file
4). Due to its implied role in cancer and its high level of
expression in prostate tumor compared to normal pros-
tate samples shown by our group and others
[10,16,38,40], miR-21 may have value in distinguishing
tumor from normal tissue.

Our results also showed miR-182 was highly upregulated
in the majority of tumor tissues compared to normal sam-
ples (see Additional file 4). Calin et al. described the loca-
tion of miR-182 in a minimal deleted region that is
associated with an aggressive prostate cancer histotype [5]
and others have also observed upregulation of miR-182 in
prostate tumors [40,41].

Our real-time TMA assays for the tandemly expressed
miR-221 and miR-222 could also prove to have clinical
utility upon further investigation. These miRNAs impair
apoptosis by targeting the tumor suppressor p27 (Kip1)
[25,26,42]. A recent report has linked decreased p27
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Specificity of miR-34b real-time TMA assayFigure 3
Specificity of miR-34b real-time TMA assay. A) Sequences of mature miRNAs tested. B) Amplification curves from tests 
of the miR-34b assay on various copy number input of miR-34 family members along with unrelated let-7d. RFU: Relative fluo-
rescence units. C) Calibration chart for the amplification curves in B.
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Analytical performance of miR-21, miR-182, miR-221 and miR-222 real-time TMA assaysFigure 4
Analytical performance of miR-21, miR-182, miR-221 and miR-222 real-time TMA assays. A) Template-dependent 
amplification using the respective synthetic RNA miRNA targets. Amplification reactions were run in triplicate (without target 
capture). The slope and R2 values were determined from log copy points 1.7 to 7.7 (50 to 5 × 107 copies per reaction). B) Spe-
cificity of the miR-221 assay using the corresponding synthetic miR-221 target as compared to synthetic miR-222, miR-30b, and 
miR-802 targets.
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Real-Time TMA miRNA assays with integrated target captureFigure 5
Real-Time TMA miRNA assays with integrated target capture. A) Capture and detection of known inputs of syn-
thetic miR-221 added directly to STM buffer or to STM containing 10 ng of total cellular RNA (derived from VCaP or LNCaP 
cells, as indicated). Control reactions were run with synthetic miR-221 spiked directly into amplification reagent (without tar-
get capture). B) miR-221 copy levels determined by a commercial TaqMan RT-qPCR assay. C) miR-221 copy levels determined 
by our real-time TMA assay (with integrated target capture and amplification/detection). D) miR-221 copy numbers deter-
mined in prostate cancer xenografts using a commercial TaqMan RT-qPCR assay and also our research prototype real-time 
TMA assay (again incorporating target capture). For all real-time TMA samples, 10 ng total RNA was assayed per reaction in 
triplicate.
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expression with an aggressive prostate cancer phenotype
[43]. Interestingly, the miR-221 cluster is downregulated
by androgen treatment [41], which may explain why miR-
221 and miR-222 were downregulated in the results
shown with the majority of prostate tumor samples tested
here (see Additional file 4) and by others [16,41]. MiR-
221 and miR-222 are overexpressed in PC-3 cells that
exhibit an androgen-independent, highly metastatic phe-
notype. In contrast, miR-221 and miR-222 are expressed
at relatively low levels in LNCaP and 22Rv1 cells that
exhibit slow-growing, non-metastatic phenotypes. We did
not observe a significant difference in miR-221 or miR-
222 expression in the three matched pairs of androgen
dependent and androgen independent xenograft lines
(LuCaP 23.1/23.1 AI, 35/35V, and 96/96AI, see Addi-
tional file 4); however, reported expression levels for miR-
221 and miR-222 in patient biopsy cores, metastatic
lymph node specimens, and non-malignant prostate tis-
sues suggest that these miRNAs could be associated with
invasive prostate cancer [25,40]. Based on these and other
observations, miR-221 and miR-222 appear to be promis-
ing biomarker candidates for discriminating metastatic
subtypes.

Clearly, clinical studies with large numbers of specimens
would be needed to demonstrate the clinical value of the
research prototype assays and miRNA biomarkers. Fur-
thermore, it is possible that a panel of miRNAs would be
required, assayed either in parallel or in multiplex for-
mats, to provide sufficient correlation with disease out-
come for prognostic applications. Considering the
regulatory role that miRNAs play in normal and disease
processes, it has been hypothesized that about 2 to 6 miR-
NAs could provide sufficient correlation for prostate and
other cancers. Again, further clinical testing will be needed
to confirm this hypothesis.
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puts from microarray expression profiling experiments (conducted as 
described in Additional file 1), with normalized values used in determin-
ing differential expression ratios between adjacent-normal and tumor 
xenograft specimens.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-17-S3.csv]

Additional file 4
Validation of miR-21, miR-182, miR-221 and miR-222 expression 
levels in human adjacent-normal and prostate tumor xenograft tissues 
using a commercial quantitative RT-PCR assay. Bar graphs of copy 
numbers per cell determined using a commercial quantitative RT-PCR 
assay. Synthetic miRNAs were diluted 10-fold serially from 109 copies per 
reaction for construction of each standard curve. For each reverse tran-
scription reaction, 10 ng of total RNA was used and amplification reac-
tions were run in triplicate (see Additional file 1 for details).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-17-S4.doc]
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