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Abstract
Background: Hypoxia is a condition of low oxygen tension occurring in the tumor microenvironment and it is related 
to poor prognosis in human cancer. To examine the relationship between hypoxia and neuroblastoma, we generated 
and tested an in vitro derived hypoxia gene signature for its ability to predict patients' outcome.

Results: We obtained the gene expression profile of 11 hypoxic neuroblastoma cell lines and we derived a robust 62 
probesets signature (NB-hypo) taking advantage of the strong discriminating power of the l1-l2 feature selection 
technique combined with the analysis of differential gene expression. We profiled gene expression of the tumors of 88 
neuroblastoma patients and divided them according to the NB-hypo expression values by K-means clustering. The NB-
hypo successfully stratifies the neuroblastoma patients into good and poor prognosis groups. Multivariate Cox analysis 
revealed that the NB-hypo is a significant independent predictor after controlling for commonly used risk factors 
including the amplification of MYCN oncogene. NB-hypo increases the resolution of the MYCN stratification by dividing 
patients with MYCN not amplified tumors in good and poor outcome suggesting that hypoxia is associated with the 
aggressiveness of neuroblastoma tumor independently from MYCN amplification.

Conclusions: Our results demonstrate that the NB-hypo is a novel and independent prognostic factor for 
neuroblastoma and support the view that hypoxia is negatively correlated with tumors' outcome. We show the power 
of the biology-driven approach in defining hypoxia as a critical molecular program in neuroblastoma and the potential 
for improvement in the current criteria for risk stratification.

Background
Neuroblastoma is the most common pediatric solid
tumor, deriving from ganglionic lineage precursors of the
sympathetic nervous system [1,2]. It is diagnosed during
infancy and shows notable heterogeneity with regard to
histology and clinical behavior [3], ranging from rapid
progression associated with metastatic spread and poor
clinical outcome to spontaneous, or therapy-induced
regression into benign ganglioneuroma [4]. Clinical and
molecular risk factors which correlate with prognosis
include age at diagnosis, stage, histology, chromosomal
aberrations, and amplification of the N-myc proto-onco-
gene (MYCN), which is the most typical genetic feature of

advanced-stage neuroblastoma [3,5,6]. MYCN amplifica-
tion correlates with a more malignant course of the dis-
ease, angiogenesis, resistance to therapy, and poor
clinical outcome [5,7-9], suggesting that it may be a pro-
gression-related event and a potential therapeutic target
[3].

In particular, high expression of the proangiogenic
cytokine, vascular endothelial growth factor (VEGF), is a
marker of poor prognosis in neuroblastoma tumors
[10,11].

Tumor microenvironment is intimately connected with
the evolution of the disease. In particular, hypoxia, a con-
dition of low oxygen tension occurring in poorly vascu-
larized areas, has a profound effects on tumor cell
growth, susceptibility to apoptosis, and resistance to
radio- and chemotherapy [12,13]. The response to
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hypoxia is associated with changes in gene expression
[14-16]. Hypoxia activates, among others, hypoxia-induc-
ible transcription factors (HIF-1α and HIF-2α) [12,17,18],
which transactivate the hypoxia-responsive element
(HRE) present in the promoter of many genes encoding
angiogenic, metabolic and metastatic factors [13,19,20]
and contribute to the acquisition of the tumor aggressive
phenotype [13,14,21].

There is little information on the relationship among
hypoxia, tumor phenotypes and clinical parameters in
neuroblastoma. Rapidly expanding neuroblastoma
tumors present hypoxic areas and metastasize to bone
marrow [22] and it has been reported that HIF-2α is sig-
nificantly correlated with a poor prognosis [23]. Neuro-
blastoma cells adaptation to hypoxia activates a gene
expression program consistent with the pro-metastatic
events [24]. Furthermore, hypoxia causes dedifferentia-
tion in vitro and in vivo suggesting a novel mechanism for
the selection of highly malignant neuroblastoma cells
with stem-cell characteristics [25].

Every cell type is bound to respond to hypoxia and the
gene expression profile of the tumor will have, to some
extent, the footprint of hypoxia which, in turn, might be a
prognostic indicator depending on the proportion of the
hypoxic tissue. Therefore, clues to the prognosis of neu-
roblastoma might be reflected at the time of surgical
removal in the pattern of hypoxic gene expression in the
primary tumor. Definition, detection and analysis of
hypoxia induced gene expression have the potential of
leading to interesting and useful molecular predictors of
neuroblastoma progression.

We investigated the prognostic potential of hypoxia
induced genes in neuroblastoma tumors. A biology-
driven approach was chosen to define the hypoxia signa-
ture. We performed a systematic analysis of the transcrip-
tome of neuroblastoma cell lines cultured under hypoxic
or normoxic conditions and applied a rigorous frame-
work to derive a robust 62 probesets neuroblastoma
hypoxia signature (NB-hypo). We show that the NB-hypo
have a strong predictive power in the multivariate Cox
regression model that includes the classical prognostic
factors. This signature can also stratify a heterogeneous
subgroup of patients with MYCN not amplified tumors.
In conclusion, we demonstrate that NB-hypo is an inde-
pendent risk factor and provide evidences of the power of
the biology-driven approach to study the role of molecu-
lar programs in human tumors.

Materials and methods
Patients
The clinical characteristics of the 88 patients used in this
study are listed in Table 1. The tumor samples were
obtained at the time of diagnosis. The median follow-up
time for patients in this study is 3.5 years (range = 0-16
years) and the median age at the diagnosis is 1 year (range

= 0-14). Analysis of the predictive value of the current
European risk factors MYCN status, International Neuro-
blastoma Staging System (INSS), and age was performed
by Kaplan-Meier curves and log-rank test for overall sur-
vival (OS). All the prognostic factors stratified the
patients in our cohort (p < 0.0001). Overall survival was
72.6% for the MYCN not amplified patients, compared
with 10.4% for the MYCN amplified patients (HR = 4.30,
95% CI 3.66-30.69). For INSS, OS curves were character-
ized by a survival rate of 93.6% for the stage 1, 2, 3, and 4S
patients, compared with a survival rate of 25.4% for the
stage 4 patients (HR = 16.65, 95% CI 5.37-23.74). Overall
survival was 100% for the patients with age at the diagno-
sis < 1 year, compared with 46.6% for the patients with
age at the diagnosis > 1 year (HR and 95% CI undefined).

Cell lines and culture conditions
The human neuroblastoma cell lines GI-LI-N, ACN, GI-
ME-N, IMR-32, LAN-1, SK-N-BE(2)C, SK-N-F1, and SK-

Table 1: Clinical characteristics of 88 neuroblastoma 
patients

number %of total

age

< 1 25 28.4

> 1 63 71.6

INSS stage

1 8 9.1

2 15 17.0

3 13 14.8

4 40 45.5

4s 12 13.6

MYCN status

Normal 72 81.8

Amplified 16 18.2

tissue source

adrenal gland 34 38.6

liver 8 9.1

lymphnodes 8 9.1

side chain abd 20 22.7

side chain thorax 10 11.4

skin 2 2.3

Undetermined 6 6.8
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N-SH were purchased from the Interlab Cell Line Collec-
tion while SHEP-2, SHEP-21N over-expressing MYCN,
and SHEP-21N not over-expressing MYCN were kindly
provided by Dr. M. Schwab (Division of Tumour Genet-
ics, German Cancer Research Centre, Heidelberg, Ger-
many). The cell lines were cultured in RPMI 1640
(Euroclone Ltd., Celbio, Milan, Italy), supplemented with
10% heat-inactivated fetal bovine serum (Sigma, Milan
Italy), 2 mmol/L L-glutamine, 10 mM Hepes, 100 units/
mL penicillin, and 100 μg/mL streptomycin (Euroclone
Ltd), at 37°C in a humidified incubator containing 20%
O2, 5% CO2, and 75% N2. Hypoxic conditions (1% O2)
were achieved by culturing the cells in an anaerobic
workstation incubator (BUG BOX, Jouan, ALC Interna-
tional S.r.l., Cologno Monzese, Milan, Italy) flushed with
a gas mixture containing 1% O2, 5% CO2, and balanced
N2 at 37°C in a humidified atmosphere. Oxygen tension
in the medium was measured with a portable, trace oxy-
gen analyzer (Oxi 315i/set, WTW; VWR International,
Milan, Italy).

RNA extraction and microarray experiments
Total RNA was extracted using Trizol (Invitrogen Life
technologies, Irvine, CA) according to the manufacturer's
instructions. RNA was resuspended in diethyl pyrocar-
bonate-treated H2O (DEPC water), the physical quality
control of RNA integrity was carried out by electrophore-
sis using Agilent Bioanalyzer 2100 (Agilent Technologies
Waldbronn, Germany) and quantified by NanoDrop
(NanoDrop Technologies Wilmington, Delawere USA).
Total RNA was reverse transcribed into cDNA and biotin
labeled according to the Affymetrix instructions
(Affymetrix, SantaClara, CA). Biotin-labeled cRNA was
cleaned up with the Qiagen RNeasy Mini kit and ethanol
precipitation, checked for quality with Agilent Bioana-
lyzer 2100, and fragmented by incubation at 94°C for 35
min in 40 mmol/L Tris-acetate (pH 8.1), 100 mmol/L
potassium acetate, and 30 mmol/L magnesium acetate.
Fragmented cRNA was used for hybridization to Affyme-
trix HG-U133 Plus 2.0 arrays. GeneChips were scanned
using an Affymetrix GeneChip Scanner 3000. The
microarray data were released into the GEO-database
(accession number GSE17714). Expression values were
quantified, and array quality control was performed using
the statistical algorithms implemented in Affymetrix
Microarray Suite 5.0. All microarrays were examined for
surface defects, grid placement, and background inten-
sity. All the global microarray quality metrics that are
summarized in Affymetrix report files were within nor-
mal ranges for all the samples. The scale factors (SF) for
all the hybridizations were within 1 SD of the mean (SF 1-
3). All samples had 3'/5' Gapdh and 3'/5' Actb ratios below
the maximum threshold of 3. To asses RNA integrity,
"RNA digestion plot" was performed. Quality control and

RNA digestion plot were used as implemented in the R
package affy. Array signals were scaled to an average
intensity of 500, and the resulting data were normalized
as follows: 1) per microarray sample, dividing the raw
data by 50th percentile of all measurements; and 2) per
gene, by dividing the normalized data by the median of
the expression level for the gene in all samples.

Data analysis and statistics of gene expression in cell lines
To define the hypoxia gene signature, we independently
applied the l1-l2 regularization with double optimization
and the evaluation of differential gene expression to the
dataset of 11 neuroblastoma cell lines cultured in hypoxic
or normoxic conditions. The signature was defined as the
intersection of the probesets selected by the two meth-
ods.

l1-l2 regularization technique was proposed in the con-
text of statistical learning as a feature selection method
[26] and successfully applied in the field of computational
biology [27]. l1-l2 regularization is a supervised multivari-
ate analysis which statistical significance and model
selection is performed within double selection bias free
cross-validation loops. Detailed descriptions of the appli-
cation of l1-l2 algorithm and the method applied to select
optimal values of the parameters for signature definition
were previously reported [28]. Briefly, the output of the
l1-l2 regularization algorithm depends on one free param-
eter εthat governs the amount of correlation allowed
among the selected variables (probesets); the higher the ε,
the more probesets are taken into account. The algorithm
analyzed all the probesets on the chip simultaneously,
thereby dealing with 54675-dim vectors. The system was
characterized by a leave-one-out error of 10% and per-
formed the validation loop producing 22 lists of probe-
sets for each εvalue. A common list was obtained as the
union of the 22 lists, with a frequency score counting how
many times each probeset was selected by the algorithm
in the 22 cross validation loops. In order to define the fre-
quency threshold, the behavior of each ε curve was ana-
lyzed. The minimal list is obtained for values of ε equal to
or lower than 1, whereas the largest list, which is correla-
tion aware, is obtained for ε equal to 100. Thus, to include
every probesets concurring in the identification of the
hypoxia status, we set ε equal to 100.

In order to define the differentially expressed probe-
sets, a fold change was calculated as the ratio between the
expression level in the hypoxic and normoxic conditions
for each individual cell line. The probesets that were
modulated of at least 2-fold were selected and a t-test
with Benjamini and Hochberg multiple hypothesis cor-
rection was applied. Only those probesets that were
selected by both l1-l2 regularization algorithm and differ-
entially expressed method were included in the NB-hypo.
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Data analysis and statistics of gene expression in 
neuroblastoma tumors
The predictive value of the signature was assessed on the
tumor expression dataset. The patients were divided into
two clusters by applying K-means clustering, with euclid-
ean distance and 100 iterations, on the normalized
expression values of the NB-hypo.

We performed a t-test to assess the significance of the
obtained clustering versus the random clustering distri-
bution. A permutation test was performed in order to
measure the stability of the obtained clusters. We sam-
pled 300 times a random signature and repeated the clus-
tering procedure, each time evaluating the
misclassification distance between the obtained and ran-
dom clusters. Hierarchical clustering analysis with com-
plete linkage was performed by Cluster 3.0 software
(Michael Eisen, Stanford University, California, USA).
The dendrogram was visualized using TreeView 1.6
(Michael Eisen, Stanford University, California, USA).

The probability of overall survival (OS) and event-free
survival (EFS) was calculated using Kaplan-Meier
method, and the significance of the difference between
Kaplan-Meier curves was calculated by the log-rank test
using Prism 4.03 (GraphPad Software, Inc.).

Multivariate Cox proportional regression analysis was
performed to evaluate the prognostic significance of NB-
hypo and the currently used risk factors such as age at
diagnosis (> 1 year vs. < 1 year), International Neuroblas-
toma Staging System (INSS) stage (stage 4 vs. not stage 4),
and MYCN status (amplified vs. not amplified). Hazard
ratios and 95% confidence interval for survival were cal-
culated (StatPlus 4.7, AnalystSoft).

Results
The hypoxia signature of neuroblastoma cell lines
The neuroblastoma hypoxia signature was defined by the
biology-driven approach outlined in Figure 1A. We uti-
lized an in vitro experimental model consisting of 11 neu-
roblastoma cell lines, cultured under normoxic or
hypoxic conditions for 18 hrs. RNA was extracted, pro-
cessed and the gene expression profile was determined.
To derive the hypoxia signature we applied the frame-
work detailed in the Materials and Methods' section,
which combines the discriminatory power of the l1 - l2
regularization algorithm and the biological strength of
differentially expressed genes. The application of l1 - l2
algorithm to the neuroblastoma cell lines dataset defined
a list of 137 probesets able to discriminate hypoxic from
normoxic cell lines (Figure 1B). In the figure the multi
dimensional model is projected on its 3 principal compo-
nents. The differential expression analysis of hypoxic vs.
normoxic cell lines identified 174 significant modulated
probesets. We intersected the cluster of probesets origi-

nated from the l1 - l2 regularization with that created by
the analysis of the differential expression, obtaining a 62
probesets signature that is referred to as NB-hypo. The
62 probesets correspond to 32 genes (Table 2) comprising
mainly known hypoxia inducible genes providing indirect
validation of our signature. The NB-hypo, which was gen-
erated only by objective criteria, was then applied to the
gene expression profiles of tumors from neuroblastoma
patients.

Discriminating power of the NB-hypo
To study the prognostic value of the NB-hypo, we classi-
fied 88 neuroblastoma patients into two groups by apply-
ing a k-means clustering to the gene expression values of
the 62 probesets (Figure 2). The significance of the clus-
tering performance was assessed by permutation tests of
62 random probesets. The misclassification distance was
calculated each time and the t-test (p < 0.001, data not
shown) indicated that the NB-hypo significantly stratified
patients into two clusters of 21 (cluster 1) and 67 (cluster
2) patients respectively. The expression levels of the
probesets were grouped by hierarchical clustering and are
represented in the heatmap in Figure 2. Cluster 1 consists
of tumors in which the hypoxia probesets are highly
expressed and stable whereas cluster 2 consists of tumors
in which the expression levels are lower and less stable.

The survival in the resulting groups was analyzed by
Kaplan-Meier curves, log-rank test for overall survival
(OS) (Figure 3A) and event-free survival (EFS) (Figure
3B). The results show a significant separation (p < 0.001)
of the two curves in both OS and EFS demonstrating that
the NB-hypo can stratify patients into poor (cluster 1)
and good prognosis (cluster 2) groups. OS curves are
characterized by a survival rate of 73.2% for the patients
with good prognosis, compared with a survival rate of
25.5% for the patients with poor prognosis (HR = 4.26,
95% CI 3.33-22.81). EFS curves are characterized by a
survival rate of 67.7% for the patients with good progno-
sis, compared with a survival rate of 27.7% for the
patients with poor prognosis (HR = 3.08, 95% CI 1.94-
11.09). The latter belong to the class with highly
expressed hypoxia-related probesets (Figure 2), suggest-
ing that the hypoxic microenvironment takes part in the
definition of the neuroblastoma aggressiveness.

As a control, we tested the discriminating power of the
four probesets characterizing VEGF, a gene represented
in the NB-hypo and broadly up-regulated in hypoxic
cells. The expression values of the four probesets were
used to classify the 88 patients into two groups by k-
means clustering (Figure 3C). VEGF alone was not capa-
ble of dividing the patients in statistically significant
groups demonstrating the need for a complex signature.

To address the question of the relationship between
effectiveness of the hypoxia signature and cell lineage, we
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tested the hypoxia signature of human dendritic cells
[29]. The latter signature did not stratify the patients (Fig-
ure 3D) indicating that the prognostic value of the NB-
hypo was dependent on the nature of the cell lines used
for its definition.

To determine whether the NB-hypo is an independent
risk predictor over the currently used risk factors, we cre-
ated a multivariate Cox proportional hazard regression
model using NB-hypo, age, INSS stage, and MYCN sta-
tus. The results are shown in Table 3. INSS stage and NB-
hypo have been found to be significant predictors (p <
0.01), with Hazard Ratios (HR) of 7.15 (95% CI, 2.08 to
24.64) and 2.73 (95% CI, 1.31 to 5.69) respectively, thus
providing the evidence that hypoxia is a prognostic factor
in neuroblastoma patients. There is no a significant cor-
relation between INSS stage and NB-hypo. However,

every stage 2 and stage 3 patients who survived and every
stage 1 patients were classified by NB-hypo in the good
prognosis group, while in the poor prognosis group 13
out of 21 (62%) were stage 4 patients (data not shown).

We studied the relationship between NB-hypo and
other hypoxia signatures generated in different tumor
systems in terms of overlapping, neuroblastoma patients'
stratification and risk assessment. We considered the fol-
lowing hypoxia signatures: the hypoxia metagene
described by Winter et al. [30] and redefined by Buffa et
al. [31]; the VEGF signature by Hu et al. [32]; two early
hypoxia signatures by Seigneuric et al. [33]. First, we
investigated whether the 32 genes composing our signa-
ture are part of the considered hypoxia signatures. Table
4 shows the result of the overlap analysis. Few genes
belonging to the NB-hypo are found in each of the other

Figure 1 Definition of neuroblastoma hypoxia signature (NB-hypo). A, workflow of the biology-driven approach applied to define the hypoxia 
signature. The workflow is divided into three main blocks representing, from top to bottom, the experimental data collection, the functional genomics 
data analysis, and the evaluation of the NB-hypo as prognostic factor in neuroblastoma patients. B, principal components representation of the mul-
tivariate analysis performed on the 11 cell lines by l1 - l2 algorithm. This figure illustrates a 3-dimensional visualization of the dataset restricted to the 
selected probesets projected on their 3 principal components. Open squares (H) represent the cell lines in hypoxic status and the black circles (N) the 
corresponding cell lines in normoxic status.
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hypoxia signatures. Moreover, a total of 12 out of 32
genes are represented in at least one of the other signa-
tures (genes in bold in Table 2). We then tested the pre-
dictive performance of the hypoxia signatures in
stratifying neuroblastoma patients by performing sur-
vival curves analysis and multivariate Cox regression. The
results are reported in Table 5 and demonstrate that most
of these signatures fail to stratify the patients, with the

exception of Winter's hypoxia signature. However it is
not a significant predictor in the multivariate Cox analy-
sis. These results demonstrate the effectiveness of the
biology-driven approach applied to derive the neuroblas-
toma hypoxia signature and that hypoxia signatures
derived from different tumor types are less effective than
the one derived from the same tumor type for which they
are conceived. In conclusion, we show that the NB-hypo

Table 2: NB-hypo genes

Gene Name GenBank* Description Reference†

AK3L1 NM_013410 adenylate kinase 3-like 1 [14]

ALDOC NM_005165 aldolase C, fructose-bisphosphate [71]

ANGPTL4 NM_016109 angiopoietin-like 4 [72]

ANKRD37 AA886870 ankyrin repeat domain 37 [73]

BHLHB2 NM_003670 basic helix-loop-helix domain containing, class B, 2 [74]

BNIP3 NM_004052 BCL2/adenovirus E1B 19 kDa interacting protein 3 [43]

BNIP3L AF060922 BCL2/adenovirus E1B 19 kDa interacting protein 3-like [75]

BTG1 NM_001731 B-cell translocation gene 1, anti-proliferative [76]

DDIT4 NM_019058 DNA-damage-inducible transcript 4 [43]

E2IG5 NM_014367 growth and transformation-dependent protein [77]

EGLN1 BC005369 egl nine homolog 1 (C. elegans) [78]

EGLN3 NM_022073 egl nine homolog 3 (C. elegans) [79]

FUT11 BF541967 fucosyltransferase 11 (alpha (1,3) fucosyltransferase) --

IGF1R H05812 insulin-like growth factor 1 receptor [80]

IGFBP3 M31159 insulin-like growth factor binding protein 3 [81]

JMJD1A AA524505 jumonji domain containing 1A [82]

MAPT AI056359 microtubule-associated protein tau --

MTP18 AF060924 mitochondrial protein 18 kDa --

MXI1 NM_005962 MAX interactor 1; MAX interactor 1 [83]

NDRG1 NM_006096 N-myc downstream regulated gene 1 [84]

P4HA2 NM_004199 procollagen-proline, 2-oxoglutarate 4-dioxygenase, alpha polypeptide II [85]

PDK1 NM_002610 pyruvate dehydrogenase kinase, isoenzyme 1 [71]

PFKFB4 AL038787 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 [86]

PGK1 NM_000291 phosphoglycerate kinase 1 [87]

PGM1 NM_002633 phosphoglucomutase 1 [88]

PLOD1 NM_000302 procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 [85]

SLC2A3 NM_006931 solute carrier family 2 (facilitated glucose transporter), member 3 [89]

TNIP1 NM_006058 TNFAIP3 interacting protein 1 --

TPI1 NM_000365 triosephosphate isomerase 1 [90]

TXNIP AA812232 thioredoxin interacting protein [81]

VEGF AF022375 vascular endothelial growth factor [71]

ZNF395 NM_017606 zinc finger protein 395 [91]

* GenBank accession number.
† Representative references for genes previously shown to be modulated by hypoxia.
The genes that overlap with other hypoxia signatures are in bold.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_013410
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_016109
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AA886870
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003670
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004052
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF060922
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001731
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_019058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_014367
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC005369
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_022073
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF541967
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=H05812
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M31159
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AA524505
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI056359
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF060924
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005962
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006096
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004199
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002610
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL038787
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000291
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002633
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000302
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006931
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000365
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AA812232
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF022375
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_017606
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is an independent and significant risk factor that can pre-
dict neuroblastoma patients' outcome.

NB-hypo as a prognostic factor in MYCN not amplified 
patients
MYCN amplification is a very important risk factor in
neuroblastoma and correlates with unfavorable progno-
sis. However, within patients lacking MYCN amplifica-
tion, the commonly used prognostic factors give little
information regarding outcome [34]. Thus, it was impor-
tant to determine the predictive power of the NB-hypo in
MYCN not amplified tumors found in 72 out of 88
patients. We classified the neuroblastoma patients into
two classes by applying k-means clustering to the gene
expression values of the 62 probesets. The Kaplan-Meier
curves and log-rank test for overall survival (OS) (Figure
4A) and event-free survival (EFS) (Figure 4B) are shown.
The results demonstrate a significant separation of the
two curves in both OS (p < 0.001) and EFS (p < 0.001)
thereby identifying good and poor prognosis MYCN not
amplified patients. The good prognosis cluster consists of

61 patients, whereas 11 patients belong to the poor prog-
nostic cluster. OS curves are characterized by a survival
rate of 81.4% for the patients with good prognosis, com-
pared with a survival rate of 24.2% for the patients with
poor prognosis (HR = 6.71, 95% CI 8.74-182.30). EFS
curves are characterized by a survival rate of 74.8% for
the patients with good prognosis, compared with a sur-
vival rate of 27.3% for the patients with poor prognosis
(HR = 4.53, 95% CI 3.49-50.25).

We created a multivariate Cox proportional hazard
regression model of age, INSS stage and NB-hypo (Table
6). The NB-hypo (p = 0.001; HR = 5.04; 95% CI, 2.00 to
12.69) is a significant independent predictor of outcome
and it is equivalent to the INSS stage (p = 0.002; HR =
7.35; 95% CI, 2.13 to 25.40). Although the limited number
of patients did not allow further sub grouping with statis-
tical significance, it is interesting to analyze the associa-
tion of the patients' risk factors profile with poor and
good prognosis groups (Figure 5). All stage 1 and stage 4S
patients and every stage 2 and stage 3 patients who sur-
vived were correctly classified by NB-hypo as good prog-

Figure 2 Heatmap of the 62 probesets in the 88 neuroblastoma tumors. The expression data for each individual probeset have been scaled and 
are represented by pseudo-colors in the heatmap. Red color corresponds to high level of expression and green color corresponds to low level of ex-
pression. The 88 patients (columns) were divided into two groups by k-means clustering. Cluster 1 consists of 21 patients and cluster 2 consists of 67 
patients. The expression values of the 62 probesets were grouped by hierarchical clustering (rows). Hierarchical clustering dendrogram is on the left 
and the corresponding probesets on the right.

NB-hypo cluster 1 (21) NB-hypo cluster 2 (67)
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nosis. Interestingly, NB-hypo correctly classified in the
poor prognosis group the only stage 3, age>1 year inter-
mediate risk and stage 2, age>1 year low risk patients who
died.

Our results demonstrate that NB-hypo increases the
resolution of the MYCN stratification by dividing
patients with MYCN not amplified tumors in good and
poor outcome groups suggesting that the neuroblastoma
hypoxia is associated with the aggressiveness of neuro-
blastoma tumor independently from MYCN amplifica-
tion.

Discussion
Identification of new markers for outcome prediction will
improve the effectiveness of risk related therapy for neu-
roblastoma patients. Furthermore, definition of the
molecular programs linked to the prognostic markers is

important for targeted therapy and specific drug discov-
ery. Utilizing an innovative biology-driven approach, we
selected 62 probesets representing a robust hypoxia sig-
nature of neuroblastoma cell lines and we tested it on a
cohort of 88 neuroblastoma patients for outcome predic-
tion. We found that NB-hypo is a strong, independent
risk predictor also for patients with MYCN not amplified
tumors. These results demonstrate the power of the biol-
ogy-driven approach to identify molecular programs
related to tumor progression and point to hypoxia and
NB-hypo as important prognostic indicators in neuro-
blastoma.

The precise definition of the relationship between
hypoxia and human cancer is complicated by the diffi-
culty in measuring hypoxia at the tumor site. The use of
an independent hypoxia signature to analyze tumor gene
expression profile and related outcome is a powerful way

Figure 3 Kaplan-Meier and log-rank analysis for 88 neuroblastoma patients. OS (A) and EFS (B) of patients classified according to the NB-hypo. 
OS (C) of patients classified according to 4 VEGF probesets. OS (D) of patients classified according to dendritic cells hypoxia signature. Solid and dashed 
curves represent good and poor prognosis patients, respectively. The p-value of the log-rank test is shown.
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to probe the hypoxic status of tumors and its implications
[30,35]. We previously identified an 11 probesets hypoxia
signature in 9 neuroblastoma cell lines by using l1 - l2 fea-
ture selection technique, a multivariate method specifi-
cally adopted to detect the subtle hypoxia response
masked by strong transcriptional pattern [28]. The pres-
ent study is based on the analysis of 11 neuroblastoma
cell lines and on the modification of the l1 - l2 algorithm
parameters in order to consider additional discriminative
features. Furthermore, we combined the unique discrimi-
nating power of l1-l2 algorithm with the biological weight
of the differential expression analysis to develop a robust
method to identify a hypoxia signature that could better
account for the biology of the tumor. This framework was
carefully tested in its components and it is based on rig-
orous statistics and verification.

The definition of NB-hypo as a risk factor was obtained
by estimating the Kaplan-Meier survival curves and the
Cox proportional hazard regression model. We found
that the NB-hypo stratifies neuroblastoma patients into
good and poor prognosis groups with a significant sepa-
ration of the patients for both OS and EFS. Risk assess-
ment in neuroblastoma is based upon a number of factors
which include, among others, age at diagnosis, Interna-
tional Neuroblastoma Staging System (INSS) stage, and
MYCN status [36]. However, despite elaborate risk esti-
mation strategies, outcome prediction for patients with

neuroblastoma is still imperfect, as suggested particularly
by current low- and intermediate risk patients with
adverse outcome [34]. Our finding that NB-hypo is a true
independent prognostic factor may help improving the
risk assessment in neuroblastoma patients.

We and other have observed that the response to
hypoxia is highly heterogeneous in different cell lines
[28,35] raising the question of the effectiveness of the
hypoxia signature generated in other cell types in stratify-
ing neuroblastoma tumors. We found that the hypoxia
gene set derived from dendritic cells did not stratify the
patients. Furthermore, the single VEGF gene did not
divide the patients in significant risk related groups even
if it is almost universally induced by hypoxia, indicating
that a more complex gene set was needed. Furthermore,
we studied the relationship between NB-hypo and other
hypoxia signatures generated in different tumor systems
in terms of overlapping, neuroblastoma patients' stratifi-
cation and risk assessment. We found that only a limited
overlapping consistent with the notion that hypoxia mod-
ulates different genes in different cells. Furthermore, only
the Winter's hypoxia signature [30] out of the 5 tested
was able to stratify neuroblastoma patients but without
reaching a level of significance in the multivariate Cox
analysis. These results demonstrated that NB-hypo is the
only independent risk factor, among the signatures tested,
capable of producing a significant patients' stratification.

Table 3: Multivariate Cox analysis for 88 patients

Multivariate Cox regression

Factor P HR 95% CI

Lower Upper

INSS Stage (1-3, 4S vs 4) 0.002 7.15 2.08 24.64

NB-hypo 0.007 2.73 1.31 5.69

Age (< 1y vs > 1y) 0.801

MYCN (normal vs amplified) 0.671

Table 4: Hypoxia gene signatures overlapping

Number of genes Overlapping genes*

Hypoxia metagene(Winter) [30] 99 7

Hypoxia metagene(Buffa) [31] 51 8

VEGF signature [32] 13 5

Early hypoxia signature 0% [33] 71 1

Early hypoxia signature 2%[33] 34 0

* Number of overlapping genes among NB-hypo and the other signatures.
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This property of NB-hypo could be due to the match
between cellular system used to derive the signature and
tumor, to the rigorous computational framework utilized
or, more likely, to a combination of these factors.

NB-hypo probesets are highly expressed in aggressive
tumors indicating that neuroblastoma hypoxia leads to
growth, metastasis and poor outcome when reaching the
levels that make it measurable by microarray. These
results provide evidence that hypoxia is a sizable compo-
nent of progressing neuroblastoma tumor. Hypoxia is a
common characteristic of many aggressive tumors [37]
and there are several reports associating HIF-1α/2α
expression with the patients' outcome in a broad range of
cancers [38]. There is evidence that hypoxia plays a role
in causing the dedifferentiation of neuroblastoma cells in
vitro [39,40]. Furthermore, Forristal et al. [41] reported
that HIF-2α is important in maintaining the pluripotency
of human embryonic stem cells in hypoxic condition and
Pietras et al. [42] demonstrated that HIF-2α maintains

bone marrow- derived neuroblastoma tumor cells at a
neural crest-like stage of differentiation in vitro and in
vivo. Thus, the hypoxia-HIF-2α system promotes the
undifferentiated phenotype either by dedifferentiation or
inhibition of differentiation and may contribute to the
aggressiveness through these mechanisms. The relation-
ship between HIFs system and hypoxia is complicated by
the fact that different environmental signals, such as
genetic alterations, transition metals, chelating agents,
hormones, and growth factors, share with hypoxia the
property of inducing HIF-1α/2α and HIF-dependent gene
transcription under normal pO2 [38,43,45]. Several
reports associate HIF expression with the outcome of a
broad range of cancers [38]. Correlation between HIF-2α,
VEGF expression and poor prognosis [23] or pro-angio-
genic activity was reported in neuroblastoma [46].
Recently, Noguera et al. [47] demonstrated an indepen-
dence between HIF-1α and HIF-2α expression in neuro-
blastoma specimens and a correlation between HIF-1α

Table 5: Prognostic significance of other hypoxia signatures compared to NB-hypo

Hypoxia 
metagene 

(Winter) [30]

Hypoxia 
metagene 
(Buffa) [31]

VEGF 
signature [32]

Early hypoxia 
signature 0% 

[33]

Early hypoxia 
signature 2% 

[33]

NB-hypo

log-rank test* 0.006 0.945 0.891 0.225 0.414 < 0.001

P† 0.248 0.827 0.649 0.012 0.636 0.007

HR 1.57 1.11 1.25 6.35 1.22 2.73

95% CI (0.73, 3.35) (0.44, 2.75) (0.47, 3.31) (1.50, 27.03) (0.54, 2.76) (1.31, 5.69)

* p-value of the log-rank test for overall survival patients stratification.
† p-value for the multivariate Cox analysis for 88 patients.
Significant p-values (p < 0.01) are in bold.

Figure 4 Kaplan-Meier and log-rank analysis for 72 neuroblastoma patients without MYCN amplification. OS (A) and EFS (B) of patients clas-
sified according to the NB-hypo. Solid and dashed curves represent good and poor prognosis patients, respectively. The p-value of the log-rank test 
is shown.

A B

p<0.001

NB hypo
MYCN not amplified patients (OS)

NB hypo
MYCN not amplified patients (EFS)

p<0.001
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and favorable outcome. These results show that the
expression of HIF-1α/2α is not a specific and universal
indicator of tissue hypoxia and the prognostic signifi-
cance of HIFs may be unrelated to the hypoxic status of
the neuroblastoma tumor. Thus, the assessment of tissue
hypoxia requires measurement of multiple markers and
NB-hypo could be a relevant tool for this purpose.

A computational approach using a priori biological
knowledge to analyze the data of clinical neuroblastoma
studies was applied successfully to the analysis of MYCN
transcriptional targets whose over-expression contributes
to the prediction of relapses and death from neuroblas-
toma [48]. The importance of MYCN in risk assessment
is shown by the fact that MYCN gene is amplified, and
often over-expressed, in about 22% of all neuroblastoma
patients and it is an independent predictor for poor prog-
nosis [49]. All metastatic tumors with amplified MYCN
genes are aggressive, whereas metastatic tumors with non
amplified MYCN genes have variable clinical behaviors
influenced by the patient's age at diagnosis [50]. A 55-
gene signature derived from the expression profile of
metastatic neuroblastoma lacking MYCN amplification
provided a new definition of high and low risk of disease
progression [51]. We pursued the study of MYCN not
amplified patients and tested the NB-hypo for its ability

to predict the outcome of the disease. We analyzed the 72
MYCN not amplified patients of our cohort and we found
that the NB-hypo significantly stratified them into good
and poor prognosis groups and it was an independent
risk factor relative to age and INSS.

Among MYCN not amplified tumors, stage 4 age>1
year patients are classified as high risk whereas the
remaining are classified as low or intermediate risk based,
among other factors, on age at the diagnosis and stage.
We observed situations in which NB-hypo distinguished
the clinical outcome of MYCN not amplified tumors
more accurately than age or stage. In fact, NB-hypo cor-
rectly classified not only the deceased stage 4 age>1 year
patients in the poor prognosis group, but included also in
this category the deceased two stage 3 and the one stage 2
patients of the cohort belonging to the intermediate and
low risk categories respectively. These results point to a
high resolution of our signature. However, validation in
larger cohort is needed to asses the effectiveness of NB-
hypo in the above mentioned groups of patients.
Although MYCN amplification is associated to the pro-
gression of the disease [5,8], our results indicate that
hypoxia is related to the aggressiveness of neuroblastoma
independently from MYCN amplification and it might be
responsible for increasing the risk of poor outcome in
patients with a more favorable biology.

Several microarray studies on neuroblastoma gene
expression were published using different platforms and
analysis methods [51-55]. Platform heterogeneity compli-
cates the comparison of the signatures, although useful
information can be obtained also from these datasets by
appropriate algorithms [56]. The analysis of neuroblas-
toma tumor gene expression profiles, pioneered by Wei et
al. [52], was followed by studies confirming the forecast
of individual survival from gene expression data analyzed
by the CASPAR algorithm [57,58]. Differences in the spe-
cific pattern of gene expression were described in sponta-
neous regressing, progressing [59] and intermediate risk
[54] neuroblastoma. However, the overlap in identified
expressed genes with prognostic information is low.

Table 6: Multivariate Cox analysis for 72 patients without 
MYCN amplification

Multivariate Cox Regression

Factor P HR 95% CI

Lower Upper

INSS Stage (1-3, 4S vs 4) 0.002 7.35 2.13 25.40

NB-hypo 0.001 5.04 2.00 12.69

Age (< 1y vs > 1y) 0.868

Figure 5 Risk factors and survival of 72 MYCN not amplified patients. Patients are divided in poor and good prognosis groups according to the 
NB-hypo. Columns represent individual patients. The first line represents the patients according to the International Neuroblastoma Staging System 
(INSS). The second line represents the patients according to the age at diagnosis (> 1 year vs. < 1 year). In the last line, the patients are divided in de-
ceased, black squares, and alive, gray squares.

Poor Good

Stage
Age

Status

Stage: Age: Status:
4    3    2    1   4S >1y     <1y deceased alive



Fardin et al. Molecular Cancer 2010, 9:185
http://www.molecular-cancer.com/content/9/1/185

Page 12 of 15
Recent work by Vermeulen et al. [60] showed that a 59-
gene signature, originated from the re-analysis of pub-
lished gene expression studies, is an accurate and robust
predictor of neuroblastoma outcome. These gene expres-
sion-based predictors were derived from the supervised
association between the gene expression profile and clini-
cal outcome. One shortcoming of this approach is that it
is difficult to relate the signatures to the pathophysiology
of the tumor; the second is that the results must be vali-
dated on an independent cohort of patients different
from that from which the signature was originated. One
advantage of the biology-driven approach is the immedi-
ate appreciation of the molecular program related to the
prognostic indication. The second advantage is that inde-
pendent validation of the results is not needed because
the signature is not derived from the tumor profiles. Uti-
lizing a biology-driven approach Chi et al. [35] demon-
strated the prognostic value of hypoxia gene signature in
breast and ovarian cancer. These results, together with
our findings, show the power of controlled ex vivo studies
in defining hypoxia as critical molecular programs in can-
cers and the potential for improvement in the current cri-
teria for risk stratification of cancer patients.

The characterization of the tumor at diagnosis is indis-
pensable for deciding the treatment and includes the
evaluation of risk factors such as MYCN amplification
status, hystotype, tissue markers, and chromosomal rear-
rangements [36]. The gene expression signatures are
novel tools that may improve the stratification of patients
thereby conditioning the choice of treatment. The
hypoxic status detected by NB-hypo may be important to
identify the tumors that may have high genetic instability
[61] and high content of undifferentiated cells [25] at the
time of excision as result of hypoxic phenotype. These
characteristics of the primary tumor may be those that
promote the aggressiveness of the disease and could be
targeted by individualized therapies. There is a keen
interest in biomarkers contained in body fluids because
they are easy obtainable and can give indications about
the response to therapy. These biomarkers includes cate-
cholamines, ferritin, LDH [62], and other factors such as
midkine [63], RANKL and OPG [64] but they do not
define all risk groups and they can not substitute the anal-
ysis of the tumor mass. For the time being, the combina-
tion of tumor and body fluid characterization is needed
for the optimal assessment of the treatment. It is reason-
able to foresee that the study of the tumor mass will lead
to the choice of individualized therapy and the longitudi-
nal assessment of body fluids' biomarkers will monitor
the response to therapy.

The prognostic molecular signatures linked to in vitro
experimental models provide a more direct route to the
development of targeted therapeutics. Many therapeutic
agents are already under development to specifically tar-

get HIF pathways [65,66] or to target cells under hypoxic
environments by hypoxia dependent gene therapy [17].
An alternative approach is to target the proangiogenic
factors induced by hypoxia such as VEGF and its recep-
tors [67]. The clinical results obtained so far are not very
promising (reviewed in [68]) because anti-VEGF therapy
causes vascular regression, with concomitant increase of
intratumor hypoxia, activation of HIF target genes and
increases in aggressiveness and metastatic spread [69,70].
These results suggest that the hypoxia, rather than of
angiogenesis, may be the critical target for neuroblas-
toma therapy.

Conclusions
Neuroblastoma shows notable heterogeneity with regard
to histology and clinical behavior, ranging from rapid
progression and poor clinical outcome to spontaneous or
therapy-induced regression. Despite elaborate risk esti-
mation strategies, outcome prediction for patients with
neuroblastoma is still imperfect and requires new molec-
ular indicators. We utilized an innovative biology driven
approach to study the prognostic power of the molecular
signature of hypoxia, a condition of low oxygen tension
developing in the tumor mass. We demonstrated that the
hypoxia signature is a strong, independent risk predictor
in neuroblastoma patients. Our signature will improve
the effectiveness of risk related therapy by helping
patients' stratification. Furthermore, our result point to
the transcriptional response to hypoxia as a negative
event leading to poor outcome, suggesting that those
neuroblastoma patients classified as high risk by our sig-
nature may benefit from therapeutic protocols targeting
hypoxia pathway.
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