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Abstract
Background: Imatinib mesylate has significantly improved survival and quality of life of patients
with gastrointestinal stromal tumors (GISTs). However, the molecular mechanism through which
imatinib exerts its anti-tumor effects is not clear. Previously, we found up-regulation of insulin-like
growth factor binding protein-3 (IGFBP3) expression in imatinib-responsive GIST cells and tumor
samples. Because IGFBP3 regulates cell proliferation and survival and mediates the anti-tumor
effects of a number of anti-cancer agents through both IGF-dependent and IGF-independent
mechanisms, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this
hypothesis, we manipulated IGFBP3 levels in two imatinib-responsive GIST cell lines and observed
cell viability after drug treatment.

Results: In the GIST882 cell line, imatinib treatment induced endogenous IGFBP3 expression, and
IGFBP3 down-modulation by neutralization or RNA interference resulted in partial resistance to
imatinib. In contrast, IGFBP3 overexpression in GIST-T1, which had no detectable endogenous
IGFBP3 expression after imatinib, had no effect on imatinib-induced loss of viability. Furthermore,
both the loss of IGFBP3 in GIST882 cells and the overexpression of IGFBP3 in GIST-T1 cells was
cytotoxic, demonstrating that IGFBP3 has opposing effects on GIST cell viability.

Conclusion: This data demonstrates that IGFBP3 has dual, opposing roles in modulating GIST cell
viability and response to imatinib in vitro. These preliminary findings suggest that there may be some
clinical benefits to IGFBP3 therapy in GIST patients, but further studies are needed to better
characterize the functions of IGFBP3 in GIST.
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Introduction
Gastrointestinal stromal tumors (GISTs) are the most
common mesenchymal tumors of the digestive tract. GIST
pathogenesis is most frequently attributed to gain-of-
function mutations in the receptor tyrosine kinase KIT;
however, activating mutations in platelet derived growth fac-
tor receptor-α (PDGFRA) have been observed in GISTs with
wild-type KIT [1]. This trend of oncogenic KIT or PDGFRA
expression is observed in approximately 85% of tumors
[2,3]. Traditionally, surgery was the only successful thera-
peutic strategy; however, patients with unresectable or
metastatic disease survived only a median of 18-24
months after diagnosis [4,5]. Those patients with wide-
spread metastatic disease have an estimated 9 month
overall survival [6]. The development of the selective
kinase inhibitor imatinib mesylate (also known as
Gleevec) has dramatically altered the treatment strategies
for GIST and other cancers.

An ATP mimetic, imatinib competitively occupies the ATP
binding pocket of target kinases, thereby preventing their
activation [7]. Although designed to specifically target
PDGFR, imatinib also effectively inhibits KIT and Abl
kinases, which have structurally similar ATP binding
pockets [8]. Thus, imatinib is successful as a targeted ther-
apy in GIST through inhibition of KIT or PDGFRA, and in
other cancers, including Philadelphia chromosome-posi-
tive chronic myelogenous leukemias through inhibition
of Bcr-Abl [9]. Clinical studies with imatinib have
reported objective response rates of 50-70% and an esti-
mated median survival of 57 months in patients with
advanced GIST [10]. However, some GIST patients fail to
respond or become resistant to imatinib therapy [9,11].
Therefore, to further improve GIST patient survival, it is
imperative to gain a better understanding of the underly-
ing molecular mechanisms of imatinib-induced GIST cell
cytotoxicity.

In a previous study to determine how imatinib exerts its
anti-tumor effects, we demonstrated that insulin-like
growth factor binding protein-3 (IGFBP3) expression is
up-regulated after imatinib treatment in the imatinib-
responsive GIST cell line GIST882 as well as KIT-express-
ing tumor samples [12]. IGFBP3, a member of the insulin-
like growth factor binding protein family, is a multifunc-
tional protein that directly binds and regulates the
mitogenic and anti-apoptotic actions of the insulin-like
growth factors (IGFs) [13]. IGFBP3 also has IGF-inde-
pendent growth inhibitory and pro-apoptotic effects,
which may be mediated through cell surface [14] or
nuclear receptors [15-17]. Furthermore, expression of
IGFBP3 is induced by a number of growth inhibitory and
pro-apoptotic agents, including p53 [18,19], TGF-β
[20,21], retinoids [20], TNF-α [22], vitamin D [23], and

celecoxib [24], suggesting that IGFBP3 may, in part, medi-
ate their anti-tumor effects.

Having identified IGFBP3 as a candidate imatinib-tar-
geted gene, we sought to determine whether IGFBP3
directly mediates the cytotoxicity of imatinib in GIST cells.
In this study, we manipulated IGFBP3 levels in two imat-
inib-responsive GIST cell lines and observed cell viability
after drug treatment. We found that IGFBP3 down-regula-
tion in GIST882 cells resulted in a loss of cell viability and
partial resistance to imatinib. In contrast, IGFBP3 overex-
pression was cytotoxic but did not enhance or abrogate
the cytotoxic effects of imatinib in GIST-T1 cells. Thus,
IGFBP3 has cell-dependent effects on GIST cell viability
and in mediating imatinib response.

Results
Heterogeneous induction of IGFBP3 after imatinib in GIST 
cell lines
To study the role of IGFBP3 in GIST, we used two availa-
ble GIST cell lines: GIST882 and GIST-T1. The GIST882
cell line harbors a missense mutation in KIT exon 13
(K642E) affecting the kinase domain. Imatinib treatment
of GIST882 cells results in a loss of viability of up to 40%
with doses as low as 0.1 μM, but the response appeared to
reach a plateau, as higher doses of imatinib had no addi-
tional effect on cell viability (Figure 1A). Imatinib treat-
ment induced endogenous IGFBP3 expression by 24
hours after treatment, and the induction was maintained
at 48 hours post-treatment (Figure 1B). Because IGFBP3 is
a secreted protein that can be re-internalized into the cell
[25], we used an ELISA to determine if elevated levels of
IGFBP3 were also present in the cell culture medium after
imatinib exposure. As shown in Figure 1C, imatinib treat-
ment significantly increased the concentration of IGFBP3
in the conditioned medium, consistent with imatinib-
induced IGFBP3 up-regulation and secretion by GIST882
cells. The GIST-T1 cell line has an in-frame deletion of 57
nucleotides in KIT exon 11 (V560delY579) affecting the
juxtamembrane regulatory domain. Imatinib treatment
resulted in a loss of viability of more than 60% at a con-
centration of 0.5 μM, and the observed IC50 was 0.05 μM
at 48 and 72 hours (Figure 1D). In contrast to GIST882
cells, GIST-T1 cells did not have detectable basal levels of
IGFBP3, nor did imatinib treatment induce IGFBP3
expression (Figure 1E). This data was a preliminary indi-
cator that IGFBP3 induction is not required for GIST-T1
cell response to imatinib. However, imatinib-induced
IGFBP3 expression in the relatively more resistant
GIST882 cells suggested that IGFBP3 might contribute to
a resistance phenotype.

IGFBP3 has cell-dependent effects on viability in GIST cells
Before we evaluated whether IGFBP3 modulates GIST cell
response to imatinib, we first sought to determine what
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effects IGFBP3 itself has in the two GIST cell lines. Because
GIST882 cells have detectable levels of endogenous cellu-
lar and secreted IGFBP3, we down-modulated IGFBP3
using either a blocking antibody to sequester secreted
IGFBP3 or an siRNA knockdown approach. Both IGFBP3
neutralization using a blocking antibody (Figure 2A) and
knockdown using RNA interference (Figure 2B) resulted
in a significant loss of cell viability, suggesting that
IGFBP3 is required for GIST882 cell survival. In contrast,

as GIST-T1 cells have no detectable endogenous IGFBP3,
we overexpressed IGFBP3 using an adenoviral gene
expression system. Infection with an adenoviral vector
expressing IGFBP3 (Ad-IGFBP3) but not empty vector
(Ad-EV) resulted in high, sustainable levels of IGFBP3
(Figure 3A). IGFBP3 overexpression in GIST-T1 cells
resulted in a dose-dependent loss of cell viability as
observed 3 (Figure 3B) and 5 days (Figure 3C) post aden-
oviral infection. These results show that IGFBP3 overex-

Imatinib-induced IGFBP3 expression is heterogenous in GIST cellsFigure 1
Imatinib-induced IGFBP3 expression is heterogenous in GIST cells. GIST882 (A) or GIST-T1 (D) cells were treated 
with different doses of imatinib for 24, 48, or 72 hours and then analyzed with the MTS assay to determine cell viability. After 
treatment with 1 μM imatinib for 24 or 48 hours, whole cell lysates isolated from GIST882 (B) or GIST-T1 (E) were analyzed 
for IGFBP3 expression by immunoblotting, or (C) conditioned medium from GIST882 cells analyzed for IGFBP3 levels by 
ELISA. rhIGFBP3, recombinant human IGFBP3.
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pression reduces cell viability in GIST-T1 cells.
Collectively, our data demonstrate that IGFBP3 has dual,
opposing cell line-dependent effects on GIST cell survival.

IGFBP3 modulation alters GIST cell sensitivity to imatinib 
in a cell-dependent manner
The above studies show a complex pattern of IGFBP3
function in regulating GIST cell survival. To determine
whether IGFBP3 contributes to GIST cell response or
resistance to imatinib, we modulated IGFBP3 protein lev-
els in GIST882 and GIST-T1 cells and assayed for potential
changes in imatinib sensitivity. Because IGFBP3 is a
secreted protein that can be re-internalized into the cell
[25], we first used an IGFBP3 blocking antibody to
sequester secreted IGFBP3 in the culture medium.
GIST882 cells were simultaneously treated with imatinib
and different concentrations of IGFBP3 blocking antibody
(anti-IGFBP3) or control IgG and viability assessed with
the MTS assay. Treatment with anti-IGFBP3 alone signifi-
cantly reduced cell viability (p = 0.0018) relative to con-
trol IgG (Figure 4A). To determine the effects IGFBP3
neutralization on imatinib sensitivity, MTS data were ana-
lyzed with a two-way ANOVA (interaction: p < 0.0001).
As shown in Figure 4A, imatinib significantly reduced via-
bility in both cells treated with anti-IGFBP3 or control
IgG; however imatinib was significantly less cytotoxic in
the presence of anti-IGFBP3. Because IGFBP3 is also local-
ized intracellularly, we used RNA interference to suppress
drug-induced IGFBP3 expression. As shown in Figure 4B,
si-IGFBP3 effectively reduced IGFBP3 mRNA levels in
untreated cells and also prevented IGFBP3 induction after
imatinib exposure. Loss of IGFBP3 protein expression
after imatinib was also observed (Figure 4C). Using this

siRNA, we investigated whether inhibiting IGFBP3 expres-
sion altered GIST882 cell sensitivity to imatinib. IGFBP3
knockdown itself was cytotoxic to GIST882 cells (p =
0.018) (Figure 4D). We further analyzed the effects of
IGFBP3 expression on GIST882 cell sensitivity to imatinib
with a two-way ANOVA (interaction: p = 0.0243). As
demonstrated in Figure 4D, imatinib treatment signifi-
cantly reduced viability in si-IGFBP3 or si-Control trans-
fected cells; however, cells with reduced IGFBP3
expression were partially resistant to the cytotoxic effects
of imatinib. Taken together, this data suggests that
IGFBP3 sensitizes GIST882 cells to the anti-tumor effects
of imatinib.

In contrast to GIST882 cells, GIST-T1 cells have no endog-
enous IGFBP3 expression and there was no induction of
IGFBP3 after imatinib treatment. Therefore, this IGFBP3-
negative cell line provided us a system to examine the
effects of IGFBP3 on imatinib response using a gain-of-
function approach. To test whether IGFBP3 expression
altered GIST-T1 sensitivity to imatinib, cells infected with
Ad-IGFBP3 or Ad-EV or mock infected were subsequently
analyzed for changes in cell viability after imatinib. Ad-
IGFBP3 infection alone was cytotoxic relative to Ad-EV at
25 moi (p = 0.0024) (Figure 5). Analyzing imatinib sensi-
tivity after IGFBP3 overexpression with a two-way ANOVA
(interaction: p = 0.0009), we observed that imatinib sig-
nificantly reduced viability in cells infected with Ad-
IGFBP3 or Ad-EV. Furthermore, IGFBP3 overexpression
did not significantly alter imatinib sensitivity in GIST-T1
cells (Figure 5). Although IGFBP-3 is cytotoxic to GIST-T1
cells, our data suggests that IGFBP3 does not mediate
GIST-T1 response to imatinib.

Effect of IGFBP3 knockdown or neutralization on GIST882 cell viabilityFigure 2
Effect of IGFBP3 knockdown or neutralization on GIST882 cell viability. (A) GIST882 cells were treated with 
IGFBP3 blocking antibody (anti-IGFBP3) or control IgG (4 ug/mL) for 48 hours before cell viability was measured with the MTS 
assay. (B) GIST882 cells were transfected with siRNA duplexes specific to IGFBP3 (si-IGFBP3) or mismatch sequence (si-Con-
trol) and subsequently treated with imatinib (1 μM) for 48 hours. Cell viability was assessed with the MTS assay. Immunoblot-
ting shows IGFBP3 expression after si-Control (si-C) or si-IGFBP3 (si-BP3) transfection.
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Discussion
In this study, we examined the potential role of IGFBP3 as
a mediator of the therapeutic effects of imatinib mesylate
in GISTs. Our previous studies showed that IGFBP3 is up-
regulated after imatinib treatment in a responsive GIST
cell line (GIST882), and we provide evidence that IGFBP3
does indeed partially mediate GIST882 cell response to
imatinib in vitro. In contrast, IGFBP3 has no effect on
imatinib sensitivity in the responsive GIST-T1 cell line,
which has no detectable endogenous IGFBP3 levels before
or after imatinib exposure. Further, our studies, using
both gain-of-function and loss-of-function approaches,
reveal that IGFBP3 is an important modulator of cell via-
bility in GISTs, but the effect is cell-dependent. Similar to
what has been reported for epithelial cancers [23,26-34],
IGFBP3 also manifests dual functions on cell survival in
GIST, a mesenchymal cancer.

Up-regulation of IGFBP3 has been observed in response
to a variety of anti-cancer agents [18-23], including
celecoxib [24]. In addition, IGFBP3 potentiates the action

of paclitaxel [35] and sensitizes cancer cells to the cyto-
toxic effects of gefitinib [36] and other chemotherapeutic
agents [37]. Because we observed IGFBP3 expression in
GIST in response to imatinib [12], we hypothesized that
IGFBP3 would mediate its anti-tumor effects. After
manipulating IGFBP3 levels in two GIST cell lines, we
observed a modulating effect on response in GIST882,
suggesting that the induction of IGFBP3 is a significant,
specific response to imatinib-induced stress. Failure to
observe a similar response in GIST-T1 suggested that
GIST-T1 cells are insensitive to IGFBP3. However, addi-
tional studies showed that IGFBP3 regulates GIST cell via-
bility with opposing effects. Overexpression of IGFBP3 in
GIST-T1 cells, which have no detectable endogenous
IGFBP3 expression before or after imatinib, results in a
loss of cell viability, demonstrating that IGFBP3 has
growth inhibitory effects in this cell line. In contrast, we
expected that the loss of IGFBP3 by neutralization or
knockdown in GIST882 cells, which have increased
IGFBP3 expression after imatinib, would have a protective
effect on cell viability. However, our data shows that

Effect of IGFBP3 overexpression on GIST-T1 cell viabilityFigure 3
Effect of IGFBP3 overexpression on GIST-T1 cell viability. (A) Whole cell lysates isolated from GIST-T1 cells three or 
five days after mock infection or infection with indicated titers (moi) of adenovirus expressing IGFBP3 (Ad-IGFBP3) or empty 
vector (Ad-EV) were analyzed by immunoblotting for IGFBP3 expression. Viability of GIST-T1 cells mock infected or infected 
with indicated titers of Ad-EV or Ad-IGFBP3 was analyzed 3 days (B) or 5 days (C) post-infection with the MTS assay. Asterisks 
(*) denote significant differences in cell viability at the indicated doses of Ad-EV vs. Ad-IGFBP3.
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IGFBP3 down-modulation is cytotoxic, demonstrating
that IGFBP3 is necessary for cell viability. Thus, in
GIST882, IGFBP3 has two distinct roles, which may be
attributed to a dose-dependent mechanism. Dual func-
tions of IGFBP3 have been reported previously in cancers
of the renal cells [26,27], esophagus [28,29], breast
[30,31], colon [32,33], and prostate [23,34], as well as in
endothelial cells [38]. The mechanism that determines the
final outcome of IGFBP3 action is not well understood,
though some studies suggest a role for post-translational
modification [39], localization within specific cellular
compartments [25,40], extracellular matrix composition
[41], or binding partner interaction [15,42,43]. Despite its
dual effects on GIST cell viability, IGFBP3 appears to exert
its effects through a KIT-independent mechanism, as

imatinib-induced KIT inactivation has no effect on
IGFBP3-mediated loss of cell viability in either GIST882
or GIST-T1 cells.

IGFBP3 expression is lost in many cancer cells [44-46],
and reintroduction of the protein often results in cell
death [21,46,47]. Similarly, our results show that IGFBP3
expression is not detectable in GIST-T1 cells but overex-
pression leads to loss of cell viability. Indeed, the growth
inhibitory and pro-apoptotic effects of IGFBP3 are well
established in a variety of in vitro and in vivo cancer mod-
els. On the other hand, IGFBP3 also has growth stimula-
tory effects [29,33,34,38,41,48], depending on the cell
type and context. Further, increased IGFBP3 expression
has also been linked to renal cell carcinoma [27], breast

Effect of IGFBP3 neutralization or knockdown on GIST882 response to imatinibFigure 4
Effect of IGFBP3 neutralization or knockdown on GIST882 response to imatinib. (A) Cells were treated simultane-
ously with imatinib (1 μM) and anti-IGFBP3 or control IgG (4 μg/mL) for 48 hours, and viability was assessed with the MTS 
assay. (B) RNA was extracted from ST882 cells after transfection with of siRNA (50 or 100 nM) and imatinib (1 μM) for 48 
hours. After the reverse transcriptase reaction, IGFBP3 mRNA levels were quantified by real-time PCR. (C)Whole cell lysate 
isolated after siRNA (50 nM) transfection and imatinib (1 μM) treatment were analyzed for IGFBP3 expression by immunoblot-
ting. (D) Viability after siRNA (50 nM) transfection and imatinib treatment (1 μM) was assessed by MTS.

CA

IGFBP3

α-tubulin

Imatinib - + - +
si-Control si-IGFBP3

B

D

Page 6 of 10
(page number not for citation purposes)



Molecular Cancer 2009, 8:99 http://www.molecular-cancer.com/content/8/1/99
cancer [31,49], and metastatic melanoma [50], suggesting
that IGFBP3 may contribute to tumorigenesis or disease
progression. Here, we report that GIST882 cells, which
have detectable IGFBP3 protein expression, require
IGFBP3 for cell viability, confirming the notion that
IGFBP3 may facilitate cancer cell proliferation and sur-
vival. Complete understanding of IGFBP3 requires inves-
tigations of its binding partners, post-translational
modifications, and signal transduction pathways in vitro
and in vivo.

One possible pathway through which IGFBP3 may exert
its effects in GISTs is the IGF pathway. A number of recent
studies have explored the IGF axis for prognostic and ther-
apeutic value in GISTs. Braconi and colleagues reported
that expression of IGF-1 and IGF-2 is correlated with poor
prognosis and relapse, and that IGF-1R expression was
strong in all cases [51]. Furthermore, Tarn and colleagues
reported that knockdown of IGF-1R was cytotoxic in
GIST-T1 cells [52]. IGFBP3 is the most abundant IGF
binding protein in the circulation and is responsible for a
majority of IGF transport [53]. Because IGFBP3 has intrin-
sic IGF-binding activity that can act to sequester IGF from
its cognate receptor [13], it is possible that using IGFBP3
as a therapeutic agent would be useful to GIST patients
with abnormal IGF expression or IGF-dependent IGF-1R
activation. Furthermore, if IGFBP3 is indeed acting
through an IGF-dependent mechanism, a difference in the
expression levels of IGF or IGF-1R or increased sensitivity
to IGF might contribute to the differential IGFBP3-

induced effects on cell viability and imatinib response in
GIST882 or GIST-T1. Additional studies are needed to
determine IGF and IGF-1R expression levels and IGF sen-
sitivity in GIST cell lines and to further examine whether
IGFBP3 functions through an IGF-dependent or IGF-inde-
pendent mechanism in GIST.

In addition to its direct effects on cancer cells, IGFBP3, as
a secreted protein, may also have paracrine effects on the
tumor environment. Recent studies report that IGFBP3
regulates endothelial cell survival [54] and suppresses
angiogenesis [55,56]. Thus, it is possible that IGFBP3 fur-
ther modulates the viability of GIST cells or alters their
response to imatinib by targeting endothelial cells or
other important cell types, such as macrophages, in the
tumor microenvironment. However, the present study is
limited to an in vitro cell culture system. Mouse model
studies are needed to further investigate whether the
effects of IGFBP3 extend to the GIST microenvironment.

Conclusion
Here, we present evidence that IGFBP3 has dual, opposing
effects on GIST cell viability and that IGFBP3 partially
mediates the anti-tumor effects of imatinib mesylate in
some GISTs in vitro. Further studies are needed to eluci-
date the mechanisms of IGFBP3 action and to evaluate
IGFBP3 as a potential therapeutic agent or target in GISTs.

Methods
Reagents
Imatinib mesylate (Gleevec™, Glivec®, CGP57148, for-
merly STI-571) was obtained from Novartis Oncology
(East Hanover, NJ). For drug treatment, imatinib was pre-
pared as a 10 mM solution in sterile water and subse-
quently filter-sterilized using 0.45 μm filters (Millipore).

Cell Culture
The GIST882 cell line was kindly provided by Dr.
Jonathan Fletcher (Dana-Farber Cancer Institute, Boston,
MA) and was described previously [57]. The GIST-T1 cell
line was described previously [58]. Cells were cultured in
Dulbecco's minimal essential medium high glucose sup-
plemented with 10% fetal bovine serum and maintained
at 37°C in a humidified incubator with 5% CO2.

IGFBP3 neutralization
The non-internalizable IGFBP3 blocking antibody, goat
polyclonal anti-IGFBP3, was acquired from Diagnostic
Systems Laboratories (DSL-R00536, Webster, TX). The
corresponding anti-goat IgG (Vector Laboratories, Inc.,
Burlingame, CA) was used as a control. GIST882 cells
were seeded at 4 × 105 cells/well in 6-well plates and sub-
sequently treated with antibody or IgG alone or in the
presence of imatinib for 48 hours before being assayed for
changes in cell viability.

Effect of IGFBP3 overexpression on GIST-T1 cell sensitivity to imatinibFigure 5
Effect of IGFBP3 overexpression on GIST-T1 cell 
sensitivity to imatinib. GIST-T1 cells were mock infected 
or infected with indicated titers (moi) of Ad-IGFBP3 or Ad-
EV. The following day, infected cells were exposed to imat-
inib (0.075 μM) for 48 hours. Viability was assessed with the 
MTS assay. NS, not significant.
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RNA interference
Knockdown experiments were performed using Ambion
Silencer pre-designed siRNA (Ambion, Austin, TX). For
IGFBP3 silencing, the selected siRNA (ID #144575) tar-
gets exon 5 and its sequence is given below.

Sense - 5' CGAAGCUUAUUUCUGAGGAtt 3'

Antisense - 5' UCCUCAGAAAUAAGCUUCGtc 3'

A non-silencing mismatch siRNA, Silencer Negative Con-
trol #1 (AM4635), was used as a negative control. Trans-
fection of siRNA duplexes was performed with Ambion
Silencer siPORT NeoFX reagent (AM4510) according to
the manufacturer's instructions. Briefly, siRNA was
diluted in serum-free minimum essential medium supple-
mented with non-essential amino acids and NeoFX rea-
gent before mixing with 8 × 103 cells/well in 96-well plates
or 2 × 105 cells/well in 6-well plates. The final concentra-
tion of siRNA in the solution was 50 nM. After 48 hours,
cells were exposed to imatinib for an additional 48 hours
before being assayed for changes in cell viability.

ELISA
GIST882 cells (3 × 106) were treated with imatinib for 24
or 48 hours. After treatment, the conditioned medium
was collected and briefly centrifuged to remove the float-
ing cells and cellular debris. Aliquots (50 μL) of the super-
natant were analyzed for the presence of IGFBP3 using the
Human IGFBP3 Quantikine ELISA kit (#DGB300) from
R&D Systems (Minneapolis, MN) according to the manu-
facturer's instructions.

Adenovirus-mediated gene transduction
Adenoviral vectors expressing IGFBP3 (Ad-IGFBP3) or
empty vector (Ad-EV) were described previously [47]. For
infection of GIST-T1, 8 × 103 cells/well were seeded to 96-
well plates or 2 × 105 cells/well were seeded to 6-well
plates and allowed to adhere overnight. The following
day, cells were mock-infected or infected with the indi-
cated titers of Ad-IGFBP3 or Ad-EV for 2 hours and then
incubated in complete medium. The next day, cells were
exposed to imatinib for 48 hours before being assayed for
changes in cell viability.

MTS assay
Cell viability was assessed using the 3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2H-tetrazolium bromide (MTS) (Promega
Corporation, Madison, WI) assay as described previously
[59].

Real-time PCR
Total RNA was isolated from GIST882 cells after siRNA
transfection using the Qiagen RNeasy Mini Kit (Valencia,
CA). After reverse transcription, real-time PCR was per-

formed as described previously [12]. Primers for IGFBP3
(assay ID Hs00181211_m1) and the endogenous control
cyclophilin A (gene name PPIA, #4326316E), as well as
TaqMan Universal PCR Master Mix (#4324018) were
obtained from Applied Biosystems (Foster City, CA).

Antibodies
Primary antibodies used include the following: anti-
IGFBP3 (DSL-R00536, 1:3000) from Diagnostic Systems
Laboratories (Webster, TX) and anti-α-tubulin (T5168,
1:5000) from Sigma (St. Louis, MO). Secondary antibod-
ies used include anti-goat (sc-2020, 1:1000) from Santa
Cruz (Santa Cruz, CA) and anti-mouse (#7076, 1:1000)
from Cell Signaling (Danvers, MA).

Immunoblotting
Cells were washed in cold PBS and then incubated in dis-
persal buffer (PBS + 1 mM EDTA, pH 8) to begin dissoci-
ation. Cells were scraped gently, collected, and
centrifuged at 2000 rpm for 10 min before resuspension
in cold lysis buffer containing 25 mM HEPES, pH 7.5, 150
mM NaCl, 1% NP-40, 10 mM MgCl2, 1 mM EDTA, and
10% glycerol (Upstate, Lake Placid, NY) and supple-
mented with protease inhibitor cocktail and phosphatase
inhibitor cocktails 1 and 2 (1:100) (Sigma, St. Louis,
MO). After incubation on ice for 30 minutes and subse-
quent centrifugation at 14,000 rpm at 4°C for 15 minutes,
supernatants were collected and protein concentration
determined using the Bio-Rad Protein Assay (Bio-Rad,
Hercules, CA). Protein (40 μg) was resolved by SDS-poly-
acrylamide gel (8-12%) electrophoresis, followed by
transfer to polyvinylidene fluoride (PVDF) membranes.
Membranes were blocked for 1 hour in Tris-buffered
saline (TBS) containing 0.05% Tween 20 (TBS-T) and 5%
nonfat dry milk and probed overnight with primary anti-
body at 4°C. After washing several times in TBS-T, mem-
branes were probed with the corresponding horseradish
peroxidase (HRP)-conjugated secondary antibody for 1
hour at room temperature. Membranes were washed sev-
eral times in TBS-T and protein signal detected using ECL
(Amersham Biosciences, Piscataway, NJ) or SuperSignal
chemiluminescence reagent (Pierce, Rockford, IL).

Statistics
Values given are mean ± SEM. Data was analyzed with Stu-
dent's t-test or two-way ANOVA where indicated. P-values
less than 0.05 were considered significant.
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