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Abstract

Background: Medulloblastoma is amongst the most common malignant brain tumors in childhood, arising from
neoplastic transformation of granule neuron precursors (GNPs) of the cerebellum via deregulation of pathways
involved in cerebellar development. Deregulation of the Sonic hedgehog/Patched1 (Shh/Ptc1) signaling pathway
predisposes humans and mice to medulloblastoma. In the brain, insulin-like growth factor (IGF-I) plays a critical role
during development as a neurotrophic and neuroprotective factor, and in tumorigenesis, as IGF-I receptor is often
activated in medulloblastomas.

Results: To investigate the mechanisms of genetic interactions between Shh and IGF signaling in the cerebellum,
we crossed nestin/IGF-I transgenic (IGF-I Tg) mice, in which transgene expression occurs in neuron precursors, with
Ptc1™” knockout mice, a model of medulloblastorna in which cancer develops in a multistage process. The IGF-I
transgene produced a marked brain overgrowth, and significantly accelerated tumor development, increasing the
frequency of pre-neoplastic lesions as well as full medulloblastomas in Ptc1™/IGF-I Tg mice. Mechanistically, tumor
promotion by IGF-I mainly affected preneoplastic stages through de novo formation of lesions, while not
influencing progression rate to full tumors. We also identified a marked increase in survival and proliferation, and a
strong suppression of differentiation in neural precursors.

identification of potential therapeutic targets.

Conclusions: As a whole, our findings indicate that IGF-I overexpression in neural precursors leads to brain
overgrowth and fosters external granular layer (EGL) proliferative lesions through a mechanism favoring
proliferation over terminal differentiation, acting as a landscape for tumor growth. Understanding the molecular
events responsible for cerebellum development and their alterations in tumorigenesis is critical for the

Background

Normal development and tumorigenesis have several
common characteristics. In particular, pediatric neo-
plasms of the nervous system, arising from progenitor
cells which are already proliferating as part of the devel-
opmental process, are closely linked to disordered
mechanisms of normal development. The delicate bal-
ance among programmed cell death, proliferation and
differentiation, in fact, is crucial for normal neural
development. Defects in any of the mechanisms control-
ling these processes could promote transformation,
making developing cells prone to tumorigenesis.
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Medulloblastoma is the most common pediatric brain
tumor, and develops in the cerebellum of children and
young adults. Expression profiling of medulloblastoma has
indicated a remarkable similarity between this tumor and
early postnatal cerebellum, arguing that the germinal layer
of the cerebellum harbors precursor cells for medulloblas-
toma [1,2]. During cerebellar development, granule neuron
precursors (GNPs) migrate from the rhombic lip to the
external granular layer (EGL), where they postnatally
undergo a proliferative burst before exiting the cell cycle
and migrating inward to form the mature inner granule
layer (IGL). The cerebellum undergoes an over 1000-fold
increase in volume during this process [3]. Proliferation of
GNPs is governed principally by the Sonic hedgehod path-
way (Shh), but their expansion and survival are also pro-
moted by insulin-like growth factors (IGFs).
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Deregulation of the Shh pathway has been linked to
medulloblastoma development. Approximately 15-30%
of sporadic medulloblastomas contain mutations in
Patchedl (Ptcl) or other elements of the Shh pathway
[1,4,5]. Germline deficiency of the Shh receptor, Ptcl, is
responsible of the hereditary Nevoid Basal Cell Carci-
noma Syndrome (NBCCS) in which patients are predis-
posed to medulloblastoma and other tumors. Mice with
heterozygous PtcI mutations are also susceptible to
medulloblastoma formation, and 8-40% of them develop
tumors that resemble human medulloblastomas [6,7].
These mice have provided information on the early
stages of tumorigenesis [8,9] and on the genes that
cooperate with deregulation of the Shh pathway to pro-
mote tumor progression [10-12].

IGF-1 and IGF-II act as potent survival factors
expressed in a wide variety of cell types. IGF signaling
is important for central nervous system (CNS) devel-
opment, and increased IGF-I activity results in brain
overgrowth [13,14]. Moreover, molecular oncology stu-
dies in humans and mice strongly implicate IGFs in
medulloblastoma development.
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In this study, to clarify the role of IGF-I in physiologi-
cal (development) and pathological (tumorigenesis) set-
tings in the cerebellum, we cross-bred transgenic mice,
overexpressing IGF-1 (IGF-1 Tg) in neural progenitors
under control of regulatory sequences from the nestin
gene [15], with PtcI*” mice, a faithful model of human
medulloblastoma.

Results

Expression of IGF-I transgene and nestin in the
cerebellum

To examine the impact of IGF-I overexpression on nor-
mal development and tumorigenesis in the cerebellum,
we crossed PtcI*™” mice with IGF-1 Tg mice [15]. Expres-
sion of the human IGF-I transgene, quantified by
reverse-transcription PCR in cerebella at P5, was evident
in the cerebellum of Ptc1™*/IGF-I1 Tg and Ptc1*"/IGF-I
Tg mice, whereas it was absent in Ptc1*/* and Ptc1*”
cerebella (Figure 1A). Since the spatial expression pat-
tern of nestin/IGF-I transgene was reported to be con-
sistent with that of the nestin native gene [16], to
localize the expression of the transgene, sections of
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Figure 1 Analysis of nestin/IGF-l transgene expression in mouse cerebellum at P5. (A) Quantification of expression of human (H) IGF-I
transgene by reverse-transcription PCR with relative B-actin to control cDNA loading. (B) Immunostaining for nestin, showing a marked
expression in the EGL, and in other layers of the developing cerebellum. (C) Immunostaining for human IGF-I, showing expression in the
cerebellum of Ptc1™/IGF-I Tg mice and lack of expression in the cerebellum of Ptc1™” mice (D).
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cerebellum from mice at P5 were immunostained for
nestin. As shown in Figure 1B, nestin was strongly
expressed in GNPs of the EGL, as well as in other layers
of the developing cerebellum. In addition, by immunos-
taining, with an antibody that specifically recognizes
human IGF-I, we detected IGF-I expression in cerebel-
lum of IGF-I Tg mice but not in mice lacking the IGF-I
transgene (Figure 1C and 1D). Thus, by using the nes-
tin/IGF-I mouse model, we accomplished our goal to
target IGF-I overexpression to the neural precursors of
the cerebellum, the potential medulloblastoma progeni-
tor cells [17].

Effects of IGF-I transgene expression on P5 cerebellum
Next, we analyzed proliferation of GNPs in the setting
of altered Shh and IGF signaling in vivo. These analyses
were performed at postnatal day 5 (P5), when the IGF-I
transgene is expressed at high level in the cerebellum
[15]. We assessed the number of proliferating cells by
immunohistochemistry using antibodies to the antigen
encoded by the Mki67 gene (Ki-67) and the Proliferating
Cell Nuclear Antigen (PCNA). The presence of the IGF-
I transgene caused a significant increase in the number
of Ki-67 positive GNPs in Ptc1™" (1.14 vs. 0.57%; P =
0.0091) but not in PtcI**mice (1.12 vs. 0.8%; P = 0.11;
Figure 2A and 2C). Moreover, the presence of IGF-I
transgene significantly increased the frequency of PCNA
positive GNPs in both PtcI*/*(41.6 vs. 29.7%; P =
0.0078) and PtcI*” mice (44.6 vs. 34.0%; P = 0.0055;
Figure 2B and 2D). No significant differences in num-
bers of Ki-67 and PCNA positive cells were observed
between PtcI**and Ptc1™ mice. By immunoblotting of
isolated cerebellar extracts the expression of cyclin D1, a
cell cycle regulatory protein was also increased, although
not significantly, in the cerebellum of PtcI*'* and Ptc1*”
mice carrying the IGF-I transgene (Figure 2E and 2F).
Taken together, these data indicate that the IGF-I trans-
gene strongly stimulates cell proliferation in the
cerebellum.

During neural embryogenesis, about 50-70% of neural
cells undergo programmed cell death leading to a mas-
sive loss of granule cells during active neurogenesis in
the first three postnatal weeks of cerebellar development
[18]. Several growth factors, including IGF-I, have been
shown to modulate cell death in this population
[19]. An inhibition of naturally occurring GNPs death
may therefore represent a possible mechanism to sustain
cell proliferation and tumor growth. We assessed the
number of cells undergoing programmed cell death in
the EGL by immunostaining using an antibody against
cleaved caspase-3. The presence of the IGF-I transgene
caused a significant reduction in the number of caspase-
3 positive GNPs in PtcI™*/IGF-1 Tg and Ptc1*"/IGF-I
Tg mice compared with the non transgenic mice (0.5%
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in PtcI**/IGF-1 Tg vs. 0.11% in Ptc1™*; P < 0.005;
0.09% in PtcI*"/IGF-I1 Tg vs. 0.17% in Ptc1*"; P < 0.005;
Figure 2G and 2H). No significant difference was
observed between Ptc1™’* and Ptc1™” mice. Overall, our
data indicate that the presence of IGF-I transgene
increased proliferation rate and decreased programmed
cell death in GNPs.

Combined IGF-I transgene expression and Ptc1 mutation
counteract differentiation of neural precursors

Among the pleiotropic IGF-I activities during neurogen-
esis, IGF-I also affects neuronal differentiation, as well
as possibly influencing neural stem cells. To study the
effect of IGF-I transgene on GNPs differentiation we
examined morphologic abnormalities in H&E-stained
sagittal sections of the cerebellum at P15. At this age, in
the cerebellum of wild-type mice GNPs have almost
completed their migration into the IGL, and the EGL
has ceased to exist (Figure 3A). Instead, a thin 1-cell
layer of EGL was detected in the cerebellum of IGF-I
Tg (Figure 3B) and Ptc1*” mice (Figure 3C). A thicker
EGL layer of 2-3-cells was observed in the cerebellum of
double mutants (Figure 3D). These results indicate that
Ptcl mutation and transgenic IGF-I expression delayed
differentiation of EGL progenitors in the cerebellum.

To evaluate the effect of IGF-I overexpression on neu-
rogenesis, we examined the expression of NeuN, which
marks postmitotic mature granule neurons in the IGL,
by immunoblotting of isolated cerebellar extracts at P5.
As shown in Figure 3E and 3F, the presence of IGF-I
transgene in Ptcl1™ mice significantly decreased NeuN
expression in the cerebellum of compound mutants (P <
0.05). In addition, immunostaining showed a strong
decrease in expression of NeuN in Ptc1*"/IGF-I1 Tg
compared with Ptc1*” mice (Figure 3G and 3H).
Accordingly, quantization of NeuN positive neurons in
the IGL showed a significant reduction in PtcI*/IGF-I
Tg (27%) compared with Ptc1™”” mice (42%; P = 0.0003;
Figure 3I). This strongly suggests that IGF-I signaling
cooperates with Shh deregulation in suppressing differ-
entiation of granule progenitor cells from the active
pool in the EGL. In this regard, a link between IGF sig-
naling pathway and stem or progenitor cell potency has
been recently highlighted by the finding that the number
of cells expressing Sox9, a stem/progenitor cell biomar-
ker, is decreased in intestinal crypts of IRS-1""/Min
compared with IRS-1"*/Min mice [20].

Phenotype of nestin/IGF-I transgenic brains

To evaluate the effect of the IGF-I transgene on brain
growth, brains from Ptc1*’*, Ptc1*/*/IGF-1 Tg, PtcI*”,
and Ptc1*”/IGF-1 Tg mice of both sexes, at 3, 5 and
8 weeks of age were excised and weights determined.
IGF-I acted to increase both size and weight of the
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Figure 2 Analysis of proliferation, programmed cell death and IGF-I signaling in P5 cerebellum of Ptc1 */*, Ptc1*”, Ptc1**/IGF-l Tg and
Ptc1™/IGF-I Tg mice. (A) Representative image of Ki-67 and (B) PCNA immunostaining. (C) Graphic representation of frequency of Ki-67, and (D)
PCNA positive cells in the EGL. (E) Immunoblot analysis of expression of cyclin D1 with relative B-actin to control protein loading, and (F) relative
graphic representation of densitometric analysis. (G) Representative image of caspase-3 positive cells in the EGL. (H) Graphic representation
showing the frequency of caspase-3 positive cells in the EGL.
.

developing brain. The largest difference in brain size was
observed between PtcI*'* and Ptc1*"/IGF-1 Tg mice at
8 weeks, as shown by representative H&E-stained sagit-
tal sections (Figure 4A and 4B). Importantly, the cere-
bellum was among the brain regions showing a more
marked overgrowth. Compared with PtcI*'* littermates,
the presence of IGF-I transgene produced significant

brain weight increases at all time points examined
(9.3-13.2%; P < 0.005; Figure 4C and 4D). In compari-
son with PtcI*'* littermates, significant increments
were also produced by heterozygosity of the Ptc1*”
gene (11.6-13.2%; P < 0.05). In addition, the presence
of IGF-I transgene in PtcI*” mice caused a further sig-
nificant increase in brain weight compared with PtcI*”~
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Figure 3 Delayed differentiation in neural precursors caused by IGF-I altered expression. (A) Morphologic analysis of H&E-stained sagittal
sections of mouse cerebellum at P15, showing physiological absence of EGL in the cerebellum of Ptc7** mice. A thin 1-cell layer of EGL was
present in the cerebellum of Ptc1™*/IGF-l Tg (B), and Ptc1™" mice (C). (D) A thicker 2-3-cells layer was observed in the EGL of Ptc1/IGF-I Tg
mice. (E) Western blot analysis showing the level of NeuN (48 and 46 kDa, solid and open square, respectively) expression in cerebellum from
Ptc1™*, Ptc1¥*/IGF- Tq, Ptc1™, and Ptc1™/IGF-I Tg mice at P5, with relative B-actin to control protein loading. (F) Graphic representation of
densitometric analysis. (G and H) Immunohistochemical analysis showing a decrease in the expression of NeuN in the IGL of the cerebellum of
Ptc1™/IGF-l Tg mice (H) compared to Ptc1™” mice (G). () Frequency of NeuN positive neurons in the IGL of Ptc1™ and Ptc1*/IGF-I Tg mice.
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Figure 4 Effect of IGF-I transgene on size and weight of mouse brain. Representative H&E-stained sagittal sections of the brain from Ptc1*/*
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heterozygous mutation. Bar = 5.0 mm. (C) Graphic representation of brain weights at 3, 5 and 8 weeks of age. (D) The presence of IGF-I
transgene produced significant increase of brain weights both in Ptc7™* and Ptc1™" mice.

littermates (8.3-18.8%; P < 0.05; Figure 4C and 4D).
Despite the striking effect of the IGF-I transgene on
brain size, the overall neural development was rela-
tively normal and transgenic mice showed normal
appearance and behavior. On the whole, these results
indicate that the presence of either the IGF-I trans-
gene or of the Ptcl mutation leads to macrocephaly, as
brains were larger and weighted significantly more
compared with littermate controls. Furthermore, the
increment in brain weight observed in Ptc1*’ mice

carrying the IGF-I transgene suggests an independent
and cooperative effect of Shh and IGF-I pathways in
brain development.

IGF-1 has tumor promotion activity in medulloblastoma
tumorigenesis

As a next step, we determined the frequency of early
and fully developed medulloblastoma stages in the cere-
bellum of the F1 progeny of crosses between PtcI*~ and
IGF-I Tg mice. During postnatal cerebellar development,
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differentiating GNPs complete their migration from the
EGL to IGL by the third postnatal week. The presence
of EGL remnants in the cerebellum of Ptc1*’" mice,
which persist after the 3rd week of age, is considered
indicative of a differentiation defect of GNPs, suggestive
of a preneoplastic condition [8,9,12]. Notably, ectopic
EGL areas from 3-week old PtcI*~ mice markedly
expressed nestin, thus assuring the expression of the
nestin/IGF-I transgene from the initial steps of the
tumorigenic process (Figure 5A). To determine whether
IGF-I affects early tumor development, brains from
asymptomatic Ptcl1**, PtcI*/*/IGF-1 Tg, Ptc1* and
Ptc1*"/IGF-1 Tg mice at 3, 5 or 8 weeks were histologi-
cally examined and cerebellar pathology was assessed
(Figure 5B). At 3 weeks of age, medulloblastoma precur-
sor lesions were evident in 50% (9/19) of Ptc1*//IGE-I
Tg and (9/18) Ptc1™ mice. At 5 weeks, 52.2% (12/23) of
PtcI™/IGF-1 Tg mice presented cerebellar abnormalities
compared with 35.3% (6/17) of PtcI™” mice. The largest
effect of IGF-I transgene was evident at 8 weeks, when a
significant increase of preneoplastic lesions was observed
in PtcI™”/IGF-1 Tg compared with Ptc1* mice (85.7%,
18/21, vs. 40%, 6/15; P = 0.01). No ectopic EGL areas
were observed in the cerebellum of PtcI*'* and Ptcl
**/IGF-1 Tg mice. These findings suggest that the IGF-I
transgene, by protracting the susceptible phase of the
cerebellum to development of preneoplastic areas in the
cerebellum of Ptc1*” mice, fosters de novo formation of
EGL lesions.

The observation that IGF-I promotes the initial steps
of medulloblastoma growth in PtcI*" mice prompted us
to examine its influence on development of advanced
tumors. To this aim, the F1 progeny of crosses between
PtcI*” mice and IGF-I Tg mice was placed on a life-
time study and brain tumor development was moni-
tored. Notably, the IGF-I transgene produced a
significant acceleration of medulloblastoma development
(Figure 5C). By 15 weeks, 7 of 28 (25.0%) Ptc1*/IGF-1
Tg mice had developed medulloblastoma compared
with 1 of 30 (3.3%) Ptc1™ mice. At the end of the
experiment, 20 of 28 (71.4%) Ptcl1*/IGE-I Tg mice
developed medulloblastomas compared with 13/30
(43.3%,) Ptc1™ mice (P < 0.05). These data highlight
the influence of the IGF-I transgene on the malignant
potential of preneoplastic EGL. Up to 50% of young (3-
8 wks) PtcI*” mice show presence of precursor lesions
in cerebellum, and given a final medulloblastoma inci-
dence of 43%, about 86% of these preneoplastic areas
have potential to give rise to full tumors. The IGF-I
transgene caused a significant 2-fold increase in the fre-
quency of preneoplastic lesions (86%) in Ptc1* /IGE-I
Tg mice. Based on a final medulloblastoma incidence of
71%, the conversion rate of preneoplastic lesions was
unaltered compared to PtcI* mice (83% vs. 86%). This
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observation suggests that the IGF-I transgene results in
de novo formation of preneoplastic lesions but does not
modify their rate of progression to full tumors. How-
ever, IGF-I per se does not exert a tumor initiating
activity in vivo, as no medulloblastomas developed in
PtcI™*/IGF-1 Tg mice.

Histology of medulloblastomas revealed no major
morphological differences with respect to the presence
of IGF-I transgene (data not shown). Immunohisto-
chemistry of tumors from Ptcl*” mice showed a strong
expression of p-IGF-IR - the active IGF-IR form - loca-
lized on the outer part of the tumors, suggesting that
IGF signaling is required for medulloblastoma growth in
the Ptc1™” mouse model (Figure 5D). Interestingly,
tumors from PtcI*"/IGE-I1 Tg mice revealed a strong
and uniform p-IGF-IR staining throughout the tumor
mass (Figure 5E). This probably reflects a generalized
expression of the nestin/IGF-I transgene that follows the
spatial expression pattern of the nestin native gene
throughout the tumor (Figure 5F). We also examined by
immunohistochemistry the expression of IRS1, Akt/Pkb
and Erk1/2 kinases, downstream mediators of the IGF-I
signaling pathway, in medulloblastoma samples from
Ptc1*” and Ptc1*"/IGF-I1 Tg mice (n = 3). All the
tumors from single and compound mutants showed
IRS1, Akt and Erk 1/2 expression (Figure 5G, H, L and
5N), indicating that IGF signaling is required to main-
tain tumor growth in vivo. By immunoblotting, we
determined IRS1 expression, as well as total and phos-
phorylated Akt/Pkb and Erk 1/2 protein levels. All the
tumors strongly expressed IRS1 irrespective of the pre-
sence of IGF transgene, and showed a large intertumor
variability in the activation of Akt/Pkb and Erk 1/2 pro-
tein that did not correlate with transgenic IGF-I expres-
sion (Figure 5I, N and 50). To further investigate
whether the IGF-I transgene influences the mechanisms
of tumorigenesis, we assayed loss of the wild-type Ptcl
allele, a prerequisite for the biological switch to malig-
nancy of early cerebellar lesions in PtcI™ mice [9], in
medulloblastoma from compound mutants. Sequence
analysis of tumor DNA showed that, similar to medullo-
blastomas from PtcI*’” mice, tumors from Ptc1*/IGF-I
Tg mice (n = 3) also showed lack of wild type Ptcl
(data not shown). Altogether, these data indicate that
IGEF-I strongly modulates the penetrance of medulloblas-
tomas but not the molecular pathogenesis of tumors in
the PtcI*~ mouse model.

Discussion

Normal proliferation of GNPs in the cerebellum is
dependent upon Shh and IGF-I signaling, and deregula-
tion of both pathways is implicated in medulloblastoma
[4,5,21-23]. Constitutive activation of the Shh pathway -
frequently due to inactivating mutations of Ptcl - has
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been shown in approximately 30% of human medullo-
blastomas [1]. Molecular oncology studies in humans
and mice strongly implicated IGFs as additional causa-
tive factors for medulloblastoma. In fact, increased
expression levels of IGF-II have been shown in human
medulloblastomas, and overexpression of IGF-IR and
IGF-I mRNA was observed in medulloblastoma cell
lines [24,25]. In addition, a strong synergy between IGF
and Shh signaling pathways has been demonstrated by
using the RCAS/tv-a system, in which combined expres-
sion of IGF-II and Shh was shown to induce medullo-
blastoma at a significantly higher incidence compared
with Shh alone [23]. In this system, however, gene trans-
fer is performed in the cerebella of newborn mice, thus
hampering investigations on the early effects of such a
synergy on neural precursors, the proposed cells of ori-
gin of medulloblastoma. In the present study, we cross-
bred nestin/IGF-I1 Tg mice, in which transgene expres-
sion starts prenatally and is detectable in the cerebellar
primordium as early as embryonic day 13 [15], with
Ptcl*” mice, a faithful model of medulloblastoma reca-
pitulating the histopathology of the human tumor.
Importantly, the use of this novel genetic cross offers
the opportunity to study how interactions between Shh
and IGF-I signaling, starting during embryonic life,
affect development and neoplastic growth of neural pre-
cursors in neonatal cerebellum.

As already reported in a different line of IGF-I Tg
mice [19], we show here that transgenic expression of
IGF-I in the cerebellum during development produced
a hyperplastic EGL, characterized by neural precursors
exhibiting increased proliferation and decreased pro-
grammed cell death. We also report a novel effect of
the IGF-I transgene in our system, ie., a marked differ-
entiation defect, as shown by a reduced expression of
NeuN and a delayed disappearance of neural progeni-
tors from the EGL pool. Furthermore, in line with a
previous report that IGF-I promotes brain overgrowth
by stimulating neural cell proliferation and inhibiting
apoptosis in the cerebral cortex [15], we found that
nestin/IGF-1 Tg mice exhibited a marked generalized
brain overgrowth that also includes the cerebellum.
Moreover, we provide evidence that IGF-I overexpres-
sion in cerebellum cooperates with deregulation of the
Shh pathway to further enhance brain overgrowth in
double mutants, and to accelerate medulloblastoma
development by significantly increasing the incidence
of early, as well as full medulloblastoma stages in Ptcl
*JIGE-1 Tg compared with PtcI*" mice. These find-
ings identify a novel synergy of IGF-I and Shh signal-
ing pathways during cerebellum development and
confirm, in this new genetic cross, the robust coopera-
tion between IGF-I and Shh signaling in medulloblas-
toma tumorigenesis.
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Our findings also suggest that brain overgrowth and
increased tumor formation may stem from a common
mechanism favoring survival and proliferation of neural
precursors over terminal differentiation, thus stressing
the link between aberrant activation of developmental
pathways and tumorigenesis. On the other hand, we
have previously shown that the overexpression of PC3, a
gene that acts as a switch from proliferative to neuron-
generating cell fate, causing a marked increase of differ-
entiation in neuronal precursors and impairment of cer-
ebellar development [26], significantly inhibited
medulloblastoma tumorigenesis in Ptc1*” mice [27].
Taken together these findings indicate that sets of genes
controlling cell growth and differentiation may coordi-
nately modulate developmental patterns and susceptibil-
ity to cancer in CNS. In this respect, it is also worth
noting that height and weight at birth, relating to IGF-I
concentration in umbilical cord [28], have been found
to positively correlate with increased cancer risk in
humans [29-32].

Medulloblastomas from Ptc1™” and Ptc1*/IGF-1 Tg
mice both express active IGF-IR, although with a differ-
ent staining pattern probably reflecting the generalized
expression of the nestin/IGF-I transgene in tumors from
double mutants. Medulloblastomas from PtcI* and
Ptcl* /IGE-1 Tg mice also express IRS1, and show Akt
and Erk 1/2 activation, demonstrating a functional role
for the IGF-I signaling system in medulloblastoma for-
mation. Furthermore, IGF-I transgenic expression does
not influence the morphological characteristics of the
tumors, nor the genetic events in tumorigenesis, as Ptcl
inactivation represents the critical event in medulloblas-
toma development in both PtcI™" and Ptc1™"/IGF-1 Tg
mice. Altogether, these results indicate that IGF-I mod-
ulates tumor development in CNS of Ptc1™” mice but
does not alter the pathogenesis of tumor development.

A key question relative to the mechanism of cancer
promotion by IGF-I is whether it involves (i) tumor
initiation, through a pro-survival effect, leading to survi-
val of a mutated cell, or (ii) malignant conversion,
through a mitogenic effect that facilitates progression of
precancerous stages [33]. In this respect, our novel
mouse cross has proven useful. Through analysis of pre-
neoplastic cerebellar lesions we show that, although
IGF-I overexpression is not by itself carcinogenic in
CNS, it can nevertheless increase tumor penetrance in a
genetically susceptible model of human medulloblas-
toma by increasing the number of mice bearing medul-
loblastoma precursor lesions. On the contrary, we show
that the rate of conversion of early to fully malignant
tumor stages is not modified by IGF-I. Collectively,
these findings suggest that IGF-I may have a role as a
risk factor in susceptible individuals. Therefore, IGF-1
levels should be regarded as a tumor modifying factor
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concurring to determine individual susceptibility to can-
cer. From a more general standpoint, if such a basic
science findings translate to the human population, they
might have important general implications for tumori-
genesis. In fact, IGF-I signaling is also relevant to neo-
plasia in a number of other tissues such as peripheral
nervous system, skin, and prostate [34-38], and epide-
miological studies have linked high circulating levels of
IGF-I with increased cancer risk in breast, prostate and
colon cancer [39-44]. Interestingly, the hypothesis of
IGF-1 as modifier of disease risk is supported by a
recent report showing a strong association of IGF1 CA
repeat polymorphism and early onset of colorectal can-
cer in hereditary non-polyposis colorectal cancer
patients [45]. These observations provide a solid foot-
hold to pursue this topic further.

Conclusions

In summary, we made use of a novel genetic mouse
cross of deregulated Shh and IGF-I signaling to show
that brain growth patterns and tumor growth are modu-
lated by IGF-I host physiology. We have also identified
increased survival and proliferation and suppression of
differentiation in neural precursors as the underlying
biological mechanisms linking IGF-I signaling with brain
overgrowth and tumor development in a powerful
mouse model of medulloblastoma. Finally, we have
shown an important role of IGF-I altered expression in
the initiation and maintenance of early lesions en route
to medulloblastoma.

Understanding the molecular events responsible for
the normal developmental process of neural progenitor
cells, and how these are altered to sustain the tumori-
genic process is a necessary first step towards identifica-
tion of potential targets for therapeutic intervention.

Methods
Animals and genotyping
Mice lacking one Ptcl allele (Ptc , named Ptc
throughout the text) generated through disruption of
exons 6 and 7 in 129/Sv embryonic stem cells [46] and
maintained on C57BL/6 background were crossed to
IGF-I transgenic mice maintained on the same back-
ground and overexpressing Homo Sapiens IGF-1 (A.].
D’Ercole, University of North Carolina at Chapel Hill).
The mouse lines and F1 progeny resulting from cross-
ings were genotyped using primers specific for the neo
insert and wt regions of the Ptcl gene as described [46],
and primers specific for the human IGF-I transgene: 5'-
GGA CCG GAG ACG CTC TGC GG -3’ and 5 - CTG
CGG TGG CAT GTC ACT CT - 3.

Animals were housed under conventional conditions
with food and water available ad libitum and a 12-h

1 neo6-7/+ 1 +/-
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light cycle. Experimental protocols were reviewed by the
Institutional Animal Care and Use Committee.

RNA extraction and reverse transcription-polymerase
chain reaction

Total RNA was isolated from cerebella at postnatal day
5 (P5) using SV Total RNA Isolation System (Promega,
Madison, W1I) and stored at -80°C until further proces-
sing. Total RNA (2 pg) was reverse transcribed using
RETROscript (Ambion, Inc., Austin, TX) according to
the instructions of the manufacturer. The primer pairs
used were sense 5- TGG ATG CTC TTC AGT TCG
TG - 3’ and antisense 5’- CCT GCA CTC CCT CTA
CTT GC -3’ corresponding to the Homo Sapiens IGF-1
transgene cDNA, yielding a 265-bp product.

Histological analysis and tumor quantification

Mice were observed daily for their whole lifespan. Upon
decline of health (i.e., severe weight loss, paralysis, ruf-
fling of fur, or inactivity), they were euthanized and
autopsied. Brains were fixed in 4% buffered formalin.
Samples were then embedded in paraffin wax according
to standard techniques, sectioned and stained with
H&E. Medulloblastoma incidence was expressed as the
percentage of mice with the tumor.

Tissue collection

Asymptomatic PtcI*’*, Ptc1™*/IGF-1 Tg, Ptc1*” and Ptcl
*/IGF-1 Tg mice were euthanized at P5 or P15 and brains
were fixed in 4% buffered formalin and/or preserved at
-80°C. For determination of preneoplastic stages, asympto-
matic mice were also euthanized at 3, 5 or 8 weeks. The
brains were removed, weighted and fixed in 4% buffered
formalin to evaluate the incidence of hyperplastic areas in
the cerebellum. In all, 18 sections were examined for each
cerebellum with an interval of 70 um.

Immunohistochemistry and immunoblotting analysis
Immunohistochemistry analysis was carried out on 4-um
thick paraffin sections of cerebellum at P5 or on sections
of medulloblastoma samples. Antibody-antigen complexes
were visualized using a horseradish peroxidase-conjugated
secondary antibody and the DAB chromogen system
(Dako North America, Inc, Carpinteria, Ca). Immunohis-
tochemistry analysis of monoclonal antibody against
NeuN (Millipore Billerica, MA) and PCNA (Ab-1/PC-10,
Calbiochem, Germany) was performed using the Histo-
Mouse MAX Kit (Zymed Laboratories, San Francisco,
CA) according to the manufacturer’s instructions.

For immunoblotting, proteins (30 pg) were extracted
from a pool of 2 cerebella (P5) per genotype, and from
medulloblastomas developed in Ptc1™” and Ptc1™/IGF-I
Tg mice [47]. Proteins were visualized with horseradish
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peroxidase-conjugated secondary antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA) followed by chemilumi-
nescence detection (SuperSignal West Pico Chemilumi-
nescent Substrate; Pierce, Rockford, IL). Protein levels
were quantified by densitometric analysis using Scion
Image Beta 4.02 software package (Scion Corporation,
Frederick, MD). We used mouse anti-B-actin or anti-
Heat Shock Protein 70 (HSP-70) antibody (Sigma-
Aldrich Inc., St Louis, MO) to control protein loading.
Two to three blots were run for each set of samples.
Other antibodies used include rabbit polyclonal anti-
body against nestin (Abcam Ltd, Cambridge, UK), Ki-67
(Novocastra, Novocastra Laboratory, Newcastle, UK),
cleaved caspase-3 (Aspl75), IGF-I receptor 3, p-IGF-I
receptor B, Erk1/2, p-Erk1/2, p-Akt (Ser473), total Akt,
all from Cell Signaling (Beverly, MA), IRS-1 (Santa Cruz
Biotechnology), goat polyclonal antibody against human
IGF-I antibody (R&D System, MN), monoclonal anti-
body against cyclin D1 (Santa Cruz Biotechnology).

Analyses of proliferation and programmed cell death
Paraffin sections of cerebellar tissue of pups at P5 were
cut at 4 um thickness. Immunohistochemical analysis of
Ki-67, PCNA and caspase-3 were performed on brain
samples. Digital images of the entire midsagittal cerebel-
lar section from 3 mice were collected by IAS image-
processing software (Delta Sistemi, Rome, Italy). Ki-67-,
PCNA- and caspase-3 positive cells in the EGL were
counted. Rates of proliferation and apoptosis were cal-
culated as the percentage of positively stained cells rela-
tive to the total number of cells of the EGL.

LOH analysis at the Ptc1 locus

DNA was extracted from tumors and normal tissue of
Ptc1™ (n = 3) and Ptc1*"/IGF-1 Tg mice (n = 3) using
Wizard SV Genomic DNA Purification System (Pro-
mega). LOH analysis was performed as described [47].

Statistics

Statistical comparisons were made using Student’s t-test
and Fisher exact test. P values < 0.05 were considered
statistically significant.
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