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Abstract

Background: PTEN is the second most mutated tumor suppressor gene other than p53. It suppresses tumorigenesis by
dephosphorylating phosphatidylinositol (3,4,5)-triphosphate (PIP3) to phosphatidylinositol (4,5)-biphosphate (PIP2),
thereby directly inhibiting phosphatidylinositol 3 kinase (PI3K)-mediated tumorigenic activities. Consistent with this
model of action, cytosolic PTEN is recruited to the plasma membrane to dephosphorylate PIP3. While nuclear PTEN has
been shown to suppress tumorigenesis by governing genome integrity, additional mechanisms may also contribute to
nuclear PTEN-mediated tumor suppression. The nuclear protein BMIl promotes stem cell self-renewal and
tumorigenesis and PTEN inhibits these events, suggesting that PTEN may suppress BMI| function.

Results: We investigated whether PTEN inhibits BMII function during prostate tumorigenesis. PTEN binds to BMI|
exclusively in the nucleus. This interaction does not require PTEN's phosphatase activity, as phosphatase-deficient PTEN
mutants, PTEN/C124S (CS), PTEN/GI29E (GE), and a C-terminal PTEN fragment (C-PTEN) excluding the catalytic
domain, all associate with BMII. Furthermore, the residues 186-286 of C-PTEN are sufficient for binding to BMII. This
interaction reduces BMII's function. BMII enhances hTERT activity and reduces p | 6!NK4A and p | 4ARF expression. These
effects were attenuated by PTEN, PTEN(CS), PTEN(GE), and C-PTEN. Furthermore, knockdown of PTEN in DU 145
cells increased hTERT promoter activity, which was reversed when BMI| was concomitantly knocked-down, indicating
that PTEN reduces hTERT promoter activity via inhibiting BMII function. Conversely, BMI| reduces PTEN's ability to
inhibit AKT activation, which can be attributed to its interaction with PTEN in the nucleus, making PTEN unavailable to
dephosphorylate membrane-bound PIP3. Furthermore, BMI| appears to co-localize with PTEN more frequently in
clinical prostate tissue samples from patients diagnosed with PIN (prostatic intraepithelial neoplasia) and carcinoma
compared to normal prostate epithelium. While PTEN co-localized with BMI1 in 2.4% of normal prostate epithelial cells,
co-localization was observed in 37.6% and 18.5% of cells in PIN and carcinoma, respectively. Collectively, we
demonstrate that PTEN inhibits BMI| function via binding to BMII in a phosphatase independent manner.

Conclusion: We demonstrate that nuclear PTEN reduces BMI| function independently of its phosphatase activity. It
was recently observed that nuclear PTEN also suppresses tumorigenesis. Our results, therefore, provide a plausible
mechanism by which nuclear PTEN prevents tumorigenesis.
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Introduction

The polycomb group (PcG) BMI1 gene maintains the pro-
liferation potential and self-renewal of hematopoietic and
neural stem cells [1,2]. This is in part attributable to BMI1-
mediated suppression of p16INK4A p19ARF/p14ARE and
E4F1 [3-6]. This developmental function of BMI1 is in
line with its oncogenic role in leukemia. The BMI1 gene
was initially isolated as an oncogene which cooperated
with ¢-Myc in retrovirus-induced B and T cell leukemia
[7,8]. Overexpression of BMI1 transformed lymphocytes
[9,10] and was detected in 25% of mantle cell lymphomas
[11]. BMI1 is positively associated with unfavorable prog-
nosis in patients with diffuse large B cell ymphomas and
myelodysplastic syndrome [12,13]. Increases in BMI1
were also reported in epithelial malignancies, including
non-small cell lung cancer (NSCLC) [14], colon cancer
[15], breast cancer [16], and nasopharyngeal carcinoma
[17].

BMI1 may also promote prostate tumorigenesis. Increases
in BMI1 mRNA were detected in prostate cancer cell lines,
xenografts and human primary prostate carcinomas, as
well as primary prostate tumors derived from the TRAMP
transgenic mouse model [18]. Prostate cancer patients
with an 11-gene signature, which is associated with BMI1
expression, are more likely to have an unfavorable prog-
nosis when compared to those without this signature
[18]. Additionally, metastatic prostate carcinoma precur-
sor cells that are double-positive for BMI1 and another
polycomb-group protein EZH2 are more tumorigenic
than those which are negative for both proteins [19].

Mechanistically, BMI1 promotes tumorigenesis, at least in
part, via inhibiting p16!NK4A and p19ARF expression, and
enhancing human telomerase reverse transcriptase
(hTERT) activity [17,20], leading to a bypass of senes-
cence. BMII1/- hematopoietic progenitors express
increased levels of p16INK4A and p194RF, and accumulate
high levels of the senescence marker SA-B-Gal [5]. BMI1-/-
mouse embryonic fibroblasts (MEFs) undergo premature
senescence [21] and overexpression of BMI1 in MEFs and
human fibroblasts extends their replicative life spans
[21,22]. Consistent with these observations, BMI1
immortalizes human nasopharyngeal and mammary epi-
thelial cells [17,20]. However, how BMI1 is regulated dur-
ing tumorigenesis remains to be determined.

PTEN is a tumor suppressor gene that is frequently
mutated in human cancers. This is at least in part attribut-
able to PTEN's action in inhibiting PI3K. PTEN dephos-
phorylates the 3-position phosphate from the inositol
ring of phosphatidylinositol (3,4,5)-triphosphate (PIP3)
[23], thereby directly inhibiting phosphatidylinositol 3
kinase (PI3K)-mediated tumorigenic activities. While
PTEN-mediated suppression of the PI3K/AKT pathway is
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well established, accumulating evidence suggests that
nuclear PTEN also plays a critical role in tumor suppres-
sion [23]. Although several mechanisms responsible for
nuclear PTEN-mediated tumor suppression have been
observed [23] (see Discussion for details), additional
mechanisms remain likely.

In this investigation, we provide evidence showing that
nuclear PTEN suppresses BMI1 function. PTEN binds to
BMI1 in the nucleus of prostate cancer cells and reduces
BMI1-mediated suppression of p16INK4A and p14ARF g
well as BMI1-mediated enhancement of hTERT. Addition-
ally, PTEN co-localizes with BMI1 more frequently in pri-
mary prostate carcinomas compared to normal prostate
glands. Our observations are consistent with previous
findings showing that while BMI1 maintains the prolifer-
ation potential of neural stem cells (NSCs) [2], PTEN
inhibits this process [24].

Materials and methods

Cell lines and plasmids

DU145, MCF7, and 293T cells were purchased from
ATCC, and cultured in MEM (DU145) and DMEM
(MCF7and 293T) containing 10% FBS and 1% Penicillin-
Streptomycin (Invitrogen). Among the most widely used
three human prostate cancer cell lines (LNCaP, PC3, and
DU145), only DU145 cells express wild type PTEN and
BMI1, and therefore were chosen for this research. Human
BMI1 ¢cDNA was amplified by RT-PCR from HeLa cells,
and subsequently subcloned in pcDNA3 and pBabe retro-
virus vectors. pGL3-hTERTmin-Luc reporter plasmid, con-
taining a 59bp region of the hTERT promoter (-208 to -
150) which has been shown to display maximal promoter
activity [25] was constructed from HeLa cell genomic
DNA using routine molecular biology techniques.

Retroviral Infection

Retroviral infection was performed following our previ-
ously published procedure [26,27]. Briefly, a gag-pol
expressing vector and an envelope-expressing vector (VSV-
G) (Stratagene) were transiently co-transfected with a
designed retroviral plasmid into 293T cells. After 48
hours, the virus-containing medium was harvested, fil-
tered through a 0.45 pM filter, and centrifuged at 50,000
g for 90 minutes to concentrate the retrovirus. Following
the addition of 10 pg/ml of polybrene (Sigma), the
medium was used to infect cells. Infection for pBabe-
based constructs was selected in puromycin, while infec-
tion for pLHCX-based constructs was selected in hygro-
mycin.

Collecting primary prostate cancer

Prostate tissue was collected at St. Joseph's Hospital in
Hamilton, Ontario, Canada with the approval from the
local Ethics Board and with consent from the patients.
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Tumors were examined and graded by pathologists at the
Hospital. 42 primary prostate cancer specimens were col-
lected.

TRAP (Telomeric Repeat Amplification Protocol) assay
A TRAP kit (TRAPEZE® Telomerase Detection kit) was pur-
chased from Chemicon International. TRAP assay was
performed according to the manufacturer's instruction.

Western blot and immunoprecipitation

Cell lysates were prepared and western blot was per-
formed according to our published procedure [26]. 50 pg
protein of total lysate was separated on SDS-PAGE gel and
transferred onto Immobilon-P membranes (Millipore).
Membranes were blocked with 5% skim milk and then
incubated with the indicated antibodies at room temper-
ature for 1 hour. Signals were detected using an ECL West-
ern Blotting Kit (Amersham). Primary antibodies used
were: polyclonal anti-BMI1 (1:100, Santa Cruz Biotech-
nology), polyclonal anti-PTEN (1:100, Upstate Technolo-
gies), polyclonal anti-p16INK4A (1:500, Santa Cruz
Biotechnology), and polyclonal anti-p144RF (1:5000,
Sigma). Immunoprecipitation of ectopic PTEN and BMI1
was performed by incubation of 200 pg cell lysate protein
with specific antibodies plus Protein G agarose (Invitro-
gen) at 4° C overnight, followed by wash for 6 times in a
buffer containing 50 mM Tris (PH 7.5), 100 mM NacCl,
1.5 mM EGTA, 0.1% Triton X-100. The antibodies used
for immunoprecipitation were monoclonal anti-PTEN
(Santa Cruz Biotechnology), monoclonal anti-FLAG (M2,
Sigma) for BMI1 and its mutants, and mouse IgG (Sigma)
as a negative control. The immunoprecipitation was ana-
lyzed by western blot using polyclonal anti-PTEN (Santa
Cruz) and anti-FLAG (Sigma). Immunoprecipitation of
the endogenous PTEN-BMI1 complex was carried out by
lysing DU145 cell in a HEPES lysate buffer, pH7.0 (20
mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1%
Triton X-100, 25 mM sodium pyrophosphate, 1 mM NaF,
1 mM B-glycerophosphate, 0.1 mM sodium orthovanad-
ate, 1 mM PMSF, 2 pg/ml leupeptin and 10 pg/ml apro-
tinin) containing DSP 2 uM (PIRECE) on ice for 2 hours
and quenching free DSP by incubating in 50 mM Tris pH
7.5 on ice for 15 minutes. Immunoprecipitation was then
carried out as described above.

Immunofluorescence

Double immunofluorescence staining was carried out
using the following antibodies: monoclonal anti-PTEN
(Santa Cruz, 1 pg/ml) or a polyclonal anti-PTEN (1:100;
Upstate Technologies), polyclonal anti-FLAG or a mono-
clonal anti-FLAG (M2, 1:500; Sigma), FITC-Donkey anti-
mouse IgG (1:200; Jackson Immuno Research) and Rhod-
amine-Donkey anti-rabbit IgG (1:200; Jackson Immuno
Research) were used as secondary antibodies. Images were
captured using Axiovert 200 M confocal microscope and
AxioVision 3 software.
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For double immunofluorescence staining prostate tissues,
tissues were deparaffinized, rehydrated, and subjected to
antigen-retrieval and endogenous peroxidase-quenching.
Tissue sections were blocked for 1 hour at room tempera-
ture in 3% donkey serum and 3% BSA in TBST. Dual-IF
staining was carried out using a TSA Plus kit (Perk-
inElmer) according to the manufacturer's protocol. Sec-
tions were counterstained with DAPI and digital images
were processed as described above.

Statistical analysis

Analysis was performed using Northern Eclipse 4.0 soft-
ware (manual cell counter) for Windows. Approximately
1000 cells from randomly selected fields were counted for
each normal, PIN, and cancer foci per patient. Mean per-
centages of positively-stained cells were then analyzed
using GraphPad 4.0 for Windows.

Results

BMI I interacts with PTEN

BMI1 determines the proliferation potential of neural
stem cells (NSCs) [2], a process that is inhibited by PTEN
[24]. Additionally, while BMI1 promotes tumorigenesis
in a variety of human cancers [28], PTEN potently sup-
presses tumorigenesis [29,30]. These observations suggest
that PTEN may negatively regulate BMI1 function. Since
both BMI1 [7,8] and PTEN reside in the nucleus [31], we
hypothesized that BMI1 may associate with PTEN. When
transiently co-expressed in 293T cells, a complex contain-
ing both BMI1 and PTEN could be immunoprecipitated
via either BMI1 or PTEN (Fig 1A), while control IgG did
not precipitate either protein (data not shown). This asso-
ciation was also detected between endogenous BMI1 and
endogenous PTEN (Fig 1B).

To further examine this interaction, we determined
whether PTEN co-localizes with BMI1 inside the cell.
When ectopically expressed, PTEN and BMI1 were co-
localized in the nucleus (Fig 1C, the 293T cell panel). Fur-
thermore, endogenous BMI1, which was stained in a
"punctuate" manner in the nuclei of DU145 and MCF7
cells, co-localized with endogenous nuclear PTEN (Fig
1C). Both anti-BMI1 and anti-PTEN antibodies specifi-
cally recognized their respective proteins. The anti-BMI1
antibody did not produce any detectable signals in BMI1-
negative LNCaP cells in western blot and in IF procedures
(see our recent publication) [32]. The anti-PTEN antibody
produced no-detectable signals in PTEN-null LNCaP and
U87 cells as well as the signal level was significantly
reduced in PTEN siRNA treated DU145 cells in IF proce-
dures (data not shown). We observed that approximately
20% of cells expressed BMI1 at a given time point, a typi-
cal expression pattern observed with other polycomb pro-
teins [33]. However, in all BMI1-expressing cells, PTEN
co-localized with BMI1 in the nucleus. Taken together, the
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Figure |

PTEN binds to BMII. (A) 293T cells were transiently transfected with FLAG-tagged BMI/ and HA-tagged PTEN. Cell lysates
were prepared and immunoprecipitated with anti-PTEN (top panel) and anti-FLAG (M2) (middle panel) antibodies. The precip-
itates and lysates (bottom panel) were analyzed by western blot using the indicated antibodies. The * symbol indicates endog-
enous PTEN. (Note: the reason why endogenous PTEN was not detected in the lysate panel was attributable to a low level of
endogenous PTEN in 293T cells). (B) DU 145 cell lysates were cross-linked with DSP, immunoprecipitated with anti-BMI| anti-
body or control IgG, and analyzed by western blot for PTEN and BMII. Twenty percent of cell lysate used for immunoprecipi-
tation was also analyzed by western blot. (C) Co-localization between PTEN and BMI|. Ectopic PTEN and ectopic BMII in
293T cells and their respective endogenous proteins in MCF-7 and DU 145 cells were examined by double immunofluorescent
(IF) staining. Nuclei were counter-stained with DAPI (blue). Scale bar represents 10 uM.
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above observations demonstrate that PTEN associates
with BMI1 in the nucleus.

PTEN interacts with BMI| independently of its
phosphatase activity

To characterize the interaction between PTEN and BMI1,
we examined whether PTEN's phosphatase activity is
required for the association. When ectopically expressed
in 293T cells, wild type PTEN, phosphatase-deficient
PTEN(C124S) [PTEN(CS)], and PIP3 specific phos-
phatase-deficient PTEN(G129E) [PTEN(GE)] [34,35]
formed a complex with BMI1 as detected by co-immuno-
precipitation (Fig 2A). Additionally, a C-terminal frag-
ment of PTEN (C-PTEN) (encompassing residues 186-
403, and thus excluding the catalytic domain that lies
between residues 1-185) [36] bound to BMI1 (Fig 2A, B).
In comparison to PTEN, PTEN(CS) interacted with BMI1
with reduced affinity [Fig 2A, comparing BMI1 co-immu-
noprecipitated via PTEN with BMI1 co-immunoprecipi-
tated via PTEN(CS) as well as comparing PTEN with
PTEN(CS) that were co-immunoprecipitated via BMI1].
This may be attributed to potential conformational
changes that might be caused by this mutation rather than
due to the lack of phosphatase activity, as C-PTEN binds
to BMI1 with increased affinity (Fig 2A). We also exam-
ined whether N-PTEN (residues 1-185) interacts with
BMI1 and found that N-PTEN was expressed at undetect-
able levels when co-expressed with BMI1 in 293T cells
(data not shown). It was thus difficult to determine if N-
PTEN binds to BMI1. Nonetheless, our experiments dem-
onstrate that C-PTEN is sufficient to interact with BMI1
and that PTEN binds to BMI1 independently of its phos-
phatase activity.

PTEN binds to BMI| via residues 186-286

C-PTEN contains two functional domains, the C-2
domain and the C-terminal tail (Fig 2B). To further map
the BMI1-binding region, we generated HA-tagged C2 and
C-tail PTEN fragments (Fig 2B) and examined their asso-
ciation with BMI1. When co-expressed in 293T cells,
immunoprecipitation of FLAG-tagged BMI1 efficiently co-
precipitated the C-2 fragment (Fig 2C). We further trun-
cated the C-2 fragment into HA-tagged C2N and C2C (Fig
2B) and co-expressed BMI1 with either C2N or C2C in
293T cells (Fig 2D, bottom-left panel). Immunoprecipita-
tion of BMI1 co-precipitated C2N (Fig 2D, left panel).
However, we could not detect C2C and C-tail fragments
(Fig 2D, bottom-left panel). This may have been caused
by the potential instability of these fragments due to their
inability to properly fold. To address this potential issue
of instability, we fused the fragments to green fluorescent
protein (GFP) and demonstrated their expression in 293T
cells (Fig 2D, bottom-right panel). However, these frag-
ments were either immunoprecipitated with control 1gG
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(GFP-C2C) or anti-FLAG (M2) antibody (GFP-C-tail)
without the co-expression of FLAG-tagged BMI1 (Fig 2D,
top-right panel), demonstrating that these fragments were
non-specifically immunoprecipitated. This indicates that
the fusion proteins did not fold properly, which is consist-
ent with our inability to detect the expression of C2C and
C-trail fragments by western blot (Fig 2D, bottom-left
panel).

To further examine C2N-medaited BMI1 binding, we
fused C2N to GFP. When co-expressed in 293T cells, GFP-
C2N was co-immunoprecipitated via FLAG-tagged BMI1
(Fig 2D, right panel). Taken together, the above experi-
ments reveal that the C2N (186-286) PTEN fragment is
sufficient to interact with BMI1.

PTEN inhibits BMII function independently of its
phosphatase activity

Since PTEN and BMI1 function in opposite directions in
both stem cell biology and tumorigenesis, the observation
that PTEN binds to BMI1 indicates that PTEN may inhibit
BMI1 function. BMI1 has been shown to suppress the
expression of the INK4A/ARF locus, p16!NK4A and p14ARF
[3,4], which we have also demonstrated recently in pros-
tate cancer cells [32]. To examine whether PTEN affects
BMI1-mediated inhibition of p16!NK4A and p14ARF expres-
sion, we stably expressed BMI1 and PTEN individually
and in combination into DU145 cells (Fig 3A). Consistent
with previous publications [3,4], ectopic BMI1 reduced
endogenous p16!NK4A and, to a greater degree, p14ARF
expression (Fig 3A). While ectopic PTEN did not enhance
p16INK4A or p14ARF expression, it prevented the BMI1-
mediated reduction of p16!NK4A and p14ARF (Fig 3A).

BMI1 has been shown to increase hTERT activity in mam-
mary epithelial cells [20]. To examine whether BMI1 also
up-regulates hTERT activity in prostate cancer, we ectopi-
cally expressed BMI1 in DU145 prostate cancer cells using
aretrovirus. A TRAP (Telomeric Repeat Amplification Pro-
tocol) assay revealed that BMI1 enhanced hTERT activity
(Fig 3B). To address the impact of PTEN on BMI1-induced
hTERT activation, we co-transfected a BMI1-expressing
plasmid along with a hTERT promoter-reporter construct
(pGL3-hTERTmin-Luc) [25] with the addition of either an
empty vector, PTEN, PTEN(CS), PTEN(GE) or C-PTEN
construct into 293T cells (Fig 3C). Consistent with the
TRAP assay, BMI1 increased hTERT promoter activity (Fig
3C). Interestingly, PTEN, PTEN(CS), PTEN(GE), and C-
PTEN all inhibited the BMI1-mediated activation of the
hTERT promoter (Fig 3C). This is consistent with the
observation that all these PTEN proteins interact with
BMI1 (Fig 2A). Collectively, the above results demonstrate
that PTEN inhibits BMI1 function independently of its
PIP3 phosphatase activity.
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Figure 2

Characterization of the interaction between PTEN and BMII proteins. (A) PTEN binds to BMII independently of its
phosphatase activity. 293T cells were transiently transfected with BMII, PTEN, PTEN(CI24S) (C124S), PTEN(GI29E) (GI29E), a
C-terminal PTEN fragment (residues 186-403) (C-PTEN) for 48 hours. Cell lysates were prepared and immunoprecipitated
with anti-PTEN and anti-FLAG (M2) (for ectopic BMII) antibodies. The precipitates and lysates were analyzed by western blot
using the indicated antibodies. The # and * symbols indicate endogenous PTEN and a possible oligomer of C-PTEN, respec-
tively. (B) Mapping the BMII binding motif of the PTEN protein. A set of PTEN truncation mutants were constructed. Their
interaction with BMI| was examined. C2: C2 domain. The + and - symbols indicate binding or not-binding of individual PTEN
proteins to BMII. (C) C2 binds to BMII. FLAG-tagged BMI| and HA-tagged C2 were transfected into 293T cells as indicated.
BMII was immunoprecipitated with an anti-FLAG antibody (M2) or a control IgG (IgG), followed by western blot examination
for BMII and C2. 20% of the cell lysates that were used for immunoprecipitations were also analyzed. The * symbols indicate
background bands. (D) C2N binds to BMII. CZN, C2C, and C-tail (left panel) and their GFP fusion counterparts (right panel)
were co-transfected with either an empty vector (-) or FLAG-tagged BMI| as indicated, followed by immunoprecipitation with
M2 or control IgG (IgG) and then western blot (WB) with the indicated antibodies. The respective cell lysates were shown at
the bottom panels.
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Figure 3

PTEN inhibits BMII function. (A) DU145 cells were stably transfected with pBabe or pBabe-BMI|I retrovirus, followed by
transiently transfected with pLHCX (empty vector) and pLHCX-PTEN retrovirus for 48 hours. The expression of FLAG-
tagged BMII, HA-tagged PTEN, p|6/NK4A b | 4ARF and actin was examined by western blot using specific antibodies. The relative
p | 4ARF and p | 6INK4A expression was normalized against the respective actin and then expressed as fold changes of p14ARFand
pl6INK4A jn DU145 cells co-infected with pBabe and pLHCX. The experiment was repeated at least three times by three indi-
viduals with identical results and representatives are shown. This information was presented under the pl4 and p16 panels.
Symbols * and ** show statistical significance (p < 0.05 and p < 0.0, respectively), in comparison to pBabe/pLHCX infected
cells, determined by Student's t-Test (2-tails). (B) DU145 cells were stably transfected with pBabe and pBabe-BMI| retrovirus,
followed by assaying for hTERT activity using TRAP assay following the manufacturer's procedure. (C) 293T cells were tran-
siently transfected with PTEN, PTEN(GI29E) (GI29E), PTEN(CI24S) (C124S), C-terminal PTEN fragment (residues 186-403) (C-
term), and BMI|I as indicated together with a hTERT promoter driven luciferase construct plus a -Gal construct for 48 hours.
Luciferase and 3-Gal enzymatic activities were determined. Luciferase activities were normalized against [3-Gal activities. Each
transfection was carried out in triplicate and the experiment was repeated three times. **: p < 0.0l (in comparison to pcDNA);
++:p <0.01 (in comparison to BMII).
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Since PTEN interacts with BMI1 exclusively in the nucleus
(Fig 1), we examined the impact of nuclear and cytosolic
PTEN mutants on BMI1's function. It has been shown that
the Chimpanzee PTEN fragments 1-375 and 1-375/K13A
resided largely in the nucleus and cytosol, respectively
[37]. Dr. Pulido (Spain) kindly provided us these PTEN
mutants together with Chimpanzee PTEN. When co-
expressed in 293T cells, PTEN, 1-375, and 1-375/K13A
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were all co-precipitated via BMI1 (Fig 4A). While 1-375/
K13A largely localizes in the cytosol, a small proportion of
it remains in the nucleus [37] (Fig 4B). This remaining
PTEN 1-375/K13A may contribute to the co-immunopre-
cipitation of 1-375/K13A via BMI1 (Fig 4A) (see Discus-
sion for details). However, in comparison to 1-375/K13A,
1-375 displayed enhanced activity in up-regulation of
endogenous pl4ARF when transiently transfected into

A PTEN WT 1-375  1-375(K13A)
BMI1
IB:Abs
s - - -PTEN
a-FLAG  o-FLAG a-FLAG IP:Abs
1-375 p14ARF Merge DAPI Merge+DAPI
1-375(K13A) p14ARF Merge DAPI Merge+DAPI

Figure 4

Nuclear PTEN reduces BMII function. (A) Interaction of nuclear PTEN with BMI|. Chimpanzee PTEN and the indicated
mutants PTEN/1-375 and PTEN/I-375(K13A) were transfected without and with FLAG-tagged BMI| in 293T cells, followed by
immunoprecipitation of BMI| using an anti-FLAG (a.-FLAG) and then immunobloted (IB) with the indicated antibodies. Control
IgG did not precipitate either BMI| or PTEN (data not shown). (B) Nuclear PTEN inhibits BMII function. DU 145 cells were
transiently expressed with PTEN/[-375 (top panel) or PTEN/I1-375(K13A) (bottom panel). Cells were then double IF stained for
ectopic PTEN mutants using an anti-HA antibody (red) or endogenous p | 44RF (green). Nuclei were counter-stained with DAPI
(blue). More than 200 transfected cells were randomly counted. Typical images of 1-375 and 1-375(K13A) were shown and the
related quantification was discussed (see Discussion for details).
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DU145 cells (Fig 4B) (see Discussion for details). The up-
regulated p14ARF shows the typical pattern of nucleolar
distribution (Fig 4B) [38], suggesting that the enhanced
p14ARFwas functional. Taken together, these observations
support the concept that nuclear PTEN reduces BMI1
function.

To further consolidate the concept that PTEN reduces
BMI1 function, we knocked-down PTEN and BMI1 in
DU145 cells using specific siRNAs (Fig 5, top panel). As
expected, knockdown of PTEN activated AKT (Fig 5, top
panel) and knockdown of BMI1 increased p144RF and
p16INK4A expression (data not shown). Consistent with
BMI1 increasing hTERT promoter activity (Fig 3C), we
observed that knockdown of BMI1 reduced hTERT pro-
moter activity to approximately 77% of that observed in
control siRNA treated DU145 cells (Fig 5, bottom panel).
Furthermore, knockdown of PTEN significantly enhanced
hTERT promoter activity in DU145 cells (Fig 5, bottom
panel) and this occurs only in cells expressing endog-
enous BMI1 and not in cells whose BMI1 was concomi-
tantly knocked-down (Fig 5, bottom panel), which
demonstrates that endogenous PTEN reduces hTERT pro-
moter activity via inhibiting endogenous BMI1 function.

BMII reduces PTEN function

It is well established that PTEN antagonizes the activity of
PI3K via dephosphorylation of membrane-bound PIP3.
This inhibition is dependent on recruiting cytosolic PTEN
to the plasma membrane. Since BMI1 binds PTEN in the
nucleus, high levels of BMI1 may attenuate PTEN's ability
to inhibit the PI3K-AKT pathway by sequestering PTEN in
the nucleus. To test this possibility, we infected DU145
cells with a retrovirus expressing BMI1, PTEN, or both
BMI1 and PTEN (Fig 6). BMI1 overexpression indeed
enhanced AKT activation (Fig 6). While overexpression of
PTEN alone did not affect AKT activation in DU145 cells,
which is consistent with other publications [39,40],
ectopic PTEN reversed the increase in AKT activation
observed in DU145 cells overexpressing BMI1 (Fig 6). As
ectopic PTEN alone does not directly affect the PI3K-AKT
pathway (Fig 6), ectopic PTEN may indirectly affect the
PI3K-AKT pathway by interacting with ectopic BMI1. This
possibility is further supported by the observation that
knockdown of BMI1 alone or in combination with knock-
down of PTEN slightly reduced AKT activation (Fig 5, top
panel, comparing AKT phosphorylation in BMI1 siRNA
and PTEN siRNA/BMI1 siRNA lanes with that in Ctrl
siRNA and PTEN siRNA lanes, respectively).

PTEN appears to co-localize with BMI I in primary
prostate cancer

The fact that PTEN binds BMI1 and reduces BMI1 func-
tion in cultured prostate cancer cells prompted us to
examine whether PTEN co-localizes with BMI1 in primary

http://www.molecular-cancer.com/content/8/1/98

prostate cancer. While PTEN marginally co-localizes with
BMI1 in normal prostate epithelial cells, PTEN extensively
co-localizes with BMI1 in PIN and in PTEN positive (but
not negative) prostate carcinoma (Fig 7), which further
demonstrates the specificity of the anti-PTEN antibody
used. We performed double immunofluorescent (IF)
staining for PTEN and BMI1 in 42 primary prostate cancer
specimens. By taking advantage of the heterogeneous
nature of primary prostate cancer specimens [41], we were
able to locate normal prostate glands, PIN, and carcinoma
within each specimen. One thousand cells were randomly
counted within individual tissues (normal prostate
glands, PINs, and carcinomas) for each specimen in our
sample set. Approximately 56% of prostate carcinomas
express PTEN (data not shown), a number that is consist-
ent with previous publications [29]. While only 2.4% of
epithelial cells from normal prostate glands show low lev-
els of co-localization between PTEN and BMI1 (Fig 7,
Table 1), 37.6% and 18.5% of PIN and carcinoma cells
display extensive co-localization between PTEN and BMI1
(Fig 7, Table 1). Interestingly, while PTEN stays largely
outside of the nucleus in the epithelial cells of normal
prostate glands, a significant increase in nuclear PTEN is
observed in PINs and PTEN-positive carcinoma (Fig 7).
This may be attributable to the observed increases in the
co-localization between PTEN and BMI1 in PINs and
PTEN-positive prostate carcinoma in comparison to nor-
mal prostate epithelium (Fig 7, Table 1). Taken together,
the above observations suggest that nuclear PTEN plays an
important role in inhibiting BMI1 function during pros-
tate tumorigenesis.

Discussion

While it is known that BMI1 promotes tumorigenesis, at
least in part, by suppressing p16INK4A and p14ARF expres-
sion, it remains to be determined what mechanisms regu-
late BMI1-mediated oncogenic activities. We demonstrate
here that one of these mechanisms is PTEN-mediated
attenuation of BMI1 function.

PTEN physically associates with BMI1 in cultured prostate
cancer cells and appears to co-localize with BMI1 in pri-
mary prostate cancer. It was observed that PTEN co-local-
izes with BMI1 more extensively in PINs compared to
both carcinomas and normal prostate glands (Fig 7; Table
1). As high grade PINs are pre-cancerous lesions, the
above observation supports the concept that PTEN inhib-
its (or plays a surveillant role to) BMI1's oncogenic activ-
ities during prostate tumorigenesis and that escape from
PTEN's suppression (or surveillance) enables BMI1 to
promote prostate cancer progression. This is consistent
with the observed increases in BMI1 mRNA [18] and
BMI1 protein [32] levels during prostate tumorigenesis.
Through its interaction with BMI1, PTEN inhibits BMI1's
function.
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Figure 5

PTEN reduces hTERT promoter activity via inhibiting BMII function. DU145 cells were transfected with 100 nM
PTEN siRNA, BMII siRNA, PTEN siRNA plus BMII siRNA, and the respective control (Ctrl) siRNA (Dharmcon) using
LipofectAMINE2000 (Invitrogene) for 48 hours following our published procedure [52]. The expression of individual proteins
was examined by western blot using specific antibodies (top panel). These cells were transfected with a pGL3-hTERTmin-Luc
reporter, a lacZ vector, and plus the indicated siRNAs for 48 hours. Luciferase activities were determined and normalized
against the respective lacZ activity. Experiments were carried out in triplicate and were repeated three times. Average data of
these independent experiments is shown. Luciferase activities in PTEN siRNA (p < 0.001) and BMI| siRNA (p < 0.05) cells are
significantly different from that in Ctrl siRNA cells (bottom panel).
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Figure 6

BMII reduces PTEN's ability to inactivate the PI3K-
AKT pathway. DUI45 cells were infected by PTEN, BMII,
or the respective empty retrovirus (-) as indicated. Cells
were selected in the respective antibiotics for a few days to
achieve 100% infection. The expression of AKT phosphoryla-
tion (AKT-P), total AKT (AKT), ectopic BMII, ectopic PTEN,
and actin was determined by western blot using the respec-
tive antibodies. The relative levels of AKT-P were quantified.

The above conclusion is further supported by the observa-
tions that PTEN binds to BMI1 in the nucleus (Fig 1) and
that a nuclear PTEN mutant (1-375) was more potent in
inhibiting BMI1-mediated reduction of p14ARF than its
cytosolic counterpart (PTEN mutant 1-375/K13A) (Fig
4B). However, 1-375/K13A was efficiently immunopre-
cipitated through BMI1 (Fig 4A). This could be attributa-
ble to two factors, 1) 1-375/K13A is not an exclusive
cytosolic protein [37] (Fig 4B) and 2) substitution of K13
with alanine may alter the protein conformation, which
could increase its affinity to BMI1. Therefore, although
there is far less 1-375/K13A in the nucleus, an increase in
its binding affinity to BMI1 may allow 1-375/K13A to be
efficiently co-immunoprecipitated via BMI1 (Fig 4A).
Alternatively, the effective co-immunoprecipitation of 1-
375/K13A via BMI1 might be an artifact caused by the cell
lysate preparation, which allowed cytosolic 1-375/K13A
to interact with nuclear BMI1. The association of nuclear
1-375/K13A (although a minor population) with BMI1 is
consistent with our observation that approximately 11%
of 1-375/K13A transfected cells displayed upregulation of
endogenous p144RF, while approximately 30% of 1-375
transfected DU145 cells showed p14ARF upregulation.

http://www.molecular-cancer.com/content/8/1/98

Taken together, these results support the notion that
nuclear PTEN reduces BMI1 function.

While it is well documented that PTEN suppresses tumor-
igenesis via its PIP3 phosphatase activity at the plasma
membrane, the potential function of nuclear PTEN is less
clear. As PTEN appears to co-localize with BMI1 in the
nucleus, our work suggests that nuclear PTEN inhibits
BMI1 function, which is independent of PTEN's phos-
phatase activity. This is consistent with recent reports
showing that nuclear PTEN maintains chromosome sta-
bility independently of its phosphatase activity [42] as
well as induces G1 and G2 arrest in breast cancer and
melanoma cells [31,43]. PTEN may regulate cell cycle pro-
gression via modulating p21€P1 [44]. Importantly, loss of
nuclear PTEN was observed to associate with the tumor
progression of melanoma and colorectal cancer [45,46].
Interestingly, the nuclear PTEN maintains chromosome
stability via a C2 domain-mediated interaction with cen-
tromeres [42]. This agrees well with our finding that
nuclear PTEN binds to BMI1 through the N-terminal 101
residues of its C2 domain (Fig 2B-D). Germline mutations
of PTEN have been well documented to cause PTEN-defi-
cient syndromes, such as the PTEN hamartoma tumor
syndrome (PHTS) [47]. Two PHTS-associated hotspot
mutations, R233X and R235X [47], lie in our defined
BMI1 binding region (residues 186-286) (Fig 2B-D).
Based on the above observations, it is tempting to propose
that the C2 domain may play an important role in the
tumor suppression function of nuclear PTEN and that
R233 and R235 residues are functionally important to
PTEN's interaction with BMI1.

The interaction with BMI1 modestly reduces PTEN's abil-
ity to inhibit the PI3K/AKT pathway (Fig 6). This can be
attributed to BMI1 overexpression and the potential
BMI1-mediated sequestration of PTEN in the nucleus.
Whether changes in BMI1 expression in vivo can activate
the PISK-AKT pathway requires further investigation, as
knockdown of BMI1 only slightly reduced AKT activation
(Fig 5, top panel). This cautious interpretation is sup-
ported by our observations that 1) ectopic expression of
BMI1 in DU145 cells did not affect cell cycle distribution
[G1 (58.18%)-S (34.44%)-G2/M (7.37%) for empty vec-
tor DU145 cells versus G1 (59.32%)-S (31.25%)-G2/M
(9.52%) for BMI1-overexpressing DU145 cells] and 2)
ectopic BMI1 did not reduce ectopic PTEN-mediated
growth inhibition of LNCaP and U87 cells (data not
shown). Both of these events require PTEN's PIP3 phos-
phatase activity. BMI1 may also affect PTEN's nuclear
functions. An intriguing possibility is that BMI1 may
interfere with PTEN's ability to maintain chromosome
stability, which adds an additional mechanism by which
BMI1 can promote tumorigenesis. The increased co-local-
ization of BMI1 and PTEN observed in PIN lesions and
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Merge with DAPI

Co-localization between PTEN and BMII in primary prostate cancer tissues. Double IF staining for BMII (red) and
PTEN (green) in normal prostatic gland (normal), PIN, PTEN-negative carcinoma, and PTEN-positive carcinoma. Nuclei were
counter-stained with DAPI (blue). Images were captured with a confocal microscope. Scale bar represents 20 uM.

PTEN-positive prostate carcinomas compared to normal
prostate epithelium supports this hypothesis (Table 1).

As PTEN is inactivated in human cancers [48], loss of
PTEN function may release its inhibition on BMI1 during
tumorigenesis. This would facilitate a role of BMI1 in pro-
moting cancer stem cells, which is in line with the
reported up-regulation of genes involved in stem cell self-
renewal in hTERT-immortalized human cells [49]. Con-
versely, BMI1 may also inhibit PTEN function. It has
recently been reported by van Lohuizen and his col-
leagues that BMI1 transgenic mice produce PINs in the
prostate (see the meeting report of the CNIO Cancer Con-

ference on Stem Cell and Cancer held between Feb 23-25,
2009 in Madrid, Spain) [50], which closely resembles the
pathology observed in the prostate of PTEN+*/- mice [51].
Although the underlying mechanism regulating the inter-
action between PTEN and BMI1 is currently unknown, the
physiological and functional association between these
two proteins will certainly be an exciting avenue and war-
rants further investigation.

Conclusion

This research demonstrates for the first time that nuclear
PTEN reduces BMI1 function via an interaction with
BMI1. PTEN inhibits BMI1 function independently of its

Table I: Co-localization between PTEN and BMII in primary prostate cancer

PTEN and BMII co-localization (%)

Normal 24+95
PIN 376175
Carcinoma 185+ 5.5

p-value

Normal versus PIN <0.001
Normal versus Carcinoma 0.024
PIN versus Carcinoma 0.009

Statistical analysis (2-tails) was performed using GraphPad 4.0 for Windows
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phosphatase activity. This is different from PTEN-medi-
ated inhibition of the PI3K/AKT pathway, which requires
PTEN's PIP3 phosphatase activity. These results together
with research on nuclear PTEN reported by other groups
[23,31,43,45,46,49] indicate that nuclear PTEN represses
tumorigenesis via multiple mechanisms. As PTEN plays a
role in maintaining genome stability, our results suggest
that by binding to PTEN, BMI1 may induce genome insta-
bility, which in turn promotes tumorigenesis.
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