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Abstract
Despite progress in treatment approaches for oral cancer, there has been only modest improvement in patient 
outcomes in the past three decades. The frequent treatment failure is due to the failure to control tumor recurrence 
and metastasis. These failures suggest that new targets should be identified to reverse oral epithelial dysplastic lesions. 
Recent developments suggest an active role of glycogen synthase kinase 3 beta (GSK3 β) in various human cancers 
either as a tumor suppressor or as a tumor promoter. GSK3β is a Ser/Thr protein kinase, and there is emerging evidence 
that it is a tumor suppressor in oral cancer. The evidence suggests a link between key players in oral cancer that control 
transcription, accelerated cell cycle progression, activation of invasion/metastasis and anti-apoptosis, and regulation of 
these factors by GSK3β. Moreover, the major upstream kinases of GSK3β and their oncogenic activation by several 
etiological agents of oral cancer support this hypothesis. In spite of all this evidence, a detailed analysis of the role of 
GSK3β in oral cancer and of its therapeutic potential has yet to be conducted by the scientific community. The focus of 
this review is to discuss the multitude of roles of GSK3β, its possible role in controlling different oncogenic events and 
how it can be targeted in oral cancer.

Introduction
Oral cancer is the sixth most common cancer in the
world, and its incidence varies in different ecogeographic
regions [1,2]. Its occurrence is associated with exposure
to smoking and alcohol consumption in the Western pop-
ulation. The majority of cases occur in Asia, where it is
mainly associated with betel quid chewing [3]. Poor oral
hygiene and human papillomavirus (HPV) infection of
oral epithelial cells are other etiological factors [4]. In
addition to genetic differences, other etiological factors
promote the occurrence of this disease to different
extents in different populations. Although there are sev-
eral differences in disease occurrence and etiology
between populations, there is one aspect of these tumors
that is highly similar worldwide. Oral tumors are mainly
asymptomatic initially, are aggressive, and frequently
invade and migrate to distant organs, making them diffi-
cult to treat. This suggests that, although different predis-
posing factors activate various molecular pathways [5],
eventually all of them may follow a common path thereaf-
ter to result in oral cancer.

Advances in recent decades in the surgical, radiothera-
peutic and chemotherapeutic treatment of oral cancer
have only modestly improved patient survival. Various
approaches have been used for the clinical treatment of
oral cancer patients in the last three decades, from non-
targeted chemotherapy to highly targeted pharmacologi-
cal inhibitors and specific monoclonal antibodies [3,6].
Although targeted therapies yield better outcomes than
non-targeted therapies, frequent treatment failure sug-
gests the need for new treatments or targets for this dis-
ease. In oral cancer, active transcription of various genes
leads to rapid cell division, faster invasion and reduction
of cell death. Although it has been largely overlooked,
there is a potential link between key players in oral can-
cer, including transcription factors, cell cycle regulators,
invasion/metastasis-promoting factors, and cell survival
regulators, and their regulation under the control of gly-
cogen synthase kinase 3β (GSK3β).

GSK3β plays a major role in epithelial cell homeostasis
[7]. Its activity is regulated by site-specific phosphoryla-
tion of Tyr216/Ser9 residues [8]. The regulated phospho-
rylation of Ser9GSK3β is the main cause of various
pathological conditions, and it is upregulated in epithelial
cancers. Many upstream kinases protein kinase A (PKA)
[9], Akt/PKB [10], PKC [11], p90 ribosomal S6 kinase/
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MAPK-activating protein (p90RSK/MAPKAP) [12] and
p70 ribosomal S6 kinase (p70S6K) [13] are known to
phosphorylate Ser9 of GSK3β, depending on the cellular
context and various upstream regulators. The oncogenic
activation of these upstream signaling molecules is fre-
quently reported in oral squamous cell carcinoma
(OSCC) [14-16]. Many of these oncogenic pathways are
activated by common etiological factors of this cancer.
Overall, this evidence suggests the possible active
involvement of GSK3β-mediated signaling in this neo-
plastic disease. This review attempts to correlate the
established pathways of oral cancer with GSK3β signaling
and discusses the potential of this kinase as a therapeutic
target.

The GSK3 family and its regulation
GSK3 was discovered nearly three decades ago in rabbit
skeletal muscle as a protein kinase that phosphorylates
and inactivates glycogen synthase, the final enzyme of
glycogen biosynthesis [17,18]. GSK3 is a multifunctional
Ser/Thr kinase with diverse roles in various human dis-
eases, including diabetes, inflammation, neurological dis-
orders and various neoplastic diseases [19,20]. To date,
two members of the mammalian GSK3 family (α and β)
are known [18]. They are ubiquitously expressed and
highly conserved and are members of the CMGC family
of protein kinases [21]. Many of the substrates of GSK3
need a "priming phosphate" (which is a Ser/Thr residue)
located four amino acids (aa) C-terminally from the site
of phosphorylation [8]. GSK3 is constitutively active in
resting cells and undergoes a rapid and transient inhibi-
tion in response to a number of external signals. Physio-
logical regulation of GSK3 activity by various upstream
kinases [9-13] in different physiological and pathological
condition is established [8].

GSK3β and its role in tumorigenesis
GSK3β drives oncogenic progression either by its inhibi-
tion or its activation, depending on the cell type. In recent
years, its role in cancer has become firmly established.
The differences in the roles of GSK3β depending on the
type of cancer are quite interesting. Whereas it has a
growth-promoting role in some cancers, it suppresses
growth in others. Based on the literature, it is clear that
GSK3β can act either as a tumor promoter or as a tumor
suppressor, as shown in Table 1.

GSK3β and its control over transcription
Alteration of the transcriptional machinery is common in
neoplastic diseases, including oral cancer [22,23]. Onco-
genic transcription factors (OTFs) alter the transcrip-
tional machinery to regulate mRNA synthesis. GSK3β
regulates the stability of various oncogenic TFs like the
activator protein 1 (AP-1) [24], nuclear factor kappa B

(NFκB) [25], c-Myc [26], β-catenin [27], Snail [28], Fork-
head (FH) [29], CAAT-enhancer binding protein (C/
EBPs) [30], and cAMP response element-binding (CREB)
[31] by phosphorylation [8]. Most of these TFs are physi-
ological targets of GSK3β that undergo proteasomal deg-
radation upon phosphorylation [8,24-28]. AP-1
transcriptional activity is high in oral cancer tissue sam-
ples [2]. Active GSK3β directly phosphorylates c-Jun at
Thr239 which promotes its degradation [24]. It is also
known that in normal oral mucosa c-Jun is localized in
the cytoplasm while it enters to the nucleus at the onset
of oral carcinogenesis [32]. Both Fos and Jun are phos-
phorylated and activated by mitogen activated protein
kinase (MAPK) and c-Jun n-terminal kinase (JNK) kinase
system [33,34] may be due to inactive GSK3β. Moreover
the expressions of p65 (one of the NFκB family member)
have been observed in oral cancer tissue samples [35,36]
and metastatic OSCC [36]. GSK3β phosphorylates p65 at
Ser468 and negatively regulate its activity by promoting
its degradation [25]. p65 might escape from its turnover
because of inactivated GSK3β in OSCC. Recent report
suggests active GSK3β physically interact with IκBα in
normal epithelial cells [37]. Moreover study in different
system suggests that active GSK3β blocks NFκB depen-
dent transcription, by preventing IκBα degradation [38].
In normal epithelial cells NFκB activity is known to be
inhibited by GSK3 [39]. From all these evidences, it seems
like NFκB activation in OSCC may be modulated,
because of inactive GSK3β like that in other epithelial
cancers [40]. On the other hand, degradation of c-Myc
and β-catenin is initiated by phosphorylation of GSK3β
[26]. The overexpression of c-Myc and β-catenin protein
in OSCC is established [41-46]. The gene mutation on
hot spots i.e. Thr58 of c-Myc and Ser33, Ser37, Thr41 and
Ser45 of β-catenin abolishes phosphorylation by GSK3β
results in preventing ubiquitination and proteasome
mediated degradation of c-Myc [47-50]/β-catenin [46,51-
53] has been reported in various cancers but not so far in
OSCC. In OSCC, c-Myc/β-catenin protein might get sta-
bility not because of missense mutation at these hot spot
codons but because of inactivation of its phosphorylating
kinase i.e. GSK3β it self. The activated Snail has been
reported in OSCC [54]. GSK3β is well known regulator of
Snail which phosphorylates and that leads to Snail
nuclear export and deregulation [28,39,55,56]. Moreover,
p53 is highly involved in OSCC [57]. Though it is inacti-
vated by mutation in nearly half of oral cancer population
[57] the cause of its inactivation is still doubtful in the
other half. p53 activity is regulated by active GSK3β, due
to either physical association or phosphorylation and
post-translational modification [58,59]. It is possible that
in OSCC cases without p53 mutations [57], p53 can be
inactivated due to inactive GSK3β. These OTFs those are
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Table 1: Paradoxical role of GSK3β in various human cancers

Cancer Types Explanation for Tumour Suppressor Role of GSK3β

Skin cancer
(Cutaneous SCC)

Inactivation of GSK3β (higher pSer9GSK3β expression) [72]
Inactivation of GSK3β (lower pTyr216GSK3β expression) [60,168]
Pharmacological inhibition of GSK3β in normal epithelial causes epithelial mesenchymal transition (EMT) 
and invasion [39]

Oral cancer
(OSCC)

Inactivation of GSK3β (higher pSer9GSK3β expression) [88]
The basal inactivated GSK3β (pSer9GSK3β) level in OSCC cell line is high [61-63]
Activation of GSK3β, can reverse EMT [64]

Larynx cancer Inactivation of GSK3β (higher pSer9GSK3β expression) [88]

Esophageal cancer Inactivation of GSK3β (higher pSer9GSK3β expression) [88]

Breast cancer Overexpression of inactive GSK3β promotes [169], and active GSK3β suppress mammary tumours [168]
Active GSK3 increases chemosensitivity, cell cycle arrest and reduces mammary tumorigenecity [170-172]
Pharmacological inhibition of GSK3 in breast epithelial causes EMT and invasion [39]

Salivary gland cancer Inactivation of GSK3β (pSer9GSK3β) observed in this tumor [88]

Nasopharyngeal cancer (SCC) Inactivation of GSK3β observed and positively correlated with its upstream inactivating kinase Akt [173]

Lung cancer (SCC) Inactivation of GSK3β reported [40]

Adenocarcinoma of Lung Higher level of inactivated of GSK3β (pSer9GSK3β) observed [174]

Melanoma cancer Inactivation of GSK3β reported [60]

Skin cancer (Basal cell carcinoma) Inactivation of GSK3β reported [60]

Cancer Types Explanation for Tumour Promoter Role of GSK3β

Pancreatic cancer Pharmacological inhibition of GSK3 attenuates survival, proliferation and induce apoptosis [162,163,175]
Active GSK3β promotes growth [176]
Absence of inactive GSK3β (lower pSer9GSK3β expression) in tumors [88]
High level expression and nuclear accumulation association with kinase activity and tumor 
dedifferentiation [161,177,178]

Colorectal cancer Pharmacological inhibition activates cell cycle arrest and induce apoptosis [158,159,175]
Absence of inactive GSK3β (lower pSer9GSK3β) in majority of tumors [88]
Increased expression/active GSK3β in these tumors [88,159]

Myeloma cancer GSK3β promotes growth and use of pharmacological inhibitor promotes apoptosis [83]

Hepatic cancer Absence of inactive form of GSK3β (pSer9GSK3β) in these tumors [88]
Increase and active GSK3β expression [175]

Leukemia cancer GSK3 activation enhances proliferation and survival [160,179-181]
Missplicing at the kinase domain causing active GSK3β [179]
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important in OSCC and are directly regulated possibly by
GSK3β. Alteration of these TFs plays a vital role in vari-
ous diseases, including OSCC.

GSK3β is a key player in OSCC
GSK3β can promote or suppress growth in different types
of cancer (Table 1). The inactivation of GSK3β has been
reported in most cancers of epithelial origin, such as skin,
breast, and in cancers of the oral cavity, salivary glands,
larynx, and esophagus [60]. The basal level of inactivated
GSK3β (pSer9GSK3β) in OSCC cell lines is very high [61-
63] but can be decreased by inhibiting the GSK3β
upstream inactivating pathway [61,62]. A recent report
suggests that activating GSK3β can reverse the epithelial-
mesenchymal process in oral cancer [64]. GSK3β-medi-
ated signaling could explain numerous molecular disor-
ders specific to oral cancer.
A) Cell cycle regulation
Cell division is a precisely regulated process that occurs
obligatorily in all organisms. The ability of cells to divide
is mainly attributed to the presence of three classes of
molecules: CDKs (Cyclin Dependent Kinases, a family of
Ser/Thr kinases), their binding partners cyclins and CDK
inhibitors (CDKI) [65]. The transcriptional and post-
translational regulation of cyclin D1 [66,67] and of cyclin
E [68,69] in OSCC are well documented. Cyclin D1/E
transcriptional upregulation is achieved by regulating
TFs (e.g., AP-1, NFκB, β-catenin), and protein stability/
nuclear accumulation are also increased [70,71] in OSCC
[66,68,69]. Inactive GSK3β prevents the phosphorylation
of Thr286 cyclin D1 and Ser380 cyclin E, which blocks
their nuclear export and degradation [70-72]. An inverse
correlation between cyclin D1 and GSK3β expression has
been reported in oral cancer [73]. Cyclin A and cyclin B

are also overexpressed in OSCC [69,74,75]. These cyclins
are primarily regulated by c-Myc and p53 and thus qual-
ify as GSK3β targets. Because these are S phase- and G2-
M phase-specific cyclins, their expression is affected by
the G1 phase-specific cell cycle events of cyclin D1/
CDK4 and cyclin E/CDK2 activation [57,76]. Overexpres-
sion of CDK4 mRNA has been reported in different
malignancies, including oral and epithelial cancer [77,78].
c-Myc controls the expression of CDK4 by binding to E-
box elements present in its promoter that are not only
overexpressed in OSCC [42] but also are regulated by
GSK3β [26]. p21 (WAF1/CIP1) competes with cyclins for
binding to CDKs, and its expression is usually decreased
in various cancers. However, in OSCC, the overexpres-
sion of p21 (WAF1/CIP1) is quite evident [79], and its
overexpression significantly correlates with tumor size,
lymph node involvement and clinical stage [79,80]. Active
GSK3β directly regulates p21 expression by phosphoryla-
tion at Thr57 [81], leading to proteasome-mediated deg-
radation. Another explanation could be that the TFs C/
EBPα and -β (which may also be stabilized because of
inactive GSK3β in OSCC) interact with p21 and protect it
from degradation. The possible explanations for why p21
does not halt OSCC progression are numerous. One pos-
sible explanation is that p21 is inactivated by binding to
the E7 protein of human papillomavirus 16 (HPV16),
which is highly prevalent in OSCC. This association of
p21 and E7 blocks the ability of p21 to inhibit cyclin/CDK
activity as well as PCNA-dependent DNA synthesis. In
contrast, another CDKI, p27, is reportedly down-regu-
lated in OSCC [82] in a process that might be mediated
by forkhead (FH) TF [29,83]. In breast cancer (where
active GSK3β acts like a tumor suppressor as in OSCC;

Stomach cancer Absence of inactive GSK3β (pSer9GSK3β) in these tumours [88]
Active GSK3β observed frequently and its pharmacological inhibition attenuates survival, proliferation and 
induce apoptosis [175]

Ovarian cancer GSK3β expression increases and it promotes cell division [156]

Prostate cancer GSK3 activity favors replication of DNA and S-phase progression [157]

Thyroid cancer Inhibition of GSK3 activity leads to growth suppression [182]

Gastro-Intestinal cancer Higher and active GSK3β expression observed [166]
Absence of inactive GSK3β (pSer9GSK3β) in these tumors [88]

Renal cell carcinoma Activation of GSK3β observed in this tumor [175]
Nuclear accumulation of GSK3β and its pharmacological inhibition suppress growth [178]

Glioma cancer Pharmacological inhibition of GSK3 induces cell death [183]

Table 1: Paradoxical role of GSK3β in various human cancers (Continued)
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Table 1) knock down of PI3K promotes degradation of
FH and p27 possibly via GSK3β activation [84]. GADD45
and GADD153 are checkpoint inhibitors and tumor sup-
pressors that have roles in multiple tumor types, includ-
ing OSCC [85,86]. GADD45 is also controlled by p53, and
upon DNA damage, it is activated to arrest the cell cycle.
Both GADD45 and GADD153 are downstream targets of
c-Myc [87] and thus qualify as possible GSK3β targets in
OSCC. Cell division cycle 25A (CDC25A) is also con-
trolled by c-Myc [69,76]. Direct evidence suggests a posi-
tive correlation between pSer9GSK3β and CDC25A
expression in tumors of the oral cavity, salivary glands
and larynx (Ref. [88] and Fig 1).
B) Nodal invasion by epithelial-mesenchymal transition
OSCC is a cancer of epithelial cells that invades sur-
rounding tissues and frequently migrates to distant
organs (metastasizes) [89]. The extra cellular matrix
(ECM) interaction is important for the survival of normal
epithelial cells but this interaction is gradually lost in
squamous cell carcinoma [90]. The major ECM mole-
cules implicated in OSCC development include collagen,
fibronectin [91], tenascin [92] and laminin [54,91,93].

Many ECM molecules are indirect targets of GSK3β via
Snail- or AP-1 [28,94]. The degradation of basement
membrane (collagen) by MMPs and its regulation by
inactive GSK3β have been reported [95,96]. Focal adhe-
sion kinase (FAK) is overexpressed in preinvasive and
invasive OSCC [97]. Upregulation of FAK leads to migra-
tion, and its regulation by active NFκB is known in
tongue squamous cell carcinoma cells (SCC25) [98,99]
possibly via inactive GSK3β. Another group of molecules,
the integrins, are transmembrane, heterodimeric, cell-
surface proteins (consisting of one α and one β subunit)
that primarily function as cell adhesion molecules but
also participate in signal transduction leading to cell
migration, growth and oncogenesis. Human integrins are
upregulated in OSCC [100,101], and they are primarily
controlled by those transcription factors regulated by
GSK3β [102-104]. Recent evidence suggests a role for
Snail in controlling multiple α/β-integrins and EMT in
OSCC [54,94,105].

MMPs are a group of extracellular matrix/basement-
degrading proteases. High levels of MMP-2, -3, and -9
have been associated with poor prognosis for patients

Figure 1 Progressive inactivation of GSK3β may promote accelerated cell cycle and oral cancer. As discussed in the text, most of the cell cycle 
regulators and their gain of function may be because of inactivation of GSK3β in oral cancer. GSK3β regulates the activity or turnover of several master 
cell cycle regulators like p53. Activation of p21, 14-3-3σ and GADD45 protein by p53 induces cell cycle arrest to prevent the propagation of mutations, 
which accumulate in cells under genotoxic stress. p53 induces the expression of the cytoplasmic scaffold protein 14-3-3σ, which prevents the nuclear 
import of cyclin B1 and cdc2 by sequestration in the cytoplasm. On the other hand, GADD45 destabilizes CDC2/cyclinB complexes. GSK3β-regulated 
c-Myc is a master regulator of the cell cycle and is essential for G0/G1-to-S progression. Myc suppresses the expression of cell cycle checkpoint genes 
(GADD45, GADD153) and inhibits the function of CDK inhibitors. Myc also activates cyclins D1, E1, and A2, CDK4, CDC25A, and E2F-1 and -2. Cyclin D1 
is a crucial cell cycle regulator mainly regulated by the activity of TFs (NFκB, β-catenin-TCF/LEF, AP-1) and is indirectly controlled by GSK3β. Moreover, 
inactivation of GSK3β leads to the stabilization of cyclin D1. Oncogenic gains of function of these molecules stemming from inactive GSK3β have been 
established in various neoplastic diseases and might orchestrate cell cycle dysregulation in OSCC.
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with oral cancer, including the development of lymph
node metastasis and poor survival [100,106,107]. The
transcriptional activation of MMP-1,-3, and -9 is com-
mon in OSCC [108,109], and they are all targets of AP-1,
NFκB, C/EBPs or Snail, highlighting the importance of
GSK3β-mediated signaling in the oral cancer invasion
program [110-112].

Cadherins interact with the actin cytoskeleton to main-
tain tissue architecture. In some cancers, including
OSCC, loss of E-cadherin favors invasion. An inverse cor-
relation between E-cadherin and Snail expression has
been reported in OSCC and epithelial cancers [113-115],
which supports the regulation of E-cadherin by the inac-
tivation of GSK3β and Snail [28,64]. Snail represses E-
cadherin gene expression in epithelial tumours [116].
GSK3β is well known regulator of Snail which phospho-
rylates and that leads to Snail nuclear export and deregu-
lation [28,39,55,56]. Recent findings suggest that the
forced activation of GSK3β and the resultant phosphory-
lation and cytoplasmic translocation of Snail lead to E-
cadherin up-regulation, which can potentially reverse
EMT in OSCC [64]. Yang et al. have shown that EMT
phenotypes can be decreased in head and neck SCC
(HNSCC) by the use of siRNA-mediated repression of
Snail or by the use of inhibitors of PI3K, which is a
GSK3β-inactivating upstream kinase [90]. On the other
hand, elevated Cox-2 levels have been reported in various
human malignancies, including OSCC [117-119]. Inhibi-
tion of Cox-2 decreases integrin and MMP levels as well
as the invasiveness of OSCC [118,119]. Cox-2 gene tran-
scription is controlled by wild-type p53 protein [120] and
by NFκB in betel quid-associated oral cancer [121], indi-
rectly supporting the importance of inactive GSK3β (Ref
[122] and Fig 2).
C) Anti-Apoptosis
The inhibition of apoptosis is a major cause of neoplastic
disorders and an integral part of oral cancer pathogene-
sis. Abundant evidence suggests a possible role for active
GSK3β in cell survival and apoptosis [123,124]. Apoptosis
is controlled by either the intrinsic (mitochondrial) or
extrinsic pathway (activation of procaspase-8) [123,125-
128].

Higher levels of Bcl-2 and lower levels of Bax are fre-
quently reported in oral cancer [127]. A recent report
suggests that, in an OSCC cell line, Bcl-2 expression is
affected even by slight changes in the status of
pSer9GSK3β [63]. Active GSK3β blocks CREB-depen-
dent expression of the anti-apoptotic protein Bcl-2 [128].
Additionally, active GSK3β regulates p53 activity, which
increases Bax protein levels to initiate apoptosis [125].
Modulation of GSK3β can markedly increase p53-depen-
dent activation of Bax, leading to cytochrome c release,
loss of mitochondrial membrane potential and caspase-9
processing [125]. Moreover, the physiological effect of

p53 is governed by inactivation of GSK3β (pSer9 GSK3β)
[125] (and not by pTyr216GSK3β). Inhibition of Akt (a
well-known kinase upstream of GSK3β) can only induce
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) -mediated apoptosis by regulating the levels of
Bcl-2 and Bax in OSCC [125]. All of this evidence sug-
gests that the survival advantage of OSCC cells over the
normal oral epithelium might be due to progressive inac-
tivation of GSK3β, which could be responsible for an
increased Bcl-2/Bax protein ratio [63,125-127].

On the other hand, oral cancer cells are resistant to cell
death mediated by TRAIL [126], which can be achieved
only by inactivation of the GSK3-inactivating PI3K/Akt
pathway [127]. Additionally, inhibition of caspase-8
reduces PI3K inhibitor-mediated apoptosis in OSCC
[127]. In the extrinsic apoptotic pathway, active GSK3β
promotes the activation of the initiator caspase-8 [122].
Therefore, active GSK3β targets both intrinsic and
extrinsic pathways to maintain control over growth and
proliferation in normal epithelium by promoting apopto-
sis [Fig. 3]. This control might be disrupted in OSCC.

Oral cancer therapy and role of GSK3β signaling
The inhibition of GSK3β is regulated by various upstream
kinases (PKA, PKB/Akt, PKC, p90RSK/MAPKAP,
p70RS6K) [7,9,10,12,13,129]. PKA is predominantly con-
trolled by extracellular signals (epidermal growth factor:
EGF, platelet derived growth factor: PDGF), carcinogens
and second messengers, mainly c-AMP. PKA activation
in an OSCC cell line has been reported [63]. PKA-
anchoring protein 220 (PKAP220) binds to both PKA and
GSK3, bringing GSK3 into close proximity with PKA,
which phosphorylates GSK3β to block its activity [130].
Recently, PKA has been identified as a therapeutic target
in HNSCC; moreover, inhibition of PKA is known to
affect many molecules (e.g., NFκB, Cyclin D1, Bcl-2, Cox-
2 and p21), most of which are direct/indirect targets of
GSK3β [131]. On the other hand, the activation of the
PI3K/Akt pathway has been well studied in OSCC
[15,127,132]. Direct evidence suggests that the
pSer9GSK3β level in OSCC cell line is very high and can
be decreased by inhibiting Akt signaling [62]. In addition,
in oral cancer cells, blocking PI3K/Akt signaling causes
more cells to undergo apoptosis; this effect is reversed by
the use of a GSK3β inhibitor [63]. Akt signaling is impor-
tant in HNSCC and is considered as a potential therapeu-
tic target [133]. There is also evidence of PKC signaling in
OSCC [11], and inhibition of PKC by pharmacological
inhibitors reduces MMP-2 and MMP-9 [134], possibly via
GSK3β. Suppression of PKC activity promotes GSK3β
activity in epithelial cells, which increases apoptosis [7].
Targeting of PKCε has shown promising results in
decreasing the invasion and mortality of HNSCC [135].
Moreover, p90RSK is known for its role in epithelial cell
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motility and invasiveness [136]. Tumor-promoting phor-
bol esters inhibit GSK3β via a classical MAPK cascade
[19] by activating p90RSK (MAPKAP-KI). Therefore, the
role of the p90RSK/GSK3β pathway might be important
in oral cancer. Finally, GSK3β is inactivated by the mam-
malian target of rapamycin (mTOR) pathway, in which
p70S6K phosphorylates GSK3β. In a SCC cell line, EGF
inactivates GSK3β [137], which can be reversed by
rapamycin at a concentration that blocks the activation of
p70S6K [138]. Epidermal growth factor receptor (EGFR)
activation in OSCC [137] might activate the p70S6K
pathway [138]. Moreover, in HNSCC, p70S6K is report-
edly very active, and targeting it with rapamycin has a
potential anti-tumor effect in vivo [139], possibly due to
the activation of GSK3β. All of these signaling pathways
may have definite oncogenic properties and are activated
by a variety of carcinogens or other cancer-promoting
factors to induce oral cancer or cancers of similar epithe-
lial origin. However, one thing that these oncogenic path-
ways share is that they all impinge on GSK3β inactivation.

This may be the reason why, beyond geographical bound-
aries, all oral cancers are similar in their aggressiveness
and their potential for migration and metastasis. Cross-
talk is abundant in signal transduction pathways. There-
fore, although targeting each of these pathways has a
modest impact on oral cancer and causes toxicity to the
patient, targeting GSK3β directly may be highly beneficial
in treating OSCC [Fig. 4].

Oral cancer etiology and intracellular signaling
The activation of established GSK3-inactivating
upstream biological pathways by oral cancer-predispos-
ing factors, such as tobacco, alcohol, and HPV, support
the proposition of a causative role for GSK3β in OSCC.
The role of carcinogens (from chewing and smoking
tobacco) in oral cancer is firmly established [15,140].
Smokers show elevated levels of adenyle cyclase (AC) and
PKA activity in oral epithelial cells [141,142]. Chewing
areca nuts can lead to DNA damage and increased oxida-
tive stress. The lime (calcium hydroxide) that coats the

Figure 2 Progressive inactivation of GSK3β may promote enhanced EMT and oral cancer. GSK3β regulates several molecules that participate 
in epithelial-mesenchymal transformation, invasion and metastasis in cancer. Normal epithelial cells are connected to each other by E-cadherin, which 
binds to α- and β-catenin, which in turn connect E-cadherin to the actin cytoskeleton. Levels of E-cadherin are decreased in EMT. E-cadherin expres-
sion is suppressed by Snail. MMPs degrade the BM and facilitate the migration of cancer cells. Several MMPs upregulated and activated in OSCC are 
controlled by TFs such as Snail, AP-1, and NFκB. All of these events are directly or indirectly linked to the inactivation status of GSK3β.
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betel leaf promotes an alkaline oral environment, which
activates Akt signaling [15]. There is accumulating evi-
dence that connects nicotine-induced tumorigenesis to
the activation of MAPK signaling [143], activation of
PI3K/Akt signaling [144] and blocking of cytochrome c-
mediated apoptosis [145]. Alcohol abuse increases the
permeability of cells to carcinogens and activates PKA in
cell culture [146]. HPV activates Akt in epithelial kerati-
nocytes [4,147]. Moreover, a recent evaluation of epithe-
lial tumors suggests that HPV infection can alter many
biological pathways to maintain malignant processes by
decreasing focal adhesion and up-regulating Wnt signal-

ing and cell cycle genes [148]. Therefore, it is logical to
hypothesize that the inactivation of GSK3β contributes to
oral cancer.

Evaluation of therapeutic potential and possible methods 
of targeting GSK3β in OSCC
Before selecting GSK3β as a therapeutic target in OSCC,
its biological functions should be explored in detail.
Though GSK3β has several isoforms, the isoform(s) spe-
cifically expressed in OSCC remain to be identified. If
multiple isoforms are expressed, it will be important to
understand their respective functions in oral cancer

Figure 3 Progressive inactivation of GSK3β may promote increased anti-apoptosis and oral cancer. GSK3β-mediated signaling controls apop-
tosis in OSCC. In the intrinsic apoptotic pathway, inactive GSK3β fails to promote apoptosis by the disruption of mitochondrial membrane potential 
resulting from disruption of the Bcl-2/Bax ratio. Overexpression of Bcl-2 and suppression of Bax occur frequently in OSCC. This may be due to either 
inactive p53 (in the subgroup of cases in which p53 is not mutated or silenced) or active CREB; both are controlled by GSK3β. In the extrinsic pathway, 
active GSK3β promotes apoptosis by inducing procaspase-8 activation. Moreover, the inactivated GSK3β might send survival signals via the extrinsic 
pathway by blocking procaspase-8 activation in OSCC. By doing this, GSK3β might maintain the balance between proliferation and death and con-
tribute to tissue homeostasis in normal oral epithelium; these might be perturbed in OSCC.
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pathogenesis. The upstream cause of activation or inacti-
vation of GSK3β as well as downstream target molecules
and their status in OSCC should be thoroughly investi-
gated at the patient level. Because it is an enzyme
involved in regulating growth, cell cycle progression,
apoptosis, and invasion, GSK3β may qualify as an ideal
therapeutic target [123,149] for OSCC. Because of its role
in both extrinsic and intrinsic apoptotic pathways, and
because active GSK3β is nontoxic to non-cancerous cells
(e.g., in a knock-in mouse study replacing Ser9 of GSK3β
with Ala) [150], targeting the GSK3β pathway might be
helpful in reducing unwanted apoptosis (in normal cells)
and increasing useful apoptosis (in cancer cells).

The activation status of upstream molecules and the
inactivation of GSK3β should be tested in different
patients because each patient has a different lifestyle, eti-

ological factors and genetic abnormalities. GSK3β can be
inactivated by different upstream molecules in different
oral tumors, even in the same patient. Inhibiting the
upstream molecules pharmacologically by using peptide
competitors and blocking phosphorylation at Ser9 cer-
tainly will keep GSK3β in an active state. The crystal
structure of GSK3β peptide with an activated Akt ternary
complex has been reported [151-154]. This may enable
the design of small molecules that will disrupt the inter-
action of upstream kinases and GSK3β [Therapeutic
strategy-I, Fig. 4] and thus prevent inhibitory kinases
from associating with GSK3β. After checking the status
of those patients who have inactivated GSK3β, Adenovi-
ral vector carrying Ala9GSK3β may be tested along with
other (chemo/radio) therapy, or with Ad-p53 (WT),
which is known to block the progression of oral cancer to

Figure 4 Targeting GSK3β pathway may be highly beneficial for curing oral cancer. Inhibition of GSK3β activity by the activation of several on-
cogenic pathways in cancer as discussed in the text. Activation of these pathways by several oral cancer etiological factors is interesting and fuel for 
inactivating GSK3β by targeting its inactivating pathways to promote oral cancer. Two major therapeutic strategies may be adopted to keep GSK3β 
active. First and the most important will be to (---) prevent the inactivation of GSK3β, by targeting its upstream inhibitory kinases, so that they will 
remain unassociated. Second will be to (---) reconstitute the active GSK3β (Ala9GSK3β by gene therapy) to affected oral cancer sites.
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a certain extent [155]. However, although the chances are
remote, some OSCC tumors will contain active GSK3β. It
will be easy to test the inhibitors of GSK3 in these cases.
The use of LiCl and SB-216763 in ovarian cancer [156];
LiCl and TDZD-8 in prostate cancer [157]; TDZD-8, SB-
216763 and AR-A014418 in colorectal cancer [158,159];
LiCl, SB-216763, and TDZD-8 in myeloma [83]; TDZD-8
in AML and AML progenitor and stem cell cancer [160];
and LiCl and AR-A014418 in pancreatic cancer [161-163]
has been evaluated, with positive outcomes. Almost all
GSK3 inhibitors are able to inhibit two isoforms of GSK3
(α & β) with similar potency. The production and clinical
evaluation of small-molecule inhibitors of particular iso-
forms will improve the chances of successful treatment in
the future. Recent advancements in molecular biology
have proven the effectiveness of small RNA interference
(RNAi) in reducing the level of one protein by promoting
mRNA degradation. This has been tried in an animal
model of OSCC and as an alternative therapeutic strategy
in patients who have developed drug resistance [164,165].
Similarly, RNAi has been used to counteract the overex-
pression of GSK3β in pancreatic [163], gastrointestinal
[166], and prostate cancer [157], and it may be tried for
OSCC.

Conclusion
The goal of cancer drug discovery is to design non-toxic
therapeutics that will be free of side effects. Thanks to a
deepening understanding of cell biology and technologi-
cal advancements, the concept of cancer therapy is being
fine-tuned every day. Beginning with metabolic enzyme
targeting using folate and methotrexate, to targeting of
DNA polymerase and topoisomerase (tamoxifen), to
selective hormonal targeting of estrogens/androgens via
their nuclear hormone receptors, to the more recent
advancement of targeting human growth factor receptor
kinases and their effectors, the gradual improvements in
our understanding of cancer biology have led to new and
numerous therapeutics. Recent developments in molecu-
lar research have led to the hypothesis of "oncogene
addiction," which suggest the continuous dependence of
tumor cells on these oncogenes [167]. The inactivation of
GSK3β in OSCC may behave like an oncogene, and its
gradual/sustained inactivation may promote oral cancer.
Though most of the upstream and downstream targets
and their expression status correlate with the understand-
ing of GSK3β inactivation, real, direct assessment should
be attempted. If the activated form of GSK3β is non-toxic
to normal oral epithelial cells, as was found in animal
models [150], then the manipulation of the activated
GSK3β provides hope for treating oral cancer. Unlike
other molecules, GSK3β is one of the most attractive tar-
gets and is well understood because of extensive prior
research on it. Therefore, it should be evaluated thor-

oughly as a potential target for the treatment of oral can-
cer.
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