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global microRNA profiles, associated with
differential transcription factor expression

Matthew J Murray' ", Harpreet K Saini*', Stijn van Dongen?, Roger D Palmer’, Balaji Muralidhar', Mark R Pett’,
Matias Piipari®, Claire M Thornton?, James C Nicholson®, Anton J Enright?, Nicholas Coleman'®

Abstract

tumours (YSTs) and germinomas.

Background: We hypothesised that differences in microRNA expression profiles contribute to the contrasting
natural history and clinical outcome of the two most common types of malignant germ cell tumour (GCT), yolk sac

Results: By direct comparison, using microarray data for paediatric GCT samples and published gRT-PCR data for
adult samples, we identified microRNAs significantly up-regulated in YSTs (n = 29 paediatric, 26 adult, 11
overlapping) or germinomas (n = 37 paediatric). By Tagman gRT-PCR we confirmed differential expression of 15 of
16 selected microRNAs and further validated six of these (miR-302b, miR-375, miR-200b, miR-200c, miR-122,
miR-205) in an independent sample set. Interestingly, the miR-302 cluster, which is over-expressed in all malignant
GCTs, showed further over-expression in YSTs versus germinomas, representing six of the top eight microRNAs
over-expressed in paediatric YSTs and seven of the top 11 in adult YSTs. To explain this observation, we used
mMRNA expression profiles of paediatric and adult malignant GCTs to identify 10 transcription factors (TFs)
consistently over-expressed in YSTs versus germinomas, followed by linear regression to confirm associations
between TF and miR-302 cluster expression levels. Using the sequence motif analysis environment iMotifs, we
identified predicted binding sites for four of the 10 TFs (GATA6, GATA3, TCF7L2 and MAF) in the miR-302 cluster
promoter region. Finally, we showed that miR-302 family over-expression in YST is likely to be functionally
significant, as mRNAs down-regulated in YSTs were enriched for 3" untranslated region sequences complementary
to the common seed of miR-302a~miR-302d. Such mRNAs included mediators of key cancer-associated processes,
including tumour suppressor genes, apoptosis regulators and TFs.

Conclusions: Differential microRNA expression is likely to contribute to the relatively aggressive behaviour of YSTs
and may enable future improvements in clinical diagnosis and/or treatment.

Background

Germ cell tumours (GCTs) are clinico-pathologically
complex neoplasms that arise from early infancy through
to late adulthood [1]. Malignant GCTs are classified as
germinomas (collectively referring to testicular semi-
noma, ovarian dysgerminoma and extragonadal germi-
noma) and non-germinomatous tumours, which include
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yolk sac tumours (YSTs) [1]. Germinomas and YSTs are
the most common pure histological subtypes of malig-
nant GCT.

Although treatment of most malignant GCTs is success-
ful, there are still patient groups with a less favourable out-
come. For example, considering intracranial malignant
GCTs treated with radiotherapy alone, five-year overall
survival is well in excess of 90% for germinomas [2], but
< 50% for non-germinomatous tumours, with many early
relapses [3]. Even adding systemic chemotherapy for the
latter group produces a five-year relapse-free survival of
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only 67% [4], remaining substantially worse than the intra-
cranial germinoma group. Likewise, outcomes in extracra-
nial non-germinomatous tumours are inferior to
germinomas, in both paediatric and adult patients [5,6].

An important step towards improving outcomes for
patients with unfavourable malignant GCTs is to identify
biological differences between the principal histological
subtypes, as these may account for the observed differ-
ences in clinical behaviour and treatment response. In
previous work, we systematically determined expression
of mRNA and microRNAs in a large group of paediatric
malignant GCT samples [7,8] and compared our data
with available findings for adult cases [9,10]. When com-
paring YSTs versus germinomas, mRNA profiles differed
primarily by histological subtype but also by patient age
(paediatric versus adult) [7]. Germinomas recapitulated
an undifferentiated and pluripotent phenotype, over-
expressing the embryonic stem cell (ESC) markers
NANOG, POUS5F1 (OCT3/4) and UTF1, whereas YSTs
displayed extra-embryonic differentiation while maintain-
ing a proliferative phenotype [7].

Recently, we performed microarray-based global micro-
RNA analysis in paediatric malignant GCTs, combined
with re-assessment of reverse-transcription PCR (qRT-
PCR) microRNA profiling of adult cases [9]. MicroRNAs
(miR-) are short, non-protein coding RNAs that regulate
gene expression via translational repression and/or
mRNA degradation. We demonstrated that all malignant
GCTs co-ordinately over-express the miR-371~373 and
miR-302 microRNA clusters [compared to a combined
non-malignant control group of normal gonadal samples
and benign GCTs (teratomas)], regardless of patient age,
tumour histological subtype or anatomical site [8].

In the present study, we have analysed our data further,
to test the hypothesis that the two most common pure
malignant GCT subtypes, YSTs and germinomas, differ-
entially express sets of microRNAs that contribute to the
observed clinico-pathological differences. Our study had
four principal aims. First, we sought to identify differ-
ences in the microRNA microarray profiles of paediatric
YSTs versus germinomas, examining tissues of both
gonadal and extragonadal origin. Second, we compared
these findings with available qRT-PCR microRNA profil-
ing data for adult gonadal YSTs and germinomas [9].
Third, we sought to confirm significant microRNA
microarray findings by Tagman qRT-PCR in the same
cohort of clinical samples, before selecting a panel of
microRNAs to validate in an independent sample set.
Finally, we used an integrative approach to identify tran-
scription factors (TFs) that may be responsible for the
observed differential microRNA profiles. We combined
linear regression analysis of microRNA and mRNA
expression levels in matched clinical samples with the
motif scanning algorithm [11] integrated in the graphical
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motif analysis environment iMotifs [12]. This algorithm
predicts TF binding site motif matches in gene promoter
regions, resulting in individual motif bit scores for each
match and an overall empirical e-value for each TF.

Together, these analyses have identified robust micro-
RNA expression differences between YSTs and germino-
mas, which may substantially contribute to observed
differences in disease natural history and offer the
potential for improving differential diagnosis and treat-
ment selection.

Methods

Tumour samples

The study received Multicentre Research Ethics Com-
mittee (ref: 02/4/071) and Local Research Ethics Com-
mittee (ref: 01/128) approval. For microarray analysis
and initial data validation we studied 25 samples, each
from a different patient. These represented 23 paediatric
GCTs (12 YSTs, 11 germinomas), plus two testicular
germinomas from young adults [8], as such tumours are
extremely rare in the paediatric age-range. To avoid
confusion with data from our re-assessment of micro-
RNA expression in adult YSTs and germinomas (see
below), both of the young adult samples are hereafter
referred to as ‘paediatric’. For both YSTs and germino-
mas, samples were included from male and female
patients and from gonadal and extragonadal (including
intracranial) sites. Further clinico-pathological details
are provided in Figure 1, Panel A. All samples, including
those derived from mixed GCTs, were completely or
predominantly (>90%) composed of a single malignant
element. Further validation of differential microRNA
expression was performed in an independent set of 10
paediatric tumour samples (six YSTs, four germinomas),
selected to represent a mixture of male and female
patients and gonadal and extragonadal (including intra-
cranial) sites (Figure 1, Panel B).

microRNA microarray expression profiling
Total RNA was isolated as described previously [7].
Sample and human reference RNA were hybridized to
the miRCURY LNA array platform (Exiqon, Vedbaek,
Denmark), as described [8]. Data files were updated to
miRBase v13.0, which annotated 615 microRNA probes,
and analysed using Bioconductor in the statistical soft-
ware environment R [8]. Raw data for these samples is
available at the Gene Expression Omnibus [GEO acces-
sion number GSE18155]. MicroRNAs with adjusted
p-values < 0.01 [13] were considered to be differentially
expressed, while heatmaps were generated from the
most significantly differentially expressed microRNAs
(adjusted p < 1 x 107).

We compared our findings for the paediatric samples
with published qRT-PCR expression data for microRNAs
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Panel A
qRT-PCR mRNA
Sample Anatomical Site Gender Age (yr) Stage validation profiles
performed available

YST-1 Central Nervous System (brain) Male 12 1 A
YST-2 Pelvis / sacrococcygeal Female 4 A
YST-3 Testis Male 1 A A
YST-4 Ovary Female 13 3 A A
YST-5 Ovary Female 12 1 A
YST-6 Testis Male 4 1 A A
YST-7 Testis Male 0 1 A
YST-8 Pelvis / sacrococcygeal Female 2 4 A
YST-9 Ovary Female 4 4 A

YST-10 Ovary Female 0 2 A
YST-11 Ovary Female 14 1 A
YST-12 Vagina Female 1 1

Germ-13 Ovary Female 12 1

Germ-14 Central Nervous System (brain) Female 10 1

Germ-15 Central Nervous System (brain) Male 16 1

Germ-16 Central Nervous System (brain) Male 12 1

Germ-17 Testis Male 25 1

Germ-18 Testis Male 35 1

Germ-19 Ovary Female 8 N/A

Germ-20 Ovary Female 9 3

Germ-21 Female 11 4

Germ-22 Ovary Female 14 3

Germ-23 Ovary Female 13 3

Germ-24 Ovary Female 12 1

Germ-25 Ovary Female 13 1

Panel B

Sample Anatomical Site Gender Age (yr) Stage

YST-A Pelvis / sacrococcygeal Female 11 3

YST-B Ovary Female 12 2

YST-C Ovary Female 14 4

YST-D Pelvis / sacrococcygeal Male 1 4

YST-E Pelvis / sacrococcygeal Female 3 4

YST-F Central Nervous System (spinal cord) Female 2 4

Germ-A Ovary Female 14 2

Germ-B Ovary Female 12 1

Germ-C Pelvis / sacrococcygeal Female 14 3

Germ-D Central Nervous System (brain) Male 16 N/A

Colour Key

GCT Subtype and Tumour Stage

Anatomical Tumour Site

Yolk sac tumour Gonadal
i Germinoma i Metastasis from gonadal primary
Low stage Extragonadal extracranial
High stage Extragonadal intracranial

Figure 1 Clinico-pathological data for the paediatric malignant GCTs analysed. Panel A shows the 25 cases assessed by microarray, while
Panel B shows the 10 independent cases analysed by gRT-PCR.




Murray et al. Molecular Cancer 2010, 9:290
http://www.molecular-cancer.com/content/9/1/290

in adult gonadal YSTs (n = 8) and germinomas (n = 25)
[9]. Raw cycle threshold (CT) data were downloaded and
data analysis performed using Bioconductor in R, as
described [8]. We obtained AACT values, which were
used to perform supervised hierarchical clustering analy-
sis and identify differentially expressed genes, defined as
for the paediatric samples.

Tagman qRT-PCR validation of microRNA microarray
levels

MicroRNA expression changes detected by microarray in
YSTs versus germinomas were first confirmed in a ran-
domly selected subset of eight tumour samples (four
YSTs, four germinomas; see Figure 1, Panel A), using
Tagman microRNA assays (Applied Biosystems), accord-
ing to the manufacturer’s instructions. Relative amounts
of 16 selected microRNAs were determined using the
AACT method, normalized to RNU24, which showed the
least variation between the eight samples analyzed of
four small nuclear and nucleolar housekeeping genes
tested (RNU6b, RNU24, RNU38b and RNU43; data not
shown). For each microRNA, expression values were
referenced to the sample with the lowest normalized
expression levels, as previously described [8,14].

Six of the 16 microRNAs were selected for further
validation in an independent set of 10 tumour samples
(Figure 1, Panel B), and for quantification in total RNA
from normal human ovary and testis (both Ambion).
The six microRNAs were normalized to RNU24 and
expression levels referenced to Universal Human Refer-
ence total RNA (Stratagene). Expression differences
between the YST and germinoma group were assessed
using a two-sided Welch’s (unequal variance) ¢-test [15],
with p-values < 0.05 considered to be significant.

mRNA expression analysis

Matching global mRNA expression profiles were available
for 16 of the 25 paediatric malignant GCTs examined by
microRNA microarray (10 YSTs, six germinomas; see
Figure 1, Panel A). Profiling had previously been per-
formed using the HG-U133A GeneChip (Affymetrix,
Santa Clara, CA), which contained 22,283 probe sets cor-
responding to 13,042 genes [GEO accession number
10615; [7]]. In addition, we re-analysed published data
from a study of adult testicular malignant GCTs
(TGCTs) that used the same microarray platform [GEO
accession number GSE3218; [10]], excluding two
suboptimal YST samples (K14 and K18) [7]. We re-
analysed data from 20 suitable TGCTs, representing eight
pure YSTs and 12 pure germinomas. Raw mRNA (.CEL)
files were processed, normalized and analyzed, using the
Affymetrix annotation of March 2009, as described [8].
Genes with log, fold-change >1.5 and adjusted p < 0.01
were classified as differentially expressed.
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Transcriptional regulation of differentially expressed
microRNA clusters

We interrogated available mRNA expression profiles for
paediatric and adult malignant GCTs [8,10] to identify
up-regulated TFs that may be responsible for the
increased expression of the miR-302 cluster in YST's
versus germinomas. For this screening exercise, we
applied less stringent criteria of log, fold-change >1.0
and adjusted p < 0.01. For all TFs so identified, we per-
formed linear regression analysis of the 16 paediatric
samples (10 YSTs, six germinomas) for which matched
microRNA and mRNA expression data were available
(Figure 1, Panel A), plotting TF levels against median
expression of the main members of the miR-302 cluster.
P-values < 0.05 were considered significant.

Motif scanning

We next explored whether TFs that were differentially
expressed between YSTs and germinomas had computa-
tionally predicted binding sites in the promoter and
upstream regions of the miR-302 cluster. To do this we
utilized the sequence motif analysis environment iMotifs
[12], which allows visualisation of nucleotide sequences
and identifies motif matches within promoter sequences,
using the scanning algorithm included in the Nested-
MICA suite [11].

We analysed the 10 kb region upstream of, and
including, the miR-302 cluster. This was chosen as a
conservative distance over which a TF may exert its
influence, as previously microRNAs within 50 kb of
each other have been shown to be transcriptionally co-
regulated [16,17]. The 10 kb sequence was downloaded
from the Ensembl database (coordinates 113,569,030 to
113,579,030; corresponding to the NCBI37 human gene
assembly) [18], repeat-masked http://www.repeatmasker.
org/ and dusted [19] to remove low-complexity repeats.
TF binding motifs were obtained from the TRANSFAC
database [20], version 12.2, and predicted binding sites
within the 10 kb sequence were identified using the
NestedMICA suite [11], which yields normalised motif
bit scores for each predicted site. As the motif bit score
distribution of individual motifs varied depending on
both nucleotide length (number of columns) and infor-
mation content, a bit score significance threshold was
determined individually for each motif. This was calcu-
lated by subdividing the motif bit scores to 1-bit inter-
vals, and testing for over-representation of high-scoring
motif hits at high-scoring intervals when compared to
the sequence background model (p < 0.05; binomial
test), as described [11].

As an additional measure, a single empirical e-value
was derived for each TF computationally predicted to
bind to the miR-302 promoter region. These values were
computed from the maximum bit scores (i.e. values
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closest to zero) achieved by each of the TF motifs of
interest that had at least one significant match in the 10
kb sequence region. The e-value estimation was per-
formed by shuffling the input sequence 100,000 times
and counting the frequency at which the shuffled
sequence achieved a score that was equal to, or better
than, the observed bit score. E-values < 0.05 were consid-
ered to be significant.

Results

Identification of microRNAs differentially expressed in
YST versus germinomas

From our microarray analysis we identified 66 microRNAs
that were significantly differentially expressed in paediatric
YSTs versus germinomas. Of these, 29 were over-
expressed in YSTs (43.9%) and 37 over-expressed in ger-
minomas (56.1%) (Table 1). The fold changes for the
former were generally greater than for the latter, with
12/29 (41.4%) microRNAs over-expressed in YSTs having
log, fold changes >2, compared with only 8/37 (21.6%) in
germinomas. The most significantly differentially
expressed microRNAs (p < 1 x 107 n = 21) robustly
discriminated between the two tumour types on hierarchi-
cal clustering analysis (Figure 2A). Interestingly, these
microRNAs included all main members of the miR-302
cluster (miR-302a~302d and miR-367), which although
over-expressed in all malignant GCTs compared to non-
malignant tissues [8], were further over-expressed in YSTs
compared to germinomas. Indeed, six of the top eight
ranked microRNAs over-expressed in YSTs belonged to
this single cluster. Other significantly over-expressed
microRNAs in paediatric YSTs, with large log, fold
changes, included miR-375 (log, fold change 3.22), miR-
205 (3.25), miR-122 (3.71), miR-200a~200c cluster (2.28,
2.56 and 2.42) and miR-141 (2.06) (Table 1). MicroRNAs
significantly over-expressed in paediatric germinomas
included miR-146a (log, fold change 2.94), miR-142-3p/5p
(2.97 and 2.73), miR-182 (2.64), miR-96 (2.43) and miR-
29a~b (2.40 and 2.67) (Table 1).

Re-analysis of the published adult GCT qRT-PCR data
[9] identified 26 microRNAs that were differentially
expressed between YSTs and germinomas (Table 2),
with all showing over-expression in YSTs. Although
only 17 of the 37 microRNAs identified as over-
expressed in paediatric germinomas by microarray
analysis were present on the 156 microRNA Taqman
platform employed for the adult study, it was surprising
that no microRNA in this adult dataset showed over-
expression in germinomas. Nevertheless, the most sig-
nificantly differentially expressed microRNAs in the
adult comparison (p < 1 x 10 n = 11) completely dis-
tinguished YSTs from germinomas on hierarchical clus-
tering (Figure 2B). Moreover, the miR-302 cluster was
again significantly over-expressed in adult YSTs, with
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seven family members in the top 11 ranked differentially
expressed microRNAs, a point not previously high-
lighted [9]. Other microRNAs over-expressed in both
paediatric and adult YSTs included miR-205, miR-122
(miR-122a in the adult study, re-annotated as miR-122
in miRBase v13.0) and the miR-200a~200c family
(Tables 1 and 2). It should be noted that miR-375, the
top ranking differentially expressed microRNA in the
paediatric dataset (up-regulated in YSTs), was not pre-
sent on the Tagman platform.

Validation of microRNA expression differences by
Tagman qRT-PCR

We used qRT-PCR to confirm our microarray findings,
examining a subset of eight of the 25 tumours analysed
using microarrays (four YSTs, four germinomas; Figure 1,
Panel A). We selected 16 for validation of the 66 micro-
RNAs differentially expressed in paediatric YST's versus
germinomas. Of these, 12 were up-regulated in YSTs
(across a range of observed fold changes and adjusted
p-values) - all were confirmed as being over-expressed by
qRT-PCR (Figure 3A). The remaining four microRNAs
were up-regulated in germinomas, of which three were
confirmed by qRT-PCR (Figure 3B).

We next used an independent set of 10 malignant GCT's
to confirm significant differential expression of six micro-
RNAs selected from the group of 16. We chose micro-
RNAs that were up-regulated in YSTSs, as fold changes in
YSTs were generally greater than in germinomas. We
avoided multiple microRNAs from a single cluster, as the
transcription of such microRNAs is co-ordinately regu-
lated [16,17] and thus individual microRNAs are not inde-
pendent of the others. Accordingly, the six microRNAs
selected were each transcribed from an independent geno-
mic locus, namely miR-375 (chromosomal location 2q35),
miR-302b from the miR-302 cluster (4q25), miR-205
(1932.2), miR-122 (18q21.31), miR-200b from the miR-
200a~b cluster (1p36.33) and miR-200c from the
miR-200c/miR-141 cluster (12p13.31) (Figure 4). We also
quantified levels of these microRNAs in normal ovary and
testis. We confirmed miR-302b over-expression in YSTs
and (to a lesser extent) germinomas compared to gonadal
control tissue, as previously identified by us [8]. Expression
of miR-200b and miR-200c was similar in YST's and gona-
dal tissue, but significantly down-regulated in germinomas.
For miR-375, miR-205 and miR-122, expression in gona-
dal tissue lay between that for the over-expressing YST's
and under-expressing germinomas (Figure 4).

Predicted transcriptional regulation of the

miR-302 cluster

We sought to identify candidate TFs responsible for the
prominent over-expression of the miR-302 cluster in pae-
diatric and adult YST's versus germinomas. The miR-302
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Table 1 Significantly differentially expressed microRNAs in YSTs versus germinomas for paediatric tumours

Over-expressed in YSTs  Log, fold change Adjusted p-value

Over-expressed in germinomas

Log, fold change Adjusted p-value

miR-375 322 261E-15 miR-182* 1.90 1.81E-10
miR-302a 4.17 6.61E-13 miR-146a 294 6.54E-08
miR-302c 4.24 1.53E-10 miR-142-5p 2.73 4.23E-07
miR-367 4.12 3.73E-10 miR-142-3p 297 4.23E-07
miR-302d 4.11 1.07E-09 miR-182 264 4.90E-07
miR-302c* 1.35 1.85E-07 miR-96 243 5.09E-07
miR-584 1.64 4.23E-07 miRPlus_28302 1.91 9.46E-07
miR-302b 3.49 1.02E-06 miR-146b-5p 2.26 9.46E-07
miR-205 3.25 1.78E-06 miR-155 1.84 1.02E-06
miR-638 1.21 9.52E-06 miR-29b 267 4.55E-06
miR-2110 0.94 1.71E-05 miR-378 1.54 8.72E-06
miR-30b* 1.15 5.28E-05 miR-30e 1.72 4.30E-05
miR-122 3.71 1.21E-04 miR-183 1.54 1.21E-04
miR-518e* 0.85 1.34E-04 miR-520b 1.65 1.21E-04
miR-572 1.21 1.84E-04 miR-29a 240 3.02E-04
miR-200b 2.56 3.17E-04 miR-101 1.50 3.38E-04
miRPlus_27560 1.18 3.17E-04 miR-520c-3p 1.35 3.53E-04
miR-766 0.85 3.17E-04 miR-25 1.06 4.58E-04
miR-940 0.98 5.78E-04 miR-342-3p 147 4.58E-04
miR-200c 242 6.66E-04 miR-590-5p 0.97 6.44E-04
miR-483-3p 0.84 147E-03 miR-526b* 1.23 791E-04
miR-200a 2.28 1.85E-03 miR-520g 144 8.73E-04
miR-455-3p 133 2.01E-03 miR-135b 1.66 1.50E-03
miR-296-5p 0.69 2.17E-03 miR-515-5p 161 1.58E-03
miR-602 083 2.59E-03 miR-30a 1.22 2.37E-03
miR-720 083 3.76E-03 miR-9 1.77 2.37E-03
miR-409-3p 1.18 5.85E-03 miR-29¢* 0.78 3.64E-03
miR-210 0.74 6.36E-03 miR-29¢ 1.56 3.64E-03
miR-141 2.06 8.90E-03 miR-520g/h 1.13 3.76E-03

miR-512-3p 1.10 3.81E-03

let-7i 1.38 3.95E-03

miR-34a 1.03 4.08E-03

miR-340 0.68 4.87E-03

miR-373 1.56 5.53E-03

miR-515-3p 0.98 7.06E-03

miR-32* 0.75 8.18E-03

miR-151-3p 0.80 8.29E-03

Analysis of the paediatric microarray data resulted in the log, fold changes shown. microRNAs are ranked by adjusted p-value. Members of the miR-302 cluster

are shown in bold.

cluster is transcribed from the negative DNA strand at
chromosome 4q25, with all the individual microRNAs
sharing the same promoter region [21]. We first exam-
ined mRNA expression profiles in malignant GCTs,
using our dataset for paediatric tumours [8] and pub-
lished data for adult tumours [10]. We identified 10 can-
didate TFs that were significantly over-expressed in YST's
versus germinomas in both datasets, namely GATAS6,

GATA3, TCF7L1, TCF7L2, SMARCAI, SOX11, PAXS,
HESI1, PITX2 and MAF (Table 3). For these TFs, we next
performed linear regression analysis using the 16 paedia-
tric samples (10 YSTs, six germinomas) for which
matched microRNA and mRNA expression data were
available. We demonstrated a significant positive correla-
tion (p < 0.05) between the median expression value for
the five main microRNAs from the miR-302 cluster



Murray et al. Molecular Cancer 2010, 9:290
http://www.molecular-cancer.com/content/9/1/290

Page 7 of 14

-3 0 4
Expression Value

=0 M

YST
miR-148b-5p
miR-148a
miR-20b
miR=-165
miR-142-5p
miR-142-3p
miRPlus_28302
miR-182"
miR-378
miR-96
miR-182
miR-638
miR-302¢"
miR-584

miR-375

miR=205

miR-302b
miR-367

miR-302a
miR-302d

miR-302¢
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based on the most significantly differentially expressed microRNAs (adjusted p < 1 x 107).
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(miR-302a~d and miR-367) and expression levels of nine
of the 10 TFs tested, with the correlation for the tenth
TF, PAX6, approaching significance (p = 0.069). GATA6
was the top-ranked TF (p = 0.00038) in this comparison
(Figure 5).

Using iMotifs, we identified a total of 41 significant
predicted binding sites for four of the 10 TFs in the
10 kb of sequence upstream of the distal microRNA in
the miR-302 cluster, miR-367 (Additional File 1, Table
S1 and Additional File 2, Figure S1). These TFs were
GATAG6 (9nt AAAGATAAG binding motif; 19 binding
sites), GATA3 (9Int GAGATAGGG; 18 sites), TCF7L2
(8nt CCTTTGAA,; 2 sites) and MAF (11nt TGCTGAGT-
CAT; 2 sites). Moreover, all four TFs had predicted bind-
ing sites in the 2 kb sequence nearest the miR-302
cluster (Figure 6A). Maximum motif bit scores are given
in Table 3, while the consensus binding sequence motifs
are shown in Figure 6B. In addition, for GATA6 and
MAF, we observed significant empirical e-values, calcu-
lated using the maximum motif bit score derived from
predicted binding sites in the miR-302 promoter region
(Table 3).

Effect of relative miR-302 cluster over-expression in YSTs
on global mRNA profiles

Messenger RNA gene regulation by microRNAs is princi-
pally determined by the microRNA ‘seed’ region, which
binds to the seed complementary region (SCR) in the
3’-untranslated region (3’'UTR) of mRNA targets [22]. The

seed comprises nucleotides 2 to 8 of the microRNA,
with nucleotides 2 to 7 (2-7nt) being most critical
for mRNA binding specificity [8]. The four microRNAs
miR-302a~302d share an identical 2-7nt seed region
‘AAGUGC, corresponding to the SCR ‘GCACTT’. We
therefore tested for further enrichment of the common
SCR GCACTT in the 3’'UTRs of mRNAs differentially
expressed in paediatric and adult YSTs versus germino-
mas. We analysed 16 paediatric samples (10 YST, six
germinoma; Figure 1, Panel A) with matched microRNA
and mRNA expression data, and the 20 suitable adult sam-
ples (eight YST, 12 germinoma) with published mRNA
profiles [8]. For both paediatric and adult datasets there
was enrichment of the common 2-7nt SCR GCACTT in
genes significantly down-regulated in YST's versus germi-
nomas. Of down-regulated genes for which 3'UTR and
transcript information was available, the SCR was present
in 60/250 (24.0%) in the paediatric dataset and 58/243
(23.9%) in the adult dataset, significantly greater than the
overall presence of the SCR in the genes on the array plat-
form [2,125/13,042 (16.3%)] (p = 0.0012 paediatric, p =
0.0017 adult; two-tailed chi-squared test). Of the 60 SCR-
containing mRNAs significantly down-regulated in paedia-
tric YSTs versus germinomas, 34 were included in the
equivalent adult list of 58 mRNAs, while 26 were seen for
the paediatric dataset only. The 34 common mRNAs
included apoptosis regulators (CASP8, WDR33), transcrip-
tion factors (PHTF2) and integrin ITGB2 (Additional File
1, Table S2), while the 26 paediatric-only mRNAs included
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Table 2 Significantly differentially expressed microRNAs in YSTs versus germinomas for adult tumours

Over-expressed in YSTs AA Ct Adjusted p-value Over-expressed in germinomas AA Ct Adjusted p-value
miR-122a -0.98 5.66E-09
miR-302c* -6.98 3.40E-08
miR-205 -7.34 1.20E-07
miR-200a -6.57 1.85E-07
miR-200b -6.33 3.76E-07
miR-302a -5.81 3.76E-07
miR-302d -5.75 3.76E-07
miR-302b* -5.75 4.80E-07
miR-302b -5.59 4.80E-07
miR-367 -5.56 7.35E-07
miR-302c -6.43 7.99E-07
miR-200c -5.49 1.23E-05
miR-203 -4.65 6.75E-05
miR-34c -3.66 3.62E-04
miR-339 -3.00 3.62E-04
miR-144 -3.38 491E-04
miR-107 -2.71 491E-04
miR-17-5p -3.15 1.10E-03
miR-34b -3.37 1.25E-03
miR-106a -3.08 1.57E-03
miR-133b -2.86 6.06E-03
miR-338 -2.53 6.06E-03
miR-214 -2.10 6.06E-03
miR-133a -2.73 6.46E-03
miR-129 -4.12 8.16E-03
miR-23b -1.85 8.16E-03

Analysis of the adult qRT-PCR data resulted in the AACt values shown. microRNAs are ranked by adjusted p-value. Members of the miR-302 cluster are shown in

bold.

tumour suppressor genes (RASSF2, BTG3), additional
apoptosis regulators (RASSF2, PRKCB), transcription fac-
tors (e.g. TFEC) and signal transducers (RAB7LI, RAC2,
SLC6A16) (Additional File 1, Table S3).

Discussion

Prognosis and clinical management vary considerably
between the major histological subtypes of malignant
GCT. We report, for the first time, the differences in
global microRNA profiles identified by direct compari-
son of YSTs and germinomas arising across a broad
range of patient ages and anatomical sites. Many of the
top-ranking differentially expressed microRNAs are the
same in the paediatric and adult datasets, consistent
with the general observation that microRNA profiles
reflect the developmental lineage of tumours [23]. We
observed co-ordinate deregulation of members of parti-
cular microRNA clusters, namely miR-302 (including
miR-367), miR-200a~200b and miR-200¢/miR-141, in

keeping with the finding that most microRNA clusters
are regulated by a single promoter region.

Our data extend other reports. The miR-200 family
and miR-205 are relatively under-expressed in germino-
mas, compared to YSTs and normal gonadal tissues,
consistent with known roles for these microRNAs in
preventing pluripotency [24] and with evidence that
down-regulation (as seen for example in breast carcino-
mas [25] and mesothelioma [26]), is associated with
epithelial to mesenchymal transition, tumour progres-
sion and metastasis [25,27-29]. Additionally, we show
that miR-122, previously annotated as miR-122a, is
over-expressed in all YSTs, not just those of the adult
testis [30], and that miR-142-5p and miR-146a are over-
expressed in all paediatric germinomas, not just intra-
cranial tumours [31].

Of particular interest are members of the miR-302
cluster. We previously showed that microRNAs from the
miR-302 and miR-371~373 clusters are co-ordinately
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Table 3 Transcription factors up-regulated in YSTs versus germinomas

Transcription Factor

Paediatric Dataset

Adult Dataset

Motif Scanning

Gene Function

Accession Name Rank Log, Rank Log, Maximum e-value
(n=594) fold (n=730) fold motif bit
change change score
NM_005257 GATA6 20 +4.72 13 +4.85 -0.28 0.032 Marker of early endodermal differentiation;
transcriptional regulator of differentiation and
proliferation
NM_031283 TCF7L1 29 +2.52 36 +2.17 - - Wnt pathway signalling
NM_003069 SMARCA1 52 +249 52 +327 - - Regulates transcription by altering chromatin
structure. Involved in development and
differentiation
NM_001146283  TCF7L2 59 +2.77 64 +3.09 -0.58 0.184 Wnt pathway signalling
NM_001002295 GATA3 63 +363 146 +3.66 -173 0.173 Marker of early endodermal differentiation;
transcriptional regulator of differentiation and
proliferation
NM_003108 SOX11 229 +2.62 313 +161 - - SRY (sex determining region Y)-box 11; embryonic
development and cell fate; involved in tumorigenesis
NM_000280 PAX6 316 +2.77 600 +1.13 - - Paired box protein 6; marker of neuro-ectodermal
differentiation
NM_005524 HES1 355 +141 175 +2.01 - - Hairy and enhancer of split 1; regulates growth and
proliferation
NM_000325 PITX2 356 +141 274 +1.69 - - Paired like homeodomain 2; regulates terminal
differentiation
NM_001031804 MAF 365 +1.39 234 +1.83 -3.93 0.032 Musculo-aponeurotic fibrosarcoma oncogene;

involved in development and terminal differentiation

The 10 transcription factors significantly up-regulated in both paediatric and adult YSTs versus germinomas, including their log, fold changes and ranks in the lists
of differentially expressed mRNAs, are listed. The iMotifs values represent the maximum motif bit scores for each of the four individual transcription factors with
predicted binding sites in the 10 kb miR-302 promoter region, together with derived empirical e-values. In iMotifs the optimal bit score is normalised to zero, with
all other bit scores having negative values. Accordingly, the closer a score to zero, the greater is the significance of the predicted transcription factor binding site.
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Figure 5 Relationships between expression of the miR-302 cluster and transcription factors in YSTs and germinomas. Each plot shows
linear regression analysis for an individual transcription factor identified as over-expressed in both paediatric and adult YSTs (versus
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302 cluster, namely miR-302a~302d and miR-367 (x-axis).

over-expressed in all malignant GCTs [8]. In the present
study we show further over-expression of the miR-302
cluster (but not miR-371~373) in YSTs versus germino-
mas, for both paediatric and adult tumours. In embryonic
and germline stem cells, the miR-371~373 cluster is
involved in maintaining the pluripotent state, whereas
miR-302 members are induced during the first stages of
in vitro differentiation [32]. As miR-302 is lost in cells
and tissues showing somatic differentiation [33,34], it
may be that levels peak during early extra-embryonic dif-
ferentiation. If so, dynamic changes in miR-302 levels in
normal embryonic development [35] would be mirrored
in GCTs showing equivalent differentiation states, with
high levels in tumours showing extra-embryonic differen-
tiation [i.e. YSTs (yolk sac) and potentially choriocarci-
noma (trophoblastic)] compared to undifferentiated
tumours (germinomas); and a reduction to virtually
undetectable levels in somatically differentiated tumours

(teratomas), in which microRNA profiles are almost iden-
tical to normal gonadal tissues [8].

We addressed the cause of the increased miR-302
cluster expression in YSTs. We previously found no evi-
dence of copy-number gain at the miR-302 genomic
locus (4925) in malignant GCTs of any type [8] and
there are even reports of copy-number loss at this locus
in paediatric intracranial YSTs [31]. These observations
support other data showing that DNA copy number
alterations account for only a minority of microRNA
expression changes [36]. While miR-302 changes may
be due to altered levels of TFs, pluripotency associated
factors, such as NANOG and POUSF1 (OCT3/4), which
transcriptionally activate the miR-302 cluster promoter
[21,37], are down-regulated in YSTs versus germinomas
[7,38]. Accordingly, we identified 10 candidate TFs that
are over-expressed in YSTs versus germinomas in both
the paediatric and adult datasets and show positive
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correlations with miR-302 cluster expression levels. Of
these, GATA3 and GATA6, markers of early endodermal
differentiation, were previously identified as over-
expressed in YSTs versus germinomas, using unsuper-
vised analysis of global mRNA expression profiles [7],
while others have identified YST over-expression of
GATA6 and PAX6 (the latter a marker of neuro-
ectodermal differentiation) [30].

Four of the 10 TFs have predicted binding sites in the
miR-302 promoter region. Identification of TCF7L2 and
MATF binding sites on the positive DNA strand, rather
than the negative strand from which the miR-302 clus-
ter is transcribed, is still compatible with an effect of
these TFs on gene expression [39]. The six TFs without
predicted binding sites may affect miR-302 cluster tran-
scription through alternative mechanisms, such as long-
range enhancer action (shown for PAX6, PITX2, MAF
and members of the SOX gene family [40]) and/or asso-
ciation with other proteins that directly bind the miR-
302 promoter. One further TF of potential relevance is
SALL4, which has recently been shown to be a sensitive
diagnostic marker of YSTs [41-43]. However, this gene
was not represented on the microarrays used to generate
the paediatric and adult mRNA expression datasets, nor
was its corresponding binding motif available in the
TRANSFAC database [20] used for iMotifs analysis.

We previously showed that the miR-302 cluster is
over-expressed in all malignant GCTs (compared to
normal gonad and benign GCTs), associated with co-
ordinate down-regulation of a panel of mRNAs contain-
ing the 3’'UTR SCR GCACTT, corresponding to the
2-7nt seed AAGUGC shared by miR-302a~302d [8].
Our present data indicate that the further miR-302 clus-
ter over-expression seen in YSTs (regardless of patient
age or anatomical site) causes down-regulation of other
SCR-containing cancer-associated mRNAs, which may
contribute substantially to the more aggressive clinical
behaviour of YSTs compared to germinomas. Our
observations also suggest that miR-302 family functions
are concentration-dependent, with effects on some
mRNA targets requiring the high expression levels seen
in YSTs, and other effects occurring at the lower over-
expression levels achieved in both germinomas and
YSTs. Interestingly, similar concentration-dependent
effects have recently been described for short interfering
RNAs in mammalian cells [44].

Conclusions

As well as providing insight into the biological differ-
ences between YSTs and germinomas, our data may
contribute to further improvements in the clinical man-
agement of malignant GCTs. The robust discrimination
between the two tumour types on global microRNA
profiling was mirrored by our qRT-PCR findings,
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including in an independent test set that encompassed
tumours from a broad range of anatomical sites. It will
be interesting in future work to investigate the value of
selected microRNAs as markers for improving malignant
GCT diagnosis and as candidate targets for improving
the treatment of tumours with adverse prognostic
features.

Additional material
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