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Abstract

Background: Adult human mesenchymal stem cells (nMSC) have been shown to home to sites of carcinoma and
affect biological processes, including tumour growth and metastasis. Previous findings have been conflicting and a
clear understanding of the effects of hMSCs on cancer remains to be established. Therefore, we set out to
investigate the impact of hMSCs on the oestrogen receptor positive, hormone-dependent breast carcinoma cell
line MCF-7.

Results: In this study, we show the effects of hMSCs on cancer cells are mediated through a secreted factor(s)
which are enhanced by cancer cell-hMSC contact/communication. In addition to enhanced proliferation when in
co-culture with hMSCs, MCF-7 cells were found to have increased migration potential in vitro. Inhibition of ER
signalling by the pure anti-oestrogen ICl 182,780 decreased the effect of hMSCs on MCF-7 cell proliferation and
migration supporting a role for ER signalling in the hMSC/MCF-7 cell interaction. Additionally, hMSCs have been
shown to secrete a wide variety of growth factors and chemokines including stromal cell-derived factor-1 (SDF-1).
This coupled with the knowledge that SDF-1 is an ER-mediated gene linked with hormone-independence and
metastasis led to the investigation of the SDF-1/CXCR4 signalling axis in hMSC-MCF-7 cell interaction. Experiments
revealed an increase in SDF-1 gene expression both in vivo and in vitro when MCF-7 cells were cultured with
hMSCs. SDF-1 treatment of MCF-7 cells alone increased proliferation to just below that seen with hMSC co-culture.
Additionally, blocking SDF-1 signalling using a CXCR4-specific inhibitor decreased hMSC induced proliferation and
migration of MCF-7. However, the combined treatment of ICl and AMD3100 reduced MCF-7 cell proliferation and
migration below control levels, indicating targeting both the ER and CXCR4 pathways is effective in decreasing the
hMSCs induction of MCF-7 cell proliferation and migration.

Conclusions: The sum of these data reveals the relationship between tumour microenvironment and tumour
growth and progression. Better understanding of the mechanisms involved in this tumour stroma cell interaction
may provide novel targets for the development of treatment strategies for oestrogen receptor positive, hormone-

independent, and endocrine-resistant breast carcinoma.

Background

Oestrogen receptor-o. (ER) status is one of the most
widely used prognostic markers of breast carcinoma as
it is required for 17B-oestradiol (oestrogen) action, and
it has long been known that oestrogen has the ability to
promote breast tumour formation and proliferation
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[1,2]. By blocking oestrogen signalling through the
removal of endogenous oestrogen, inhibiting binding of
oestrogen to its receptor or blocking ER signalling, the
tumour promoting effects of oestrogen can be reversed
[2-6]. These effects have been the foundation for the use
of targeted therapies such as the anti-hormone therapies
tamoxifen and fulvestrant (ICI 182,780) and aromatase
inhibitors. Although endocrine therapy holds great
promise in the treatment of hormone-dependent cancer,
as many as 50% of patients with ER-positive breast
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carcinoma do not respond to treatment, exhibiting de
novo resistance to therapy. Furthermore, many patients
who initially respond well to treatment will develop
tumours which progress to a resistant phenotype [7].
Resistance typically develops through sequential pheno-
types from total oestrogen dependence, to hormone
independence while retaining oestrogen sensitivity, to
complete hormone independence and endocrine therapy
resistance [7,8]. Though decreased ER expression is
associated with cancer progression many patients
advance to hormone independence and/or endocrine
therapy resistance while retaining ER positivity [9]. The
progression to hormone independence and endocrine
therapy resistance are hallmark signs of progressive car-
cinoma [10,11]. Currently, all endocrine treatments
approved for clinical use ultimately result in resistance,
demonstrating the ability of carcinoma cells to adapt by
altering cellular signalling [12-15].

In recent years, the tumour microenvironment has
gained appreciation as an active participant in the pro-
cesses of tumourigenesis and metastasis as well as in the
progression to hormone independence and endocrine
therapy resistance [16-18]. The interaction between
tumour cells and tumour stroma or microenvironment
has been described as a “two-way street” due to the abil-
ity of tumour cells to influence the stroma via tissue
remodeling and gene expression and vice versa [19-21].
Tumour cells provide signals that stimulate de novo for-
mation of basement membrane (BM) and extra-cellular
matrix (ECM) in order to provide stromal support to
the growing tumour [22,23]. The host response to the
establishment of tumour stroma closely mimics that of
wound healing and scar development [24] leading not
only to modified secreted proteins from tumour cells
and stroma (direct action), but also the recruitment of
other supporting cell types (indirect action) such as
endothelial progenitor cells [25], and mesenchymal stem
cells [26-28].

Human mesenchymal stem cells (hMSC) are multipo-
tent progenitor cells that contribute to tissue repair and
wound healing [29]. These cells possess the ability to
self-renew while retaining the ability to differentiate into
cell types of mesenchymal origin including osteoblasts,
chondrocytes, and adipocytes [30-33]. Since Paget’s ori-
ginal report of the “Seed and Soil” theory in 1889, it has
been known that breast cancer cells preferentially
metastasize to specific sites, one of which is the bone
marrow [34]. hMSCs have been implicated in the inter-
action of breast cancer cells within the bone marrow via
direct contact as well as by secreted factors [35,36]. In
addition, hMSCs have the ability to preferentially home
to tumour sites, endogenously or when injected systemi-
cally, and contribute to the dynamic tumour stroma
[37-39].
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It has been suggested that hMSCs home to tumour
cells and surround the tumours without infiltrating
them, indicating that any effects of the hMSCs results
from stromal factors and paracrine signaling [40].
hMSCs secrete high levels of cytokines, chemokines, and
growth factors basally; yet these secretion profiles can be
changed depending on the culture conditions or micro-
environment [41]. Others have shown that tumour asso-
ciated stromal cells contribute to primary tumour
growth in vivo via chemokine paracrine signaling [42].
One such chemokine is stromal cell-derived factor-1
(SDF-1) along with its receptor CXCR4. hMSCs are
known to secrete SDF-1 under normal conditions, and
the SDF-1/CXCR4 axis is an important mediator of
hMSCs chemotaxis [43] and primary breast tumourigen-
esis [44]. Previously we have demonstrated hMSCs as
having the ability to promote hormone independent
growth in vivo in the naturally hormone-dependent
breast carcinoma cell line MCF-7 [45]. This data, along
with the fact that hormone-independent breast carcino-
mas are associated with a metastatic phenotype, and
that SDF-1 is a known ER regulated gene, provide a link
between hormone and chemokine signalling in the pro-
gression of breast carcinoma cells [10,46,47].

Previous studies have produced conflicting findings as
to the effects of hMSCs at the tumour site, yet interest
in harnessing the natural homing capabilities for the
development of targeted cancer therapy has increased.
Though this is an exciting treatment option, proceeding
without further knowledge of the effects that hMSCs
naturally exert on carcinoma cells could lead to unfore-
seen and unwanted side effects. In the present study we
examined the effects of hMSCs on the proliferative and
metastatic potential of the ER-positive, hormone-depen-
dent breast carcinoma cell line MCEF-7.

Results

hMSCs enhance proliferation of MCF-7 breast cancer cells
in vitro

The effects of hMSCs on primary breast carcinoma have
been examined in several studies; however, the resulting
data have been conflicting. The effects of hMSCs on
MCE-7 cell proliferation were tested under various con-
ditions to determine if secreted factors were involved or
if direct cell contact was necessary. Direct co-culture
assays were first used to test the effect of hMSCs on
MCE-7 cell growth in culture. MCEF-7 cells stably trans-
fected with green fluorescence protein (GFP) were uti-
lized in these experiments to delineate the two cell
populations (MCF-7 versus hMSC). Immunofluores-
cence images of Ki-67 staining reveal a visible increase
in proliferation in MCEF-7 cells cultured with hMSCs
after 72 hours of direct co-culture (Figure 1A). Quantifi-
cation revealed a near doubling in the number of
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Figure 1 hMSCs enhance MCF-7 cell proliferation. (A) MCF-7-GFP cells cultured with or without hMSCs over 72 hours. Cells were fixed and
stained with anti-Ki-67 (red) and nuclei were counter stained with DAPI (blue). Representative images of MCF-7 cells cultured alone (left) or with
hMSCs (right) at 400x. (B) Quantification of GFP cells positive for Ki-67 staining from 10 fields of view per treatment. Data is represented as
percent positive MCF-7 cells as compared to total number of MCF-7 cells normalized to MCF-7 control group. (C) MCF-7 cells were seeded in
the lower chamber of a 24-well plate and MCF-7 cells (control) or hMSCs were seeded on the upper transwell insert. After 7 days of culture,
inserts were removed and MTT was added to each well. After 4 hours, cells were solubilized and absorbance read. (D) MCF-7 cells were treated
with MCF-7 (control) or hMSC conditioned media for 24 hours. After 4 hours of MTT treatment, cells were solubilized and absorbance read. All
data are represented as percent proliferation normalized to control treated cells + SEM, (* p < 0.05, *** p < 0.001).
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proliferating MCF-7 cells (198.3 + 38.77%, p < 0.05)
when cultured with hMSC compared to MCF-7 cells
cultured alone (Figure 1B). hMSCs showed no change in
proliferation under these culture conditions (data not
shown).

In addition to the direct co-culture assay, transwell
proliferation assays were performed to determine if cell-
to-cell contact was necessary for enhanced proliferation
of MCE-7 cells by hMSCs. MCE-7 cells were plated in
the lower wells of a 24-well plate Boyden chamber sys-
tem under normal culture conditions. Transwell inserts
containing either MCF-7 cells (control) or h(MSCs were

placed over each well. After 7 days, proliferation of the
MCE-7 cells in the lower wells was determined by MTT
assay. MCF-7 cells grown in the presence of hMSCs
show a 39.9 + 6.537% (p < 0.05) increase in proliferation
compared to control (Figure 1C). The results reveal that
hMSCs significantly enhance MCE-7 cell proliferation in
the absence of direct cell-to-cell contact, though the
effect is not as robust as that observed in direct co-
culture.

Induction of proliferation in the absence of cell-
contact suggests that the effects of hMSC on MCE-7
cells are mediated by a secreted factor(s) able to cross
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the transwell membrane. To determine if hMSC
secreted factors are responsible for increases in MCF-7
cell proliferation, conditioned media experiments were
performed. MTT proliferation assays of MCF-7 cells
cultured in MCF-7 (control) or hMSC conditioned
media (CM) for 48 hours revealed that treatment of
MCE-7 cells with hMSC CM resulted in a 14.34 +
3.09% (p < 0.01) increase in MCF-7 cell proliferation
compared to MCEF-7 control CM (Figure 1D). Although
significant, the effect of hMSC CM treatment on MCEF-7
cell proliferation was sufficiently reduced compared to
transwell experiments (p < 0.01), indicating that secreted
factors may differ between naive hMSCs and those “acti-
vated” in the presence of MCEF-7 cells. Differences in
proliferative effects between the transwell and CM may
also be due to the finite amounts of secreted factors
available in CM compared to transwell assays where
hMSCs continually secrete factors. However, varying the
concentration of CM and/or replenishing cultures with
fresh CM did not significantly alter the effect (data not
shown).

hMSCs enhance breast carcinoma cell migration in vitro
Recent reports indicate that hMSCs increase the meta-
static potential of cancer cells [48,49]. In this study we
set out to determine if hMSCs affect the migration
potential of the normally non-metastatic MCF-7 cells.
MCE-7-GEP cells were again utilized to delineate
MCE-7 cells from hMSC when in direct culture. We
initially tested the ability of hMSCs to increase the
basal motility of MCF-7 cells. MCEF-7 cells were plated
alone or in combination with hMSCs (1:1) in the
upper chamber of a transwell culture system and phe-
nol red-free culture media without FBS (0%) in the
lower wells. MCF-7 cell migration after 48 hours was
increased approximately 4-fold from 2.67 + 0.88 cells
per well when cultured alone (control) to 11.33 + 1.2
cells per well when cultured directly with hMSCs (Fig-
ure 2A, p < 0.01). The effect of hMSCs on stimulated
chemotaxis was next examined using 10% FBS as a
chemoattractant in the lower chamber. MCF-7 cells
cultured in the presence of hMSC demonstrated an
increase in migration of 4-fold (28.67 + 3.93 cells per
well) compared to MCF-7 cells cultured alone (7.67 +
2.33 cells per well) over 48 hours (Figure 2B, p < 0.01).
A slight, but insignificant increase in the number of
migrated MCF-7 cells (control) was observed (7.67 +
2.33 cells) as compared to the control conditions (2.67
+ 0.88 cells) demonstrating the very low inherent
motility potential of MCF-7 cells; while hMSC induced
migration was significantly enhanced in the presence
of a chemoattractant from 11.33 + 1.2 cells to 28.67 *
3.93 cells per well (p < 0.5; data not shown).
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Figure 2 hMSCs increase migration of MCF-7 cells in vitro.
MCF-7-GFP cells alone or in combination with hMSCs (1:1) were
seeded in the upper chamber of a transwell system and treated
with DMSO. Lower wells contained either (A) serum-free culture
media (0%) or (B) culture media supplemented with 10% FBS (10%).
After 48 hours cells were fixed and the number of GFP-positive
migrated cells counted. Bars represent average number of migrated
cell per condition + SEM, (** p < 0.01).

Effects of ER signaling on hMSC stimulated MCF-7
proliferation and migration

Building upon our previous observation of a hormone-
independent phenotype in MCF-7 cells induced by
hMSCs in vivo as well as increased progesterone recep-
tor (PgR) expression of MCF-7 + hMSC derived
tumours [45,50], we examined the involvement of ER
signalling in the hMSC-MCE-7 cell interaction. In vitro
conditioned media experiments confirmed enhanced
expression for the ER-regulated gene PgR in MCEF-7
cells grown in the presence of hMSC conditioned media
for 24 hours (data not shown). The pure anti-oestrogen
ICI 182,780 (ICI) was used in transwell proliferation
assays to determine if blocking ER-mediated signalling
could inhibit the effect of hMSCs on MCF-7 cell
growth. Figure 3A illustrates that inhibition of ER
results in the expected decrease of control MCF-7 cell
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Figure 3 Inhibition of ER signaling decreases hMSC stimulated
MCF-7 proliferation and migration in vitro. (A) MCF-7 cells were
seeded in the lower chamber of a 24-well plate with MCF-7 cells or
hMSCs were seeded in the upper well. Upper and lower chambers
were treated with either DMSO (control) or ICl (100 nM). After 7
days of culture, inserts were removed and MTT was added to each
well. Cells were solubilized and absorbance read. All data are
represented as normalized percent proliferation compared to MCF-7
+ DMSO (control) treated cells + SEM, (* p < 0.05, ** p < 0.01). (B)
MCF-7-GFP cells alone or in combination with hMSCs (1:1) were
seeded in the upper chamber of a transwell system and lower wells
contained culture media supplemented with 10% FBS (10%). Upper
and lower chambers were treated with either DMSO (control) or ICl
(100 nM). After 48 hours cells were fixed and the number of GFP
positive migrated cells counted. Bars represent average number of
migrated cell per condition + SEM, (* p < 0.05, *** p < 0.001).

proliferation (from 100% to 74.45 + 4.2%, p < 0.05),
while also inhibiting hMSC stimulated growth of MCEF-7
cells approximately 31% (from 135.64 + 18.93% to 93.88
t 14.37%), though not significantly. ICI treatment of
hMSC-MCEF-7 cultures did not result in significant
changes from MCEF-7 control or MCE-7 + ICI treatment
conditions.

We next examined the role of ER in the enhanced
migratory response of MCEF-7 cells in the presence of
hMSCs using the transwell migration assay. After 48
hours, the number of migrated MCF-7 cells was counted
and compared to control migration. Inhibition of the ER
with ICI resulted in a decrease in the migration of
MCEF-7 cells cultured alone (from 7.67 + 2.33 cells to
1.5 £ 1.5 cells). These results were not statistically sig-
nificant due to very low numbers of basal migration
(Figure 3B). hMSC co-culture-induced migration of
MCF-7 cells was inhibited with ICI treatment (5 + 2
cells, p < 0.001), but not significantly below that of con-
trol MCF-7 migratory levels (7.67 + 2.33 cells). These
results verify a role for ER activity in hMSC-MCE-7
interaction, but due to the incomplete inhibition of the
effects of hMSCs on MCE-7 cells with ICI treatment
also suggests that other pathways may be involved in
MCE-7 cell response to hMSCs.

SDF-1/CXCR4 signalling involvement in hMSC mediated
effects on MCF-7 cells

Our observations of enhanced ER signalling in the
MCEF-7hMSC interactions both in vitro and in vivo sup-
ports recent evidence linking ER and CXCR4 chemokine
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signalling in the progression to hormone independence
[47]. Given that hMSCs have been shown to produce
copious amounts of stromal-cell derived factor-1 (SDF-
1) [51], we next explored the possibility of enhanced
SDF-1/CXCR4 signalling in our model system. MCF-7
cells in culture were treated with CM from MCEF-7 cells
(control) or hMSCs for 48 hours and gene expression
analyzed by qPCR. Results show no significant change
in CXCR4 expression levels (2.04 + 1.12 fold), but a
7.39 + 1.84 fold increase (p < 0.05) in SDF-1 gene
expression levels (Figure 4A).

To confirm in vitro gene expression data, matrigel
tumour samples from our previous primary tumour study
[45] were subjected to qPCR analysis for SDF-1 gene
expression. Tumours grown in the presence of hMSCs
and E2 showed a significant increase in of SDF-1 gene
expression (5.5 + 2.18 fold, p < 0.05) when compared to
MCE-7 + E2 control tumours (Figure 4B). Similarly, matri-
gel only tumours demonstrated increased SDF-1 gene
expression in tumours from the MCF-7/hMSC group (1.7
+ 0.24 fold, p < 0.05) (Figure 4C). These data suggest pos-
sible involvement of SDF-1/CXCR4 signalling in the
hMSC effects on MCF-7 cell biology.

To determine if SDF-1 affects MCF-7 cell growth,
MCE-7 cells were plated in phenol red-free reduced
serum media and treated with SDF-1 or vehicle control.
After 72 hours, cells were fixed and stained with Ki-67
as a marker of proliferation. MCF-7 cell proliferation
increased with SDF-1 treatment 61% from 37.88 +
7.84% positive to 60.85 + 1.74% positive (Figure 5A-B, p
< 0.05), demonstrating the proliferative effect of SDF-1
on MCF-7 cells.

Due to the increased SDF-1 gene expression observed
in vitro and in vivo as well as the ability of SDF-1 to
induce MCEF-7 cell proliferation, we next examined
CXCR4 signalling effects on hMSC-mediated proli-
feration. The small molecule inhibitor to CXCR4,
AMD?3100, was utilized in transwell proliferation assays
to determine if blocking CXCR4 signalling is sufficient
to ablate hMSC induced MCF-7 cell growth. Figure 5C
demonstrates that inhibition of CXCR4 signalling
decreases baseline proliferation in MCEF-7 cells by
49.32% (from 100% to 50.68 + 6.5%, p < 0.05). Further-
more, AMD3100 significantly decreased the effects of
hMSC on MCEF-7 proliferation by approximately 49%
from 135.6 £ 9.37% to 69.24 + 12.64% ki-67 positive (p
< 0.05); however, AMD3100 treatment was unable to
significantly inhibit proliferation compared to MCF-7
control levels. Similar to our results with ICI treatment,
these data suggest that SDF-1/CXCR4 signalling is
involved in the MCF-7/hMSC interaction, but inhibition
is not sufficient to reverse the hMSCs effects. It is likely
that multiple secreted factors and pathways play a role
in communications between hMSCs and MCE-7 cells.
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The role of CXCR4 signalling in the enhanced
migratory response induced by hMSCs was also exam-
ined with AMD3100 treatment using the transwell
migration assay. After 48 hours of culture with
hMSCs, the number of migrated MCEF-7 cells were
counted and compared to MCEF-7 cells cultured alone.
AMD3100 treatment decreased the baseline migration
of MCE-7 cells to a chemoattractant from 7.67 + 2.33
cells to 1 + 1 cell (Figure 5D), while AMD3100 treat-
ment of co-culture cells resulted in a 4-fold decrease
of MCF-7 cell migration (from 28.67 = 3.93 cells to
7 + 6.5 cells, p < 0.01). AMD3100 treatment was not
able to inhibit migration below control levels, suggest-
ing CXCR4 signalling is involved, but that it alone
does not fully explain the hMSC induced effects on
MCEF-7 migration.

Combined inhibition of ER and CXCR4 decreases hMSC
mediated effects in vitro

Both ER and CXCR4 signalling appear to be involved in
the hMSC/MCE-7 cell interaction, yet inhibition of ER or
CXCR4 alone does not sufficiently decrease hMSC
induced effects. Thus, we next tested whether inhibition of
both receptors simultaneously could reduce hMSC stimu-
lated MCEF-7 cell proliferation and migration. The effect of
combined treatment with inhibitors ICI and AMD3100
was tested in direct co-culture immunofluorescent assays.
Proliferation of MCEF-7 cells was markedly decreased
when treated simultaneously with ICI and AMD3100
regardless of hMSC presence or absence as determined by
Ki-67 staining (Figure 6A). Quantification revealed that
combined treatment reduced proliferation of MCEF-7 cells
cultured alone by 88% (from 37.88 + 7.8% to 4.4 + 3.6%,
p < 0.05) and MCEF-7 cells co-cultured with hMSCs by
92% + 4.432% (from 68.3 + 0.24% to 5.6 + 0.4%, p < 0.001)
(Figure 6B). Remarkably, combined inhibition of ER and
CXCR4 was able to abrogate hMSC mediated effects on
MCE-7 proliferation below control levels.

The effect of combined inhibition was also tested in the
transwell migration assay. Figure 6C clearly indicates the
addition of both ICI and AMD3100 resulted in significant
decreases in the number of migrated cells from 7.67 +
2.33 cells to 0.5 £ 0.5 cells under control conditions after
48 hours (p < 0.05). Moreover, inhibition of both ER and
CXCR4 in MCEF-7/hMSC co-culture conditions resulted
in more than a 14 fold decrease in migration of MCF-7
cells (from 28.67 + 3.93 cells to 2 + 1, p < 0.001). Our
results, in conjunction with recent reports, signify ER/
CXCR4 crosstalk as a possible mechanism underlying the
effects of hMSC on MCF-7 cell function [47,52].

Discussion
Even though the therapeutic potential of hMSCs is an
area of great excitement and promise, the possibility
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migrated cells counted. Bars represent average number of migrated cell per condition + SEM, (*, p < 0.05; **, p < 0.01).
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that hMSCs possess properties not conducive as vehicles
for targeted cancer cell therapy exists [53,54]. Previous
studies examining the effects of hMSCs on primary car-
cinoma cells have resulted in conflicting findings
[45,53,55-57]. The variation of outcome from previous
studies may be due to the source of hMSCs and donor
variation, differences in culture and experimental

techniques, the type and site of carcinoma, or a combi-
nation of these factors. Therefore, we set out here to
determine the effect of hMSCs on the ER positive, hor-
mone-dependent human breast carcinoma cell line
MCE-7.

The effect of hMSCs on MCE-7 cell proliferation were
tested under a variety of cell culture conditions
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Figure 6 Co-inhibition of ER and CXCR4 signaling decreases hMSC stimulated MCF-7 proliferation and migration in vitro. MCF-7-GFP
cells cultured with or without hMSCs were treated with DMSO (control) or ICI (100 nM) + AMD3100 (5 pg/ml) for 72 hours. Cells were fixed and
stained with anti-Ki-67 (red) and nuclei were counter stained with DAPI (blue). (A) Representative images of MCF-7 cells cultured alone (left) or
with hMSCs (right) at 200x. (B) Quantification of GFP cells positive for Ki-67 staining from 10 fields of view per treatment. Data is represented as
percent positive MCF-7 cells as compared to total number of MCF-7 cells counted. Bars represent mean values + SEM. (C) MCF-7 cells alone or
in combination with hMSCs (1:1 mix) were seeded in the upper chamber of a transwell system where the lower wells contained culture media
supplemented with 10% FBS (10%). Upper and lower chambers were treated with either DMSO (control) or ICI (100 nM) + AMD3100 (5 pg/ml).
After 48 hours cells were fixed and the number of migrated cells counted. Bars represent average number of migrated cell per condition + SEM,

including direct co-culture, indirect co-culture (trans-
well), and conditioned medium treatment. Proliferation
assays revealed that hMSCs enhance MCF-7 cell prolif-
eration in vitro under all conditions tested. The fact that
transwell and conditioned medium experiments resulted
in increased MCF-7 proliferation suggests that this effect
is mediated by secreted factor(s). Direct co-culture
resulted in the most dramatic proliferative response fol-
lowed by transwell assays, while conditioned medium
treatment resulted in the smallest observed change.
These results indicate that while cell-to-cell contact is
not required for hMSC-mediated proliferation of MCF-7
cells, cell communication/cell contact enhances the
effect. This is most likely due to changes in the secre-
tory profile of “activated” cells versus that of naive cells

[56]. Cells communicate with surrounding cells via
direct contact and secreted factors and based on these
signals, cells are induced to adapt in response to their
environment. hMSCs are no exception; for instance, the
proteins hMSCs secrete basally have been shown to be
altered in the presence of UV irradiated fibroblasts as a
response to tissue damage [58].

Karnoub et al. have demonstrated the ability of
hMSCs to confer a metastatic phenotype to normally
non/low metastatic cancer cells [49]. There have also
been observations indicating that hMSCs decrease cell-
to-cell contact and decrease epithelial cell adhesion mar-
kers (E-cadherin, ESA) of breast carcinoma cells
[26,48,59]. Furthermore, we have previously demon-
strated the ability of hMSCs to promote the progression
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of MCEF-7 cells to hormone independence [45], a hall-
mark of primary tumour progression which signifies a
more aggressive cancer phenotype [60]. In this study we
set out to determine if hMSCs have the capability to
affect the migration potential of MCF-7 cells, which
have been characterized as having very low metastatic
potential [61]. In vitro migration studies revealed an
approximately 4-fold increase in migration of MCF-7
cells cultured in the presence of hMSCs under basal and
stimulated chemotaxis conditions, suggesting the invol-
vement of hMSCs in the promotion of a metastatic
phenotype.

In addition to the ability of hMSCs to induce hor-
mone-independent MCF-7 tumourigenesis, we have also
demonstrated an increase in progesterone receptor
expression in MCF-7-hMSC derived tumours indicative
of enhanced oestrogen receptor signalling [45]. In this
report we show that inhibition of ER decreases the
hMSC-mediated enhanced proliferation of MCF-7 cells
in the absence of exogenous oestrogen. Results from in
vitro migration assays also revealed diminished hMSC-
induced migration activity of MCEF-7 cells grown when
treated with ICI. Although the mechanism of hMSC
activation of the ER is not completely understood at this
time, our results establish a role for ER-mediated signal-
ling in the hMSC-MCE-7 cell interaction.

The inability of ER inhibition to completely reverse
the effect of hMSCs on MCEF-7 cell proliferation and
migration points to the existence of one or more addi-
tional pathways involved in the interaction between
hMSCs and MCEF-7 cells. hMSCs are known to secrete a
number of factors, including growth factors and chemo-
kines [26,48,49,62,63]. Secreted levels of SDF-1 by
hMSCs have been shown to be altered based on micro-
environmental factors [35,64]. Additionally, SDF-1 is an
ER mediated gene recently implicated, with its receptor
CXCR4, in crosstalk with ER to mediate hormone inde-
pendence through activation of an autocrine feed-for-
ward loop [47]. Examination of SDF-1 expression levels
in our tumour samples revealed increased expression in
hMSC + MCEF-7 derived tumours both in the presence
and absence of exogenous oestrogen, as well as in vitro
samples.

Although the chemokine SDF-1 is mainly classified as
a chemotactic factor mediating cell trafficking, it has
also been shown to be involved in angiogenesis [65],
survival [66] and cell proliferation [66-68]. Interestingly,
treatment of MCF-7 cells with exogenous SDF-1
increased cell proliferation to practically equal levels of
proliferation observed in cells co-cultured with hMSCs.

Since SDF-1 is an ER-regulated gene and appears to
be involved in hMSC regulation of MCE-7 cell prolifera-
tion, the role of SDF-1 in MCF-7 cell proliferation and
migration was examined in our model. Inhibition of
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CXCR4 signalling resulted in decreased proliferation of
MCE-7 cells co-cultured with hMSCs, as well as
decreased hMSC-enhanced migration of MCEF-7 cells in
response to a chemoattractant. These results demon-
strate a role for SDF-1/CXCR4 signalling in the hMSC-
MCE-7 cell interaction.

Similar to results from our ER inhibition studies, block-
ing SDF-1/CXCR4 signalling was not sufficient to com-
pletely reverse hMSCs effect on MCEF-7 cell biology. Due
to evidence of ER-CXCR4 crosstalk involvement in breast
cancer progression, we examined the effects of simulta-
neous inhibition of ER and CXCR4 signalling to decrease
hMSCs influence on MCE-7 cells. The effect of hMSC on
proliferation and migration of MCF-7 cells was decreased
to baseline control levels when both the ER and CXCR4
were inhibited, suggesting the involvement of ER-CXCR4
crosstalk in breast cancer progression.

The SDF-1/CXCR4 axis is clearly involved in hMSC-
mediated effects on MCE-7 cell proliferation and migra-
tion; however it is not clear at this time the mechanism
of SDF-1/CXCR4 activation in this system. Several possi-
bilities exist: 1) hMSCs present at the tumour site
respond to the tumour microenvironment by increased
secretion of SDF-1. Secreted SDF-1 acts in a paracrine
manor, binding CXCR4 present on MCEF-7 cells, and sti-
mulates ER in an oestrogen-independent fashion [47]. ER
activation results in production of SDF-1 by the MCEF-7
cell. SDF-1 secreted from MCEF-7 cells can then bind
CXCR4 on the cell surface completing the feed forward
autocrine loop, or on neighbouring cells in a paracrine
manor. 2) hMSCs may induce SDF-1 production in the
MCE-7 cells through other secreted factors, or 3) hMSCs
may activate ER signalling in turn inducing SDF-1 gene
transcription. It is known that SDF-1/CXCR4 signalling
can also function to increase cell proliferation through
ER-independent mechanisms [69], which may explain
why inhibition of the ER alone is not sufficient to com-
pletely abolish the hMSC effects on MCE-7 cells.

Targeting SDF-1/CXCR4 signalling has been proposed
for the prevention and treatment of metastatic carci-
noma, specifically of the breast [66,70-78]. Though the
downstream mediators of this signalling are not comple-
tely clear, our research has implicated the involvement
of both ER and CXCR4 signalling in hMSC driven hor-
mone-independent tumourigenesis. The recent discovery
of an ER/CXCR4 autocrine loop in breast carcinoma by
Suave et al. supports our findings, though we are the
first to suggest this as a mechanism driving hMSCs
action on MCF-7 cell proliferation and metastasis
[45,47].

Conclusions
In this study we demonstrate the ability of hMSCs to
promote proliferation and migration of the ER-positive,
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hormone-dependent breast cancer cell line MCEF-7.
Furthermore, we provide evidence for the involvement
of ER and CXCR4 signalling in the hMSC-mediated
effects on MCEF-7 cell biology. These data provide
insight into the complex relationship between tumour
cells and the tumour microenvironment. In addition to
our previous findings of hMSC-mediated hormone-inde-
pendence of MCEF-7 cells, the research presented here
indicate the SDF-1/CXCR4 axis, in combination with
ER-centric therapies, may also be a promising target for
the treatment of hormone-independent and endocrine
therapy-resistant, ER-positive breast carcinoma. Further-
more, we hope this research will encourage additional
investigations into hMSC biological effects, ensuring
proper precautions are taken for the use of hMSCs as a
therapeutic tool.

Methods

Reagents

Dulbecco’s modified Eagle’s medium (DMEM), phenol-
red free DMEM, fetal bovine serum (FBS), minimal
essential amino acids (MEMAA), Non-essential amino
acids (NEAA), antibiotic/anti-mitotic, penicillin/strepto-
mycin (pen/strep), sodium pyruvate, L-glutamine, tryp-
sin/EDTA, trypan blue stain (0.4%) and
ethylenediaminetetraacetic acid (EDTA 0.5 M, pH8)
were obtained from GIBCO (Invitrogen; Carlsbad, CA).
Insulin, 17B-estrodiol (E2) and AMD3100 were pur-
chased from Sigma-Aldrich (St. Louis, MO) and char-
coal stripped (CS) FBS from HyClone (Thermo
Scientific; Logan, UT). ICI 182,780 and SDF-1a were
purchased from Tocris Bioscience (Ellisville, MO) and
PeproTech, Inc (Rocky Hill, NJ), respectively. Alexa
Fluor 555 Ki-67 immuno-fluorescence antibody and
DAPI nuclear stain were purchased from BD Bioscience
(San Jose, CA). Phosphate-Buffered Saline (PBS) was
obtained from Cellgro (Mediatech, Inc.; Manassas, VA)
and Dimethyl sulfoxide (DMSO) from Research Organ-
ics, Inc (Cleveland, OH).

Cell Culture

MCE-7N cell variant is a subclone of the MCF-7 human
breast adenocarcinoma cell line from the American
Type Culture Collection (ATCC; Manassas, VA) that
was generously provided by Louise Nutter (University of
Minnesota, Minneapolis, MN) [79]. The MCF-7 human
breast adenocarcinoma cell line was established more
than 30 years ago from the pleural effusion of a patient
with metastatic breast carcinoma [61]. The MCF-7 cell
line retains characteristics of differentiated mammary
epithelium and has been the model system of ER posi-
tive breast cancer since its discovery [80]. Prevalent use
of MCE-7 cells has resulted in cell line variants reported
to possess differing ER and PgR expression levels,
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oestrogen responsiveness, proliferation rates and TNF-a
sensitivity [79,81-83]. The MCEF-7 variant MCF-7N
remains ER-positive, hormone dependent/oestrogen sen-
sitive, and TNF-o and endocrine therapy sensitive mak-
ing it a suitable model system for our studies. The
MCE-7N variant line was used for all studies conducted
in this publication. Cells were cultured as previously
described [45,84]. Cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM; pH 7.4; Invitrogen
Corp., Carlsbad, CA) supplemented with 10% foetal
bovine serum (Hyclone, Salt Lake City, UT), 1% NEAA,
MEMAA, sodium pyruvate, antibiotic/anti-mitotic and
insulin under mycoplasma-free conditions at 37°C in
humidified 5% CO, and 95% air. Human mesenchymal
stem cells were maintained in 20% DMEM containing
only 1% penicillin/streptomycin, sodium pyruvate and L-
glutamine. In experiments requiring hormone or growth
factor/cytokine treatment or when hormone indepen-
dent effects were being assessed, phenol red-free
DMEM supplemented with charcoal stripped FBS (10%),
1% NEAA, MEMAA, sodium pyruvate, penicillin/strep-
tomycin, and L-glutamine was used (referred to as 10%
CS media).

Isolation and Culture of hMSCs

hMSCs from bone marrow aspirates were obtained from
the Tulane University School of Medicine Adult Stem
Cell Core and were prepared as described previously
[85]. In brief, nucleated cells were isolated with a density
gradient (Ficoll-Paque; Pharmacia) from 2-ml human
bone marrow aspirated from the iliac crests of normal
volunteers under a protocol approved by the Tulane
University Institutional Review Board. All of the
nucleated cells (30-70 million) were plated in a 145-cm?
dish in 20-ml complete culture medium (CCM) that was
prepared with 1 litre of alpha minimum essential media
(a.-MEM) (GIBCO, Rockville, MD), 200-ml FBS (lot-
selected for rapid growth of MSCs; Atlanta Biologicals,
Lawrenceville, GA), 100 units/ml penicillin, 100 pg/ml
streptomycin, and 2 mM L-glutamine (GIBCO). After
24 hours at 37°C in 5% CO,, nonadherent cells were
discarded, and incubation in fresh medium was contin-
ued for 4 days. The cells were lifted with 0.25% trypsin
and 1 mM EDTA for 5 minutes at 37°C and then
replated at 50 cells per cm? in an interconnecting sys-
tem of culture flasks (6320 cm? Nunc Cell Factory, Ros-
kild, Denmark). Parallel 145-cm? dishes (Nunc) were
plated under the same conditions as pilot samples to
observe expansion of the cells. After cells in the pilot
samples expanded 500- to 1,000-fold (7-9 days), the
cells in the interconnecting flasks were lifted with tryp-
sin/EDTA and frozen at a concentration of 1 x 10°
cells/ml in liquid nitrogen as passage 1 cells. Alterna-
tively, some samples were plated at high densities of
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5,000 cells per cm” and incubated for 7-9 days prior to
freezing. For most of the experiments here, a frozen vial
of one million passage 1 cells was thawed, plated in 20
ml of CCM in a 145-cm? dish, and incubated for 1-3
days to recover viable passage 2 cells. The passage 2
cells were harvested with trypsin/EDTA and then incu-
bated at 50-100 cells per cm® for 4-10 days and lifted
with trypsin/EDTA to obtain passage 3 cells. During
each step of expansion, the medium was changed every
3-5 days. Representative images from differentiation
assays (Additional file 1, figure S1) and flow cytometry
results for cell surface markers (Additional file 2, Table
S1) used to define hMSCs are reported in additional
files.

Co-culture Assay

Co-culture methods were modified from Block et al
[58]. MCF-7-GFP cells were plated alone (2,000 cells per
well) or in combination with hMSCs (1,000 cells each
per well) in 200 pl phenol red-free DMEM with 10% CS
FBS in a 96-well cell culture plate (Falcon; BD
Bioscience; San Jose, CA). Cells were cultured for 72
hours under standard culture conditions and then sub-
jected to IF staining (detailed below).

Immuno Fluorescence Staining

After 72 hours of co-culture as outlined above, cells
were fixed and stained for Ki-67 as modified from man-
ufacturer’s instructions and the publication by Kill et al.
[86]. Briefly, cells were fixed using 100 pL of 3.7% for-
maldehyde in PBS for 10 minutes. Formaldehyde was
removed and cells were permeabilized using cold (-20°
C) 90% methanol for 5 minutes at room temperature
and washed twice with PBS. 100 pL of blocking buffer
(3% FBS in PBS) was then added. After 30 minutes,
blocking buffer was removed and cells were incubated
for 1 hour with Alexa Fluor-555 Ki-67 antibody (50 pL
per well diluted 1:10 in blocking buffer; BD Pharmingen,
San Diego, CA). Cells were then washed with PBS and
stained with DAPI nuclear stain (1:1000) for 5 minutes
before imaging. 5 fluorescence images per well (mini-
mum of 10 images per treatment) were captured at
400x. Results are represented as percent positive Ki-
67staining (red) of GFP positive MCF-7 cells (green).
Nuclei are counter stained with DAPI (blue).

Transwell Culture Assay

MCE-7 cells were plated at 10,000 cells per well in 1 ml
of 20% DMEM in a 24-well plate. Transwell inserts (8
pum; BD biosciences; San Jose, CA) were placed into
each well containing 5,000 cells, either MCF-7 (control)
or hMSC, in 500 pl of appropriate culture media. Plates
were cultured under normal conditions for 7 days, after
which inserts were removed and cells subjected to
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MTT. For inhibitor studies 10% CS DMEM culture
media was used and both upper and lower chambers
were treated with ICI 182,780 (100 nM), AMD3100 (5
ug/ml) or both at the time of cell seeding. DMSO was
used as vehicle control. Transwell culture protocol was
modified from a previously published method [58].

Generation of Conditioned Media

Conditioned media was generated based on methods
previously published [36,87]. MCEF-7 cells or hMSCs
were plated to 70% confluency in T150 flasks (Corning;
Corning, NY) in either 20% DMEM (proliferation) or
10% CS DMEM (qPCR) and allowed to adhere overnight
at 37°C, 5% CO,. The next day media was removed and
cells washed thrice with 1x sterile PBS. Cells were then
re-fed with appropriate culture media. After 24 hours
media was collected, spun down to remove cell debris
(2,000 rpm x 5 minutes) and passed through 0.45 pm
filter (Sigma-Aldrich; St. Louis, MO). CM aliquots were
frozen at -20°C until needed (not exceeding 2 weeks).

MTT Assay

CM experiments. Cells were plated at a density of 2.5 x
10% cells per well in a 96-well plate in 200 ul 20%
DMEM and allowed to attach overnight. Cells were then
treated with conditioned media from either MCF-7 cells
or hMSCs for 24 hours. Transwell experiments. Cells
were plated as described above. Following treatment, 20
puL (CM 96-well plate) or per well 200 pl (transwell 24-
well plate) of MTT reagent (5 mg/ml) was incubated
with cells for 4 hr. Media was aspirated and cells were
lysed with 200 ul DMSO. 100 pl of cell lysates from
transwell experiments were transferred to 96-well plates
for absorbance readings. The absorbance was read on an
ELx808 Microtek plate reader (Winooski, VT) at 550
nm, with a reference wavelength of 630 nm as pre-
viously described [88]. All experiments were conducted
in triplicate. Data is represented as percent control pro-
liferation + SEM. Inhibitor studies (ICI 182,780 and
AMD3100) were conducted simultaneously to more
accurately compare the effects and therefore are
reported using the same control values. The data has
been split into multiple graphs to ensure clarity of inter-
pretation and to demonstrate the effects on each path-
way on cell proliferation.

Transwell Migration Assay

Migration assays were performed based on the publica-
tion by Karnoub et al. and the manufacturer’s instruc-
tions [49]. MCF-7-GFP cells were seeded either alone or
in combination with hMSCs at a density of 2.5 x 10*
(total cells; 1:1 mix) in 500 pl 10% CS DMEM in the
upper chamber of a 24 well transwell system. Phenol
red-free DMEM supplemented with 10% CS FBS (10%)
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was used as a chemoattractant in the lower wells. Phe-
nol red-free DMEM without FBS (0%) was used as a
negative control to assess basal migration rates. After 48
hours of treatment (DMSO, ICI 182,780, AMD3100, ICI
+ AMD), membranes were scrubbed to remove non-
migrated cells and membranes were removed and
mounted on glass slides. Migrated cells were visualized
by microscopy and the number of GFP positive (MCF-
7) cells counted. Data is represented as number of
migrated cells per field of view + SEM for triplicate
experiments. Migration studies using inhibitors (ICI
182,780 and AMD3100) were conducted simultaneously
to more accurately compare all treatment conditions.
The results have been divided between several graphs to
more clearly demonstrate the effects of each of the indi-
vidual pathways on migration.

RNA Extraction and cDNA synthesis

Tumour tissue RNA extraction

RNA was isolated from tumours extracted from mice at
endpoint using Trizol LS (Invitrogen) with Purelink
RNA purification system (Invitrogen) according to the
manufacturer’s protocol.

Conditioned Media qPCR

Cells were plated in 10 cm? dishes (Corning; Corning,
NY) at 70% confluence and allowed to adhere overnight
at 37°C, 5% CO,. The next day media was removed,
cells washed thrice with 1x sterile PBS and CM (10 ml)
from either MCF-7 (control) or hMSCs was added. Cells
were harvested with PBS/EDTA after 24 hours of treat-
ment. Total RNA was isolated from cell pellets using
the RNeasy kit per manufacturer’s instructions (Qiagen;
Valencia, CA).

The quantity and quality of the RNA were determined
by absorbance at 260 and 280 nm using the NanoDrop
ND-1000 (NanoDrop; Wilmington, DE). Total RNA was
reverse-transcribed using the iScript kit (BioRad; Her-
cules, CA).

Quantitative Real Time RT-PCR

For qPCR forward and reverse primers were as follow:
Actin: (F) 5-TGA GCG CGG CTA CAG CTT-3, (R) 5
- CCT TAA TGT CAC ACA CGA TT - 3’; SDF-1: (F)
5 - AGT CAG GTG GTG GCT TAA CAG -3, (R) 5 -
AGA GGA GGT GAA GGC AGT GG - 3’; CXCR4: (F)
5 - AAA GTA CCA GTT TGC CAC GGC - 3, (R) 5 -
GCA TGA CGG ACA AGT ACA GGC T - 3. All pri-
mers were obtained from Invitrogen (Carlsbad, CA).
The PCR reaction was carried out as follows: step 1: 95°
C 3 minutes, step 2: for 40 cycles 95°C 20 seconds, 60°C
1 minute, step 3 70°C 10 seconds, hold at 4°C. Each
reaction tube contained: 12.5 pl 2x SYBR Green super-
mix + 6.5 pl nuclease-free water + 1 pl 0.1 pg/pl primer
(pair) + 5 pl cDNA (0.2 pg/pl). Genes were amplified in
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triplicate. Data was analyzed by comparing relative tar-
get gene expression to actin control. Relative gene
expression was analyzed using 2" method [89]. RNA
isolation, cDNA synthesis and qPCR were performed as
previously described and outlined above [90-92].

Microscopy

The Nikon eclipse TE2000-s inverted fluorescence
microscope and camera with x-cite series 120 illumina-
tor (Nikon; Melville, NY), in conjunction with IP Lab
version 3.7 software (Rockville, MD) were used in the
detection of IF staining. Fluorescence was observed
under the following conditions (excitation/emission):
Red - 555/565 nm; Blue - 358/461 nm; Green - 488/
509 nm.

Statistical Analysis

Studies involving more than 2 groups were analyzed by
one-way ANOVA with Tukey’s post-test using the
Graph Pad Prism V.4 software program. All others were
subjected to unpaired student’s t-test. A value of p <
0.05 was considered statistically significant.

Additional material

Additional file 1: Figure S1 - Characterization of hMSC
differentiation capacity. Differentiation assays were performed on
hMSC (donor 7032R) at passage 2 prior to use in all experiments
reported here. Representative images of hMSCs under (A) control culture
conditions, (B) osteogenic conditions (stained with Alzarin Red S for
calcium), or (C) adipogenic conditions (stained with oil red O for lipid).
Original magnification, 40x.

Additional file 2: Table S1 - Quantification of cell surface hMSC
characterization markers by flow cytometry. Flow cytometry results
for various cell surface markers expressed as the % of gated cells that are
positive in the total gated population.
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