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Abstract

Background: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma
multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally
fatal. A deeper understanding of the molecular relationship of these tumor types is necessary to
derive insights into the diagnosis, prognosis, and treatment of gliomas. Although genomewide
profiling of expression levels with microarrays can be used to identify differentially expressed genes
between these tumor types, comparative studies so far have resulted in gene lists that show little
overlap.

Results: To achieve a more accurate and stable list of the differentially expressed genes and
pathways between primary GBM and AA, we performed a meta-analysis using publicly available
genome-scale mRNA data sets. There were four data sets with sufficiently large sample sizes of
both GBMs and AAs, all of which coincidentally used human U133 platforms from Affymetrix,
allowing for easier and more precise integration of data. After scoring genes and pathways within
each data set, we combined the statistics across studies using the nonparametric rank sum method
to identify the features that differentiate GBMs and AAs. We found >900 statistically significant
probe sets after correction for multiple testing from the >22,000 tested. We also used the rank
sum approach to select >20 significant Biocarta pathways after correction for multiple testing out
of >175 pathways examined. The most significant pathway was the hypoxia-inducible factor (HIF)
pathway. Our analysis suggests that many of the most statistically significant genes work together
in a HIFIA/VEGF-regulated network to increase angiogenesis and invasion in GBM when compared
to AA.

Conclusion: We have performed a meta-analysis of genome-scale mMRNA expression data for 289
human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are
significantly different between GBM and AA. These feature lists could be utilized to aid in diagnosis,
prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously
suspected of playing an important role in glioma biology. More generally, this approach suggests
that combined analysis of existing data sets can reveal new insights and that the large amount of
publicly available cancer data sets should be further utilized in a similar manner.
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Background

High-grade gliomas, which include World Health Organ-
ization grade III astrocytomas (anaplastic astrocytoma:
AA) and grade IV astrocytomas (glioblastoma multiforme:
GBM), are the most common intrinsic brain tumors in
adults and are almost universally fatal. GBMs are particu-
larly invasive and aggressive. Patients diagnosed with
GBM have a median survival time of one year [1], and less
than 20% survive two years [2]; in contrast, the median
survival for patients with AA is 30 months [1]. Nearly all
GBMs (>90%) are primary, i.e. they develop de novo with
no evidence of a less malignant precursor lesion, whereas
secondary GBMs develop from lower-grade astrocytomas
[3]. Histological criteria are currently the basis for tumor
grading and prognosis, with GBM showing increased
necrosis, vascular proliferation, nuclear pleomorphism,
mitoses and invasiveness when compared to AA. The
molecular basis for the histological and prognostic differ-
ences between grade III and grade IV astrocytomas
remains an area of active investigation, e.g. one study
found genes associated with necrosis in high-grade glio-
mas [4]. A deeper understanding of the basis for these dif-
ferences may lead to new therapeutic strategies for treating
these tumors.

Differences in chromosomal alterations in AA and GBM
have been described in several studies. For example, loss
of heterozygosity for chromosome 10 was often observed
in high-grade astrocytomas, and its frequency was found
to be different between AA and GBM [5]. Aberrations
involving p53, EGFR, PTEN, and other genes have also
been reported as having different frequencies in AA and
GBM. Importantly, differences within the same grade were
also observed. Aberrations on chromosome 10, for exam-
ple, were found to be an independent, adverse prognostic
marker for survival, even after accounting for age and
grade [5,6]. With the advent of microarrays, molecular
portraits of these tumor grades were refined, and expres-
sion profiling was found to be a better predictor of out-
come than histological criteria [7,8]. These and other
studies revealed the presence of molecular subgroups of
malignant gliomas. One recent study identified three
molecular subclasses of GBM that were characterized by
proneural, proliferative, and mesenchymal mRNA expres-
sion signatures [9], and another isolated an expression
signature that distinguished survival phenotypes [10].

Although a number of expression profiling studies have
been performed on AA and GBM, they give conflicting
results with regard to the list of relevant, differentially
expressed genes between GBM and AA. This variability
may be due to several factors. Most importantly, the sam-
ple sizes for these studies were relatively small due to the
limited availability of suitable specimens and the signifi-
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cant costs associated with these studies. Other factors
include differences in: the quality of the tissue specimens
used (e.g. presence of non-tumor brain tissue or extensive
necrosis), the microarray platforms used, the statistical
methods employed to identify differentially expressed
genes [11], and patient demographics such as age, gender,
and race. Given the large number of factors that influence
the list of differentially expressed genes, it is not surprising
that gene lists from independent studies show little over-
lap. This lack of overlap has been observed in nearly all
diseases in which microarrays have been employed,
although the extent of the discrepancy depends on the
heterogeneity of the disease [12].

To compile the most accurate and robust list of relevant
genes, we performed a meta-analysis of multiple inde-
pendent publicly available data sets, mostly from the
Gene Expression Omnibus (GEO). GEO is the largest
public repository of microarray data; it now contains over
250,000 samples and its size is rapidly increasing [13].
While many of the published microarray data sets are cen-
trally stored through GEO, the format and quality of the
data sets are variable, and the annotations, both in terms
of the probes on the platform and the sample phenotypes,
are often incomplete. Thus, integrating information from
these data sets requires significant bioinformatics analy-
sis. In this study, many data sets were examined, and four
data sets that satisfied our criteria for suitability in meta-
analysis were selected. The resulting list of genes that are
differentially expressed between AA and GBM is likely to
be more robust and stable than that derived from any
individual study to date.

Results

Identification of appropriate data sets

To identify gene expression differences between AA and
GBM, we searched GEO and many other databases con-
taining publicly-available microarray data for data sets
that contain information for both grades. One possible
strategy for meta-analysis would have been to collect all
data sets containing GBMs and all data sets containing
AAs separately, and to then perform a single differential
analysis. However, this could potentially lead to artifac-
tual results due to methodological or technical differences
among the studies, as mentioned above. Platform differ-
ences, for example, can have a significant influence on the
results of microarray analyses. We have previously shown
that even the differences arising from the use of successive
generations of microarray platforms produced by the
same company (e.g. Affymetrix) can be larger than the dif-
ferences among patient samples [14]. While such artifac-
tual effects can be reduced somewhat with careful
normalization and use of robust statistics, they cannot be
eliminated. A more conservative approach is to combine
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the information obtained at the level of "within-experi-
ment" gene lists, so that platform-specific and other biases
are reduced.

To increase the reliability of the results, we further
enforced stringent criteria for data inclusion. Distinct
expression profiles exist between primary and secondary
GBMs [15], and it is estimated that 95% of GBMs are pri-
mary [3]. Hence, to pinpoint targets for forced grade
reduction of primary GBMs, we focus exclusively on con-
trasting AAs to primary GBMs. (Although there is not suf-
ficient data for a meta-analysis of AAs versus secondary
GBMs, interesting findings have come out of this compar-
ison, e.g. [16].) We found four large in vivo expression data
sets, three from GEO and one from UCLA, that assay AAs
and primary GBMs. All four studies used the Affymetrix
(Santa Clara, CA) human U133 platform. This similarity
of expression platforms simplifies the analysis, although
the same process with minor modifications would have
worked well even with differing platforms. Table 1 sum-
marizes the data used for meta-analysis. Note that this
platform consistency is not by design; our search of
human in vivo expression studies did not yield any other
studies that assayed five or more GBMs and AAs in patient
samples, regardless of platform.

Statistical approach to combining data sets

Analysis of differential expression in a single data set has
been examined in great detail in the past decade [17,18].
See [11] for a comparison of some commonly used meth-
ods. For this work, we focus on the methods for combin-
ing multiple data sets, i.e. for combining the scores of
individual features across microarray experiments. Two
classical statistical techniques that combine a feature's p-
values directly are Fisher's method [19,20], which relies
on the sum of the logarithm of the p-values, and an alter-
native method proposed by Stouffer et al. (1949; cited in
[21]), which transforms p-values into z-scores. Fisher's
method was used, for instance, for analysis of microarray
data on breast cancer [22], and both Fisher's and a
weighted version of Stouffer's method were applied to
study prostate cancer [23,24]. Meta-analytic methods
have also been developed specifically for genomics, many
of which rely on traditional statistical approaches such as

Table I: Summary of the data sets
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random effects [25,26] and Bayesian modelling [27,28],
and some techniques have been advanced specifically for
combining cancer microarray data [29]. Meta-analysis for
genomics has accrued so much literature that there is now
a book dedicated to the topic [30].

Breitling et al. (2004) and Hong and Breitling (2007)
have proposed a simple, intuitive method that evaluates
genes based only on the product (or the sum) of its ranks
[31,32]. This method ranks each feature (such as a gene)
within an experiment based on that feature's score (say, a
t-statistic), and then combines these ranks, rather than
combining the data or p-values themselves. For example,
if a certain gene is the most differentially expressed gene
in one experiment and is the tenth most differentially
expressed gene in the three others, then its rank sum will
be 1+10+10+10 = 31 and its rank product will be
1*10*10*10 = 1000, where the smaller is the rank sum or
rank product, the more significant is the gene. The two
approaches differ only in how they penalize the larger
ranks; the rank product becomes very large even with a
single high rank. Because rank-based procedures do not
make assumptions about the model and parameters from
which the data came, they are termed non-parametric.

We chose to use a rank-based method because: 1) in prac-
tice, the main purpose of microarray experiments is to
rank genes rather than to obtain precise estimates of their
statistical significance, since the number of statistically
significant genes often greatly exceeds the number of
genes that can be validated [33], 2) non-parametric anal-
yses are more robust in general, 3) the techniques and
assumptions used in the estimation of p-values and the
subsequent correction for multiple hypothesis testing
may be different between data sets and may not be
directly comparable, and 4) using non-parametric meth-
ods to rank genes has proven highly effective in the con-
text of genomics. Although more sophisticated rank-based
procedures are available [34], the rank sum and rank
product methods have been shown to give good results on
microarray data [32]. Because the rank sum technique is
more robust than the rank product approach and is pref-
erable when the variance of some features may be larger
than others [35], we employ the rank sum procedure.

Petalidis Phillips Sun Tso TOTAL

AA 19 21 19 9 68

GBM 39 56 8l 45 221
TOTAL 58 77 100 54 289
GEO ID GSE1993 GSE4271 GSE4290 (at UCLA)
Affy chip UI33A UI33A and UI33B U133 plus 2.0 UI33A
Journal Mol Cancer Ther Cancer Cell Cancer Cell Cancer Research

Year 2008 2006 2006 2006
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As a complement to the ordered gene list for each study,
which we derive using moderated t-statistics [36], we also
quantify differentially activated pathways between GBM
and AA. The benefit of testing the significance of a priori
defined gene sets (which correspond to pathways in this
article) is that the recognition of such pathways may allow
for better elucidation of the underlying biology, improved
drug target development, and greater generalizability
[37]. In this work, we used a statistical method that we
previously developed to identify significant gene sets
while accounting for the differing sizes of gene sets and
their correlation structure [38].

Meta-analysis gene list

Of our 22,215 probe sets (see Methods), we identified 933
with rank sum based g-values [39], an analogue of p-val-
ues when many features are being tested, below 1%. These
meta-analytic statistics provide a combined ranking of sig-
nificant genes while not allowing strong p-values from
any individual study to dominate the results. The amount
of differential expression observed is illustrated in Figure
1, which shows histograms depicting the g-values from
each study on the left and the relatively conservative q-val-
ues from the meta-analysis on the right. The high propor-
tion of genes with low g-values indicates that many more
genes are found to be differentially expressed than
expected by chance.
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Gene g-value histograms. Histograms depicting the signif-
icance levels of probe sets from each of the four studies, and
from the meta-analysis.
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The top row of Figure 2 displays these findings through
Concordance At the Top (CAT) plots [40], which quantify
the concordance of two lists along list ranks. These plots
have a straightforward interpretation. For example, if two
gene lists share in common 80 of their top 100 genes, then
at rank 100 their concordance would be 80%. Hence, the
gene plots in Figure 2 show that no study dominates the
final meta-analysis gene list and that these studies' gene
lists, although far more concordant than would be
expected by chance, contain ample heterogeneity. This
coupling of apparent heterogeneity with abundant meta-
analytic significance points to a wealth of information
only available through a powerful meta-analysis.

Information on the top 30 meta-analysis genes is dis-
played in Table 2, while Additional file 1 contains infor-
mation for all probe sets. A survey of the literature
indicates that several of these top 30 genes have been
demonstrated to play an important role in the biology of
malignant gliomas. These include CHI3L1 [41,42], FN1
[43,44], CLICI [45], VEGFA [46], IGFBP2 [47], ADM [48],
and COL4A1/COL4A2 [49].

Comparison to literature

An automated search of the PubMed database for relevant
abstracts related to the top 30 genes derived from each
study and from the meta-analysis (using the search term
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CAT plots. Concordance At the Top plots comparing
ranked probe set lists from pairs of studies (top left) and
from each study to the meta-analysis probe set list (top
right), and similarly for pathways (bottom row).
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Table 2: Comparison of top genes
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Petalidis Phillips Sun Tso Meta Meta Gene Name
TIMPI* CALR* SRPX2 RPS3A* GLUDI*  glutamate dehydrogenase |
ADCY2 CSFI* ADAM|2* SC5DL GLUD2  glutamate dehydrogenase 2
LAMCI* MTSS I* ALDH5AT*  ZNF192* CLICI* chloride intracellular channel |
ABHD6 ANXA2P3 LAMBI* ANXAI*  COL4AI*  collagen, type IV, alpha |
COL5A2 CRHR2* ACTNI* MYST4  CCDCI09B coiled-coil domain containing 109B
CcsDC2 BMP8A* NTSR2* CAPG* VEGFA*  vascular endothelial growth factor A
RBP[* CALCRL FAM69A*  ACVR2B*  COL4A2*  collagen, type IV, alpha 2
EFEMP2* CGO030* PPP2R5A* SPPI* RASLIOA  RAS-like, family 10, member A
COL4AI* SCD* HRSP12* CHI3LI* IGFBP2* insulin-like growth factor binding protein 2, 36kDa
KIAA049 SORBSI COL5A2 MYOZ2 FNI* fibronectin |
IGFBP2* PEX5 KDELR3 SLC25A21  PPP2R5A*  protein phosphatase 2, regulatory subunit B', alpha isoform
LGALSI* ADCY2 SERPINH I * TMLHE PSRCI*  proline/serine-rich coiled-coil |
PLP2 GLUD2 SRF* GNAL LUZP2 leucine zipper protein 2
CLICI* EDG8 ZHX2 AKT3* LPINI lipin 1
USHIC* HSDL2 LOC727942 TSC22D2 ARL4C ADP-ribosylation factor-like 4C
FKBP9 PI4K2A FOSL2* RICS* PDIA4* protein disulfide isomerase family A, member 4
BMP2* GLUDI* LOXL2* LUZP2 ADM* adrenomedullin
AKAP6 DCAKD CHPF NET I * CsDC2 cold shock domain containing C2, RNA binding
LDHA* CCLI9 LMNA* GUSB* TMSBI0*  thymosin, beta 10
DHTKDI RAB40C SLCI6A3 Cllorf4l CHI3LI*  chitinase 3-like | (cartilage glycoprotein-39)
ADM#* DIP2C BICDI GLUD | * NET I* neuroepithelial cell transforming gene |
KIAA0746 LOC645226* IQCK LITAF* MCAM* melanoma cell adhesion molecule
KDELR2* TNKS2* FAMI29A*  CEP350* LDHA* lactate dehydrogenase A
LBH AP2B* COL4A2* RASLIOA COLIA2* collagen, type |, alpha 2
COL4A2* HIRA CSGIcA-T HLA-C* ALDH2*  aldehyde dehydrogenase 2 family (mitochondrial)
CALDI* MAP2K3* TGFBIII* CLCA2* COL3AIl  collagen, type lll, alpha |
(Ehlers-Danlos syndrome type |V, autosomal dominant)
COL3AI GRWDI C2lorf7 SI00AI I* LAMCI*  laminin, gamma | (formerly LAMB2)
TMED9 LPINI ARLA4C PLCBI* SLCIA4*  solute carrier family | (glutamate/neutral amino acid transporter),
member 4
TAGLN2* VPS|13D* ZGPAT TRIP4* MSN* moesin
PELO MUC8* PVR* SERPINA3*  CNTNI*  contactin |

The first 5 columns contain the top 30 genes from each study and from the meta-analysis. Column 6 contains gene names for the top meta-analysis
genes, all of which have a g-value < 0.001. Genes in the first 4 columns that appear in the top 30 of the meta-analysis gene list are in bold, while
those that are related to the PubMed query "glioma OR cancer OR astrocytoma" are given an asterisk.

"glioma OR cancer OR astrocytoma") indicates that the
meta-analysis genes are associated with the greatest
number of relevant citations and contain the highest pro-
portion of genes with relevant citations (see Table 3). For
example, the gene VEGFA, which is known to be impor-
tant in glioma and generates more than 750 pertinent cita-
tions on its own, is 6th in the meta-analysis list but does
not fall among the top 30 genes on any of the individual
studies' lists.

The largest number of relevant citations derived from the
top 30 genes of any single study is 128. To ensure that

Table 3: Counts of relevant citations

Petalidis Phillips Sun Tso Meta

# citations (PubMed) 128 50 58 127 154
% cited (PubMed) 53% 47% 57% 67% 73%
% cited (Ingenuity) 47% 33% 27% 40%  60%

Comparison of relevant citation counts of top 30 genes from each of
the four studies and from the meta-analysis.

VEGFA does not dominate the comparison, we assigned it
the same number of citations as the second best perform-
ing gene from all of Table 2 (which is SPP1, with 41 rele-
vant citations). After this citation reduction for VEGFA,
the meta-analysis list still generates 154 glioma/cancer/
astrocytoma-related citations. The meta-analysis list's top
30 genes also have more citations related to the search
term (22 genes) than any of the four studies. We further
substantiated the results obtained from PubMed by evalu-
ating these same gene lists using the manually curated
Ingenuity Pathways Analysis software program (Ingenuity
Systems, http://www.ingenuity.com). Ingenuity found
that 60% of the top 30 unique genes from the meta-anal-
ysis have known connections to cancer, which is a 13%
increase above the top-performing individual study.

Meta-analysis pathway list

We next performed pathway analysis to determine
whether the genes identified by the meta-analysis might
work cooperatively. Of 178 Biocarta http://www.bio
carta.com pathways, 21 had a g-value below 2%. These 21
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gene sets are shown in Table 4, while Additional file 2
contains the information for all gene sets. These signifi-
cance results coupled with the bottom row of Figure 2
show that, similarly to our gene-level analysis, we are able
to glean insight from heterogeneous pathway lists using
the rank sum method. As hoped, owing to the greater
reproducibility in general of gene set analyses, the path-
way lists of the individual studies also exhibit greater con-
cordance to each other than do their gene lists (this can be
witnessed by examining fixed percentiles of the gene and
pathway lists in Figure 2.)

Several themes emerged from the pathway analysis. The
most statistically significant gene set identified in the
meta-analysis was the hypoxia-inducible factor (HIF)
pathway, which has been repeatedly implicated in GBM.
This pathway of 31 genes was highly upregulated in GBM
and performed extremely well in all four studies, ranking
#1 twice, #3, and #9. The HIF1A gene encodes a transcrip-
tion factor that is induced by hypoxia and that controls
the expression of a set of genes that promote angiogenesis
and invasion. Importantly, several of the top 30 genes on
the meta-analysis gene list are direct HIFIA transcrip-
tional targets, including VEGFA [50,51], ADM [52],
IGFBP2 [53], LDHA [54], and FN1 [55]. VEGF, in turn,
induces expression of a number of collage subtypes and
extracellular matrix proteins needed for the generation of
new blood vessels and for invasion [56]. Among these are
several additional genes listed among the top 30 on the
meta-analysis list, including LAMC, COL4A1, COL4A2,

Table 4: Top pathways

http://www.molecular-cancer.com/content/8/1/71

COL1A2 and FN1. TMSB10 can also be regulated by VEGF
[57]. When considered together, these genes suggest dif-
ferential activation of the HIF1A/VEGF network in GBM
when compared to AA. Figure 3 illustrates the interrela-
tionship between HIF1A, VEGFA (whose pathway is
ranked 21st), and related genes that are found among the
top 30 on the meta-analysis list.

Discussion

Because it is not feasible to control for all the factors influ-
encing gene expression in studies of human tumor speci-
mens, it is important to aggregate as much high-quality
data as possible to eliminate these sources of bias. Given
the large volume of microarray data being generated by
laboratories across the world, taking advantage of these
data through meta-analysis has become a fruitful and
inexpensive yet under-utilized approach. In our compari-
son of AA and GBM, including only four, albeit very large,
studies does leave our results somewhat dependent on the
quality of these microarray data sets. However, our meth-
odology disfavors genes whose top ranks are not consist-
ent. As future high-quality data sets become available,
they can be incorporated into this framework to validate
and improve the stability and accuracy of these results
without the worry that such additions will lead to dra-
matic alterations in the ordering of features. Such benefits
offer practical, concrete reasons for our choice of meta-
analytic methodology and provide promising evidence
for applying this analysis workflow to other pressing con-
ditions.

Pathway Size % up Change g-value
HIF Hypoxia-Inducible Factor in the Cardiovascular System 31 65 up 0
PROTEASOME Proteasome Complex 37 89 up 5.00E-04
MYOSIN PKC-catalyzed phosphorylation of inhibitory phosphoprotein of myosin phosphatase 25 28 down 0.00367
VITCB Vitamin C in the Brain 28 6l up 0.0055
LYMPHOCYTE Adhesion Molecules on Lymphocyte 27 8l up 0.00942
NOSI Nitric Oxide Signaling 53 25 down 0.00942
P53HYPOXIA Hypoxia and p53 in the Cardiovascular system 36 72 up 0.00942
SALMONELLA How does salmonella hijack a cell 26 8l up 0.00942
ATM ATM Signaling 36 72 up 0.00942
CASPASE Caspase Cascade in Apoptosis 43 72 up 0.00942
PARI Thrombin signaling and protease-activated receptors 39 31 down 0.00942
G2 Cell Cycle: G2/M Checkpoint 43 70 up 0.00942
TSPI TSP-1 Induced Apoptosis in Microvascular Endothelial Cell 21 86 up 0.00946
ACTINY Y branching of actin filaments 31 77 up 0.0109
NEUTROPHIL Neutrophil and Its Surface Molecules 21 8l up 0.0152
ATRBRCA Role of BRCAI, BRCA2 and ATR in Cancer Susceptibility 40 85 up 0.0152
MONOCYTE Monocyte and its Surface Molecules 30 80 up 0.0155
FAS FAS signaling (CD95) 65 62 up 0.0177
PGCIA Regulation of PGC-la 54 24 down 0.0184
CELLCYCLE Cyclins and Cell Cycle Regulation 37 73 up 0.0186
VEGF VEGF, Hypoxia, and Angiogenesis 54 6l up 0.0186

Pathways with overall g-value < 2%. Columns are the full Biocarta pathway name, the number of genes in the pathway, the percentage of genes that

are expressed more highly in GBM relative to AA, the direction of change of the pathway in GBM vs. AA, and the g-value.
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IGFBP2
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LAMC1

COL4A2

Figure 3

Relationship of HIFIA and YEGFA to top meta-analysis
genes. Relationships from the literature among HIF I A,
VEGFA, and some of the top 30 meta-analysis genes.

Other similar studies may further benefit from using sur-
vival time as the phenotype of interest. Molecular signa-
tures have been found to be better predictors of survival
than histological grade in some cases [7,8], i.e. the sur-
vival associated with tumors whose molecular profile was
an "exception" to their histological grade was more
strongly dictated by gene expression profile than by grade.
However, Petalidis et al. [58] demonstrated that molecu-
lar signatures derived from histological grading of gliomas
can be robust prognostic indicators whose accuracy in
delineating survival subclasses may outperform classifiers
trained on survival data, histological grade per se, and
tumor subtypes defined by other studies. Nonetheless,
meta-analyses that exploit survival data could potentially
provide a more relevant list of candidate genes and a more
powerful molecular classification of tumors. In this study,
we had to restrict our focus to tumor grade because not all
of our data sets had survival data available. This under-
scores the need for careful clinical annotation of the sam-
ples in these studies, even if a study does not involve
survival analysis.

Although there is already a deep literature on the molecu-
lar properties of glioblastoma multiforme, The Cancer
Genome Atlas project (TCGA) chose GBM as its first can-
cer to study [59]. TCGA is an ongoing effort coordinated
by the NIH in which numerous groups from many insti-
tutions collaboratively utilize the gamut of genome anal-
ysis technologies to accelerate our understanding of the
molecular basis of cancer http://cancergenome.nih.gov/.

http://www.molecular-cancer.com/content/8/1/71

patients with GBM so that it approaches that of AA. Evi-
dence that this approach is a useful one can be found in
the fact that experimental and clinical studies have shown
that agents that target the HIF1A/VEGF network can
decrease tumor growth and prolong survival in both ani-
mals and humans [60,61].

Conclusion

We have identified >900 probe sets and >20 pathways
whose expression is statistically significantly different
between GBM and AA. These feature lists are likely to be
more accurate and stable because of the greater sensitivity
and specificity that result from integration of data. Fur-
ther, both the top genes and pathways implicate HIF1A/
VEGF network activation as a major contributor to the
increased growth and invasion displayed by GBM when
compared to AA. The importance of these pathways is also
evidenced by the utility of VEGF and HIF1A inhibitors in
decreasing glioma growth and prolonging survival in vivo.
This type of meta-analysis could be utilized to aid in the
diagnosis and prognosis of malignant gliomas, and in the
development of new therapies for these devastating
tumors.

Methods

Data description and processing

Both the Human Genome U133A and U133B Affymetrix
platforms contain >22,000 probe sets with no overlap
between these two arrays. The Human Genome U133 Plus
2.0 array is composed of all of the probe sets on each of
these two arrays as well as 9,921 new probe sets, giving it
>54,000 probe sets in total. To accommodate all four of
our studies, we used the 22,215 probe sets from the
U133A array. Note that these are one-channel microar-
rays, so that only one sample is hybridized to each micro-
array. Hence, no controls were involved in our direct
comparison of AAs to GBMs and there is no bias due to
different controls used.

Petalidis et al. (2008) identified molecular signatures
from primary human astrocytic tumors that define sur-
vival prognostic subclasses [58]. Phillips et al. (2006)
determined molecular subclasses of human gliomas use-
ful in prediction of prognosis and disease progression [9].
Sun et al. (2006) examined stem cell factor in primary
human gliomas [62]. Tso et al. (2006) identified glioblas-
toma associated genes in primary and secondary human
gliomas [15] and deposited the data at UCLA: http://

genomics.ctrl.ucla.edu/~snelson/PublicDATASETS/
Tso_CancerResearch 2006/. Although the data set of Fre-

It will be important to integrate our findings with those of
TCGA (which compares GBM to normal tissue) and to
identify pathways that are differentially expressed
between GBM and AA with the hope of targeting these
pathways therapeutically and increasing the survival of

ije et al. [7] would have satisfied our criteria, its samples
heavily overlap with those of Tso et al. [15].

Only the studies of Phillips et al. [9] and Tso et al. [15]
had raw data (Affymetrix CEL) files available. We preproc-
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essed these using RMA normalization [63] from the affy
package [64], which is the same method employed by Pet-
alidis et al. [58]. Sun et al. [62] already applied the nor-
malization procedure of Li and Wong [65]. These
differences in normalization technique, however, do not
pose a hazard to this analysis due to our combination of
"within-experiment" feature lists. All data was put on a log
base 2 scale.

Statistical analysis

The implementation of the meta-analysis followed several
steps. Firstly, features (either probe sets or pathways) were
scored within each study. Secondly, features were ranked
within each study by the magnitude (i.e. absolute value)
of their respective statistic (say, a t-statistic), where the sta-
tistic closest to zero was given rank one, while that furthest
from zero received the largest rank. Negative signs were
then given to ranks corresponding to negative statistics to
allow for asymmetric (i.e. if there are more upregulated
than downregulated features, or vice versa) feature lists.
Thirdly, a feature's ranks were summed across the four
studies, assigning each feature a single rank sum. Lastly,
these rank sums were compared to null ranks sums,
derived by randomly permuting column labels and re-
running the analysis, to obtain g-values. Note that accord-
ing to this method, rank sums with larger magnitude are
more significant.

To create per-study gene lists, we employed the empirical
Bayes package limma [66], which offers a moderated t-sta-
tistic [36] for each gene, along with its associated p-value
and conservatively estimated [67] g-value. The empirical
Bayes methodology, and this package in particular, have
been found in independent bioinformatics comparisons
to be highly robust [11] and a preferred analysis method
for Affymetrix GeneChips [68]. Annotation was derived
from the Affymetrix HG-U133A annotation files in CSV
format, downloaded from NetAffx Analysis Center http://
www.affymetrix.com/analysis.

Gene sets were derived from the Gene Set Enrichment
Analysis (GSEA) Molecular Signature Database v2.5 [69],
where we extracted Biocarta pathways from the "C2:
curated gene sets" collection that hold between 20 and
500 genes. This gave 178 Biocarta pathways. Gene set ele-
ments were converted from gene symbols to U133A probe
sets using GSEA's chip2chip tool [37,69]. Analysis of gene
sets was performed using our SigPathway Bioconductor
package [38], which compares each gene set to a column
and row permutation null distribution separately, giving
two normalized enrichment scores per gene set. These
enrichment scores were used separately for the column
permutation and row permutation g-values in Additional
file 2. Otherwise, within-experiment gene set rank was

http://www.molecular-cancer.com/content/8/1/71

computed using the minimum (in magnitude) of these
two scores for the overall g-value.

To compare the gene lists to the literature, we were able to
automate our search of relevant citation counts for top
genes by using the hgui33a package, which maps Affyme-
trix probe sets to Entrez Gene identifiers to PubMed iden-
tifiers, and the annotate package, which allows searching
of PubMed abstracts. All statistical analysis was done in
the R software [70] using packages from the Bioconductor
project [71].
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