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cells escape TNF-a.-induced cell death
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Abstract

Background: The cyclic AMP (cAMP) signaling pathway has been reported to either promote or suppress cell
death, in a cell context-dependent manner. Our previous study has shown that the induction of dynein light chain
(DLC) by cAMP response element-binding protein (CREB) is required for cAMP-mediated inhibition of mitogen-
activated protein kinase (MAPK) p38 activation in fibroblasts, which leads to suppression of NF-xB activity and
promotion of tumor necrosis factor-a. (TNF-a)-induced cell death. However, it remains unknown whether this
regulation is also applicable to fibroblastoma cells.

Methods: Intracellular CAMP was determined in L929 fibroblastoma cells after treatment of the cells with various
CcAMP elevation agents. Effects of CAMP in the presence or absence of the RNA synthesis inhibitor actinomycin D
or small interfering RNAs (siRNAs) against CREB on TNF-a-induced cell death in 1929 cells were measured by
propidium iodide (PI) staining and subsequent flow cytomety. The activation of p38 and c-Jun N-terminal protein
kinase (JNK), another member of MAPK superfamily, was analyzed by immunoblotting. JNK selective inhibitor D-
INKi1 and p38 selective inhibitor SB203580 were included to examine the roles of JNK and p38 in this process. The
expression of DLC or other mediators of CAMP was analyzed by immunoblotting. After ectopic expression of DLC
with a transfection marker GFP, effects of CAMP on TNF-a-induced cell death in GFP+ cells were measured by Pl
staining and subsequent flow cytomety.

Results: Elevation of cAMP suppressed TNF-a-induced necrotic cell death in L929 fibroblastoma cells via CREB-
mediated transcription. The pro-survival role of cAMP was associated with selective unresponsiveness of 1929 cells
to the inhibition of p38 activation by cAMP, even though cAMP significantly inhibited the activation of JNK under
the same conditions. Further exploration revealed that the induction of DLC, the major mediator of p38 inhibition
by cAMP, was impaired in L929 cells. Enforced inhibition of p38 activation by using p38 specific inhibitor or
ectopic expression of DLC reversed the protection of L929 cells by cAMP from TNF-a-induced cell death.

Conclusion: These data suggest that the lack of a pro-apoptotic pathway in tumor cells leads to a net survival
effect of cAMP.

Background

It is known that persistent stress and depression, which
leads to continuously elevated levels of stress hormones
such as epinephrine, may increase tumor incidence and
promote metastatic growth. Cyclic AMP (cAMP) is the
first identified intracellular mediator (second messenger)
of hormone action. The downstream effectors of
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cAMP—protein kinase A (PKA) and cAMP response
element-binding protein (CREB)—have been shown to
play a role in the tumorigenesis of endocrine tissues
[1,2]. Furthermore, it has been long disclosed that
cAMP elevation is associated with impaired cell death of
various tumor cells [3-10]. Since resistance to cell death
has been implicated in cancer pathogenesis, it is of great
importance to elucidate the mechanisms by which
cAMP plays a pro-survival role in tumor cells.

It is interesting that in non-malignant cells cCAMP can
either promote or suppress cell death depending on cell
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type and stimulus used [11-15]. The underlying mechan-
isms remain the topic of intensive studies. Our recent
work has revealed that, at least in fibroblasts, the cross-
talk between the cAMP signaling pathway and either
JNK (c-Jun N-terminal protein kinase) or p38 pathway
plays a key role in the regulation of cell death by cAMP
[14,15]. JNK and p38 are members of the mitogen-acti-
vated protein kinase (MAPK) superfamily [16-18]. The
activation of JNK and p38 are typically mediated by
sequential protein phosphorylation through a MAP
kinase module, that is, MAPK kinase kinase (MAP3K) —
MAPK kinase (MAP2K or MKK) —» MAPK, in response
to a variety of extracellular stimuli such as UV and
tumor necrosis factor alpha (TNF-a) [19-22]. In fibro-
blasts, the inhibition of JNK by cAMP confers resistance
to UV-induced cytotoxicity [15]. cAMP also significantly
inhibits TNF-a-induced JNK activation [14]. Even
though JNK has been shown to contribute to TNF-o.-
induced cell death in various types of cells including
fibroblasts [23-25], cAMP promotes TNF-a-induced cell
death in fibroblasts because it simultaneously inhibits
NEF-xB activity through dynein light chain (DLC)-
mediated suppression of p38 activation [14,15]. Thus,
the interplay of the pro-apoptotic pathway(s) and the
pro-survival pathway(s) determines the outcome. How-
ever, it remains unknown whether the same regulation
is also applicable to fibroblastoma cells.

The inhibition of either JNK or p38 by cAMP depends
on CREB-mediated transcription and involves upstream
MAP2K [14,15]. However, the major effectors of cAMP-
mediated inhibition of JNK or p38 activation are differ-
ent. The induction of DLC is required for cAMP-
mediated inhibition of p38 activation [14], whereas the
induction of the long form of cellular FLICE-inhibitory
protein (c-FLIP;) and MAPK phosphatase-1 (MKP-1) is
required for cAMP-mediated inhibition of JNK activa-
tion [15]. These observations suggest that the inhibition
of JNK or p38 by cAMP could be uncoupled in certain
cell context. In this work, we report that elevation of
intracellular cAMP suppressed TNF-a-induced necrotic
cell death in L929 fibroblastoma cells via CREB-
mediated transcription. The pro-survival role of cAMP
was associated with the lack of an inhibitory effect of
cAMP on the pro-survival activation of p38 by TNF-a,
even though cAMP significantly inhibited the activation
of JNK under the same conditions. The induction of
DLC, but not c-FLIP; and MKP-1, by cAMP was
impaired in L929 cells. p38 selective inhibitor or
enforced expression of DLC reversed the protection of
L929 cells by cAMP from TNF-o-induced cell death.
These data suggest that the lack of a pro-apoptotic
pathway in tumor cells leads to a net survival effect of
cAMP.
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Materials and methods

Reagents

Forskolin, prostaglandin E2 (PGE,), epinephrine, propi-
dium iodide (PI), and actinomycin D were purchased
from Sigma Chemical Co. (St. Louis, MO, USA). Anti-
bodies against phospho-JNK, JNK, phospho-p38, phos-
pho-CREB, CREB, and c-FLIP; were from Cell Signaling
Technology (Beverly, MA, USA). Antibodies against
p38, DLC, actin, and MKP-1 were from Santa Cruz Bio-
technology (Santa Cruz, CA, USA). Mouse TNF-a was
purchased from R&D Systems (Minneapolis, MN, USA).
D-JNKil was purchased from BioMol (Plymouth Meet-
ing, PA, USA). SB203580 was from Calbiochem (San
Diego, CA, USA). 6-MB-cAMP was from Biolog (Hay-
ward CA, USA). ECL chemiluminescence kit was
obtained from Amersham (Arlington Heights, IL, USA).
Cell culture and transfection

L929 cells were grown in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum,
2 mM glutamine, 100 U/ml penicillin, and 100 pg/ml
streptomycin. Small interfering RNAs (siRNAs) that tar-
get murine CREB were designed based on nucleotides
1084 to 1102 (#1) and 749 to 767 (#2) relative to the
translation start site, respectively, and purchased from
Dharmacon (Lafayette, CO, USA). pcDNA3.1 Xpress-
DLC has been described previously [14]. Transfection
was done with Amaxa nucleofection kit V (VCA-1003,
program T-20, Gaithersburg, MD, USA), according to
the manufacturer’s protocol.

cAMP measurements

Intracellular cAMP was determined in L929 cells using
the cCAMP enzyme immunoassay kit purchased from
Cayman Chemical (Ann Arbor, MI, USA). Samples were
prepared exactly as described by the manufacturer.
Immunoblotting analysis

Immunoblotting analysis was done as previously described
[26]. Briefly, adherent cells were washed with PBS and har-
vested with a cell scraper (Costars, Cambridge, MA, USA)
in ice-cold lysis buffer (0.5% NP-40, 20 mM Tris-Cl, pH
7.6, 250 mM NaCl, 3 mM EDTA, 3 mM EGTA, 1 mM
sodium orthovanadate, 1 mM DTT, 10 mM PNPP, 10 pg/
ml aprotinin). Cell lysates were resolved by SDS-PAGE
before transferring to nitrocellulose membranes. Nitrocel-
lulose membranes were then incubated with 5% (w/v)
nonfat dry milk in washing buffer (20 mM Tris-Cl, pH 7.6,
150 mM NaCl, and 0.1% Tween 20) for 1 h at 37°C to
block nonspecific protein binding. Primary antibodies
(1:1000) were diluted in washing buffer containing 3%
BSA and applied to the membranes for overnight at 4°C.
After extensive washing, the membranes were incubated
with peroxidase-conjugated antibodies for 1 h at room
temperature and washed again. Immunoreactive bands
were visualized with the ECL chemiluminescence kit.



Wang et al. Molecular Cancer 2010, 9:6 Page 3 of 11
http://www.molecular-cancer.com/content/9/1/6

Cell death assays Results

Cells were harvested by trypsin digestion. Dual staining  Forskolin suppresses TNF-a-induced necrotic cell death in
with FITC-conjugated Annexin V and PI was carried  L929 fibroblastoma cells

out to detect the induction of apoptotic cell death. Cells  Qur previous data have shown that cAMP promotes
were washed with PBS and resuspended in 200 uL of TNF-a-induced cell death in fibroblasts [14]. However,
HEPES buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 5 it remains unknown whether the same regulation is also
mM KCI, 1 mM MgCl,, 1.8 mM CaCl,) containing 1 applicable to fibroblastoma cells. For this purpose, 1929
pg/ml Annexin V-FITC and 5 pg/ml PI (Annexin V/PI  fibroblastoma cells were pretreated with the most widely
staining kit, BD Biosciences Pharmingen, San Diego, used cAMP elevation agent forskolin for 30 min [27],
CA, USA). Following incubation for 15 min at room  followed by stimulation with or without 10 ng/ml TNE-
temperature, cells were analyzed by flow cytometry o for 24 h. Surprisingly, cell death assay with Annexin-
(FACSCalibur; BD Biosciences, Franklin Lakes, NJ,  V/PI double staining revealed that forskolin significantly
USA). Annexin V-positive/PI-negative cells were apop-  suppressed TNF-o-induced cell death in 1L929 fibroblas-
totic, whereas Annexin V/PI double positive cells were  toma cells (Figure 1). TNF-a induced marginal cell
necrotic. A simple way to detect necrosis is PI staining.  death in fibroblasts [14] (data not shown). However,
After washing with PBS, the pellet was stained with PI  TNF-a induced massive cell death in 1L929 cells (Figure
at a concentration of 5 pug/ml in PBS and incubated at  1). The majority of L929 cells undergoing cell death
room temperature in the dark for 5 min, which was fol-  were Annexin-V/PI double positive (Figure 1), consis-
lowed by flow cytometry. tent with the previous finding that TNF-o treatment of
Statistical analysis L929 cells leads to a caspase-independent cell death
The data were shown as mean + standard deviations  with necrotic phenotype [28,29]. A Simple way to detect
(SD). The Student’s ¢-test was used to compare the dif- necrosis is PI staining [28,29]. Therefore, TNF-o.-
ference between the two groups. The difference was induced cell death in 1929 cells can be simply analyzed

considered statistically significant when p < 0.05. with PI staining.
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Figure 1 Forskolin significantly suppresses TNF-a-induced necrotic cell death in L929 fibroblastoma cells. L929 cells were pretreated
with or without forskolin (FSK, 10 uM, 30 min) and then stimulated with 10 ng/ml TNF-a for 24 h or left untreated. Cell death was measured by

Annexin-V/PI double staining. The percentages of cell death are shown in the lower panel as mean + SD; n = 3. Upper panel is representative of
three independent experiments. **p < 0.01.
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Various cAMP elevation agents suppress TNF-a-induced
cell death in L929 cells

To make sure that forskolin suppresses TNF-a-induced
cell death in L929 cells because of the elevation of
cAMP, the cells were pretreated with physiologically
relevant cAMP inducers PGE, and epinephrine [3,30].
PI staining revealed that under the conditions that phar-
macological agent forskolin significantly suppressed
TNF-a-induced cell death in L929 cells, physiologically
relevant cAMP inducers PGE, and epinephrine exhib-
ited similar effects (Figure 2A). Furthermore, 6-MB-
cAMP, a site-selective activator of PKA [14], also sup-
pressed TNF-a-induced cell death in L929 cells (Figure
2A). All these agents led to increased intracellular
cAMP in a time-dependent manner (Figure 2B). More-
over, the different ability of these agents to increase the
concentration of intracellular cAMP was correlated with
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the extent these cAMP elevators suppressed TNF-a-
induced cell death in L929 cells (Figure 2A). Taken
together, these data suggest that cAMP-PKA pathway
suppresses TNF-o-induced cell death in L929 cells.
cAMP suppresses TNF-o-induced cell death in L929 cells
via CREB-mediated transcription

Our previous data suggest that cAMP regulates TNF-o.-
induced cell death in fibroblasts via CREB-mediated
transcription [14]. Consistent with this notion, forsko-
lin-, PGE,-, epinephrine-, and 6-MB-cAMP-induced
CREB phosphorylation at Ser133 (Figure 3A), which is
required for CREB activation [31-33], corresponded to
the extent these cAMP elevators activated intracellular
cAMP (Figure 2B) and suppressed TNF-a-induced cell
death in L929 cells (Figure 2A). To further analyze the
mechanism by which cAMP suppresses TNF-a-induced
cell death in L1929 cells, the cells were pretreated with
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Figure 2 Various cAMP elevation agents suppress TNF-a-induced cell death in L929 cells. A, L929 cells were pretreated with or without
forskolin (10 uM), PGE, (10 uM), epinephrine (Epin, 100 uM), or 6-MB-cAMP (6-MB, 100 uM) for 30 min, followed by stimulation with or without
10 ng/ml TNF-a for 24 h. Cell death was measured by Pl staining. The percentages of cell death are shown in the right panel as mean + SD; n
= 3. Left panel is representative of three independent experiments. *p < 0.05. B, 1929 cells were treated with forskolin (10 uM), PGE, (10 uM),
epinephrine (Epin, 100 puM), or 6-MB-cAMP (6-MB, 100 uM) for various times as indicated. Intracellular cAMP was determined using the cAMP
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or without forskolin, followed by treatment with TNF-a
in the presence or absence of the RNA synthesis inhibi-
tor actinomycin D. Because 10 ng/ml TNF-a rapidly
induced more than 70% cell death in the presence of
actinomycin D (data not shown), the concentration of
TNEF-o was titrated down. 2 ng/ml TNF-a treatment for
12 h led to only 7% cell death in the absence of actino-
mycin D, which was significantly suppressed by forskolin
(Figure 3B). However, in the presence of actinomycin D
the same dose of TNF-a resulted in about 35% cell
death, though actinomycin D itself showed no detectable
effect on the survival of L929 cells (Figure 3B). These
data are consistent with the previous finding in the lit-
erature that blockade of de novo protein synthesis sig-
nificantly enhances TNF-a-induced cell death. [34,35]
The suppression of TNF-a-induced cell death by forsko-
lin was abolished by actinomycin D (Figure 3B). These
data suggest that cAMP suppresses TNF-a-induced cell
death in L929 cells in a transcription-dependent
manner.

The cAMP pathway activates several transcription fac-
tors, including CREB, CREM, and ATF-1 [31-33].
Among them, CREB is the major effector of the cAMP
pathway [31-33]. We used CREB siRNAs to test whether
CREB mediates the suppression by cAMP of TNF-a.-
induced cell death in 1L929 cells. Immunoblotting analy-
sis revealed that CREB siRNAs specifically inhibited
CREB expression and abolished the basal and forskolin-
stimulated CREB phosphorylation (Figure 3C). Transfec-
tion of 1929 cells with CREB siRNAs but not the nega-
tive control siRNA reversed the suppression of TNF-a.-
induced cell death by forskolin (Figure 3D). Moreover,
CREB siRNA #2, which was more efficient than CREB
siRNA #1, led to increased sensitivity of L929 cells to
TNEF-a-induced cell death. Consistently, the suppression
by forskolin of TNF-a-induced cell death was also abol-
ished by ACREB, a specific CREB inhibitor that utilizes
its acidic amphipathic extension to prevent the basic
region of CREB from binding to DNA [36] (data not
shown). Taken together, these data suggest that CREB
plays a pro-survival role in TNF-a-induced cell death in
L929 cells, and cAMP suppresses TNF-o-induced cell
death in 1929 cells via CREB-mediated transcription.
cAMP inhibits TNF-a-induced JNK activation, but not p38
activation, in L929 cells
Our recent work has revealed that, at least in fibroblasts,
the crosstalk between cAMP-PKA-CREB pathway and
either JNK or p38 pathway plays a key role in the regu-
lation of cell death by cAMP [14,15]. Now that cAMP
suppresses TNF-o-induced cell death in 1929 fibroblas-
toma cells via CREB-mediated transcription, it is of
importance to investigate the effects of cCAMP on the
activation of JNK and p38 in this cell context. For this
purpose, L929 cells were pretreated with or without
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forskolin for various periods of times and then stimu-
lated with TNF-a for 15 min or left untreated. Immuno-
blotting analysis revealed that TNF-a-induced
phosphorylation of JNK at Thr183 and Tyr185, which is
required for JNK activation [20], was inhibited by for-
skolin in a biphasic manner. The inhibition occurred
from 30 to 90 min and decreased at 120 min after the
pretreatment with forskolin (Figure 4A). The kinetics in
the inhibition of JNK activation by forskolin was corre-
lated with its effects on intracellular cAMP (Figure 2B).
However, forskolin pretreatment showed no significant
effect on TNF-a-induced phosphorylation of p38 at
Thr180 and Tyr182, which is required for p38 activation
[21,22], under the same conditions (Figure 4A). Similar
results were obtained when L929 cells were pretreated
with PGE,, epinephrine, and 6-MB-cAMP (Figure 4B).
The different ability of these agents to inhibit the activa-
tion of JNK was correlated with the extent these cAMP
elevators increased intracellular cAMP (Figure 2B), acti-
vated CREB (Figure 3A), and suppressed TNF-a-
induced cell death in L929 cells (Figure 2A). cAMP
uncoupled JNK activation and p38 activation not only in
response to TNF-a, but also in response to UV (Figure
4C). Furthermore, cAMP inhibited the basal level of
JNK phosphorylation, but not p38 phosphorylation, in
L1929 cells (Figure 4D). Taken together, these data sug-
gest that cAMP uncouples JNK activation and p38 acti-
vation in L929 cells.

JNK activity is required for TNF-a-induced cell death in
L929 cells

Blockade of total JNK activity has been shown to result
in impaired cell death in response to TNF-a in various
types of cells [23-25]. Because cAMP significantly inhib-
ited TNF-a-induced JNK activation in 1929 cells, it is of
interest to know the role of JNK in TNF-a-induced cell
death in L929 cells. For this purpose, L929 cells were
pretreated with or without the selective JNK inhibitor
D-JNKil (10 uM) [37], and then stimulated with TNF-a
or left untreated. Cell death assay revealed that D-JNKil
significantly suppressed TNF-a-induced cell death in
L1929 cells (Figure 5), suggesting that JNK contributes to
TNF-a-induced cell death in 1929 cells. Thus, our data
suggest CAMP suppresses TNF-a-induced cell death in
L929 cells via, at least partially, inhibition of JNK
activity.

Inhibition of p38 activity reverses the protection of L929
cells by cAMP from TNF-a-induced cell death

Our previous study has shown that cAMP negatively
regulates p38 activation, thereby contributing to TNF-o.-
induced apoptosis in fibroblasts [14]. Now that L929
cells exhibited selective unresponsiveness to p38 inhibi-
tion by cAMP and showed impaired cell death in
response to TNF-o with cAMP pretreatment, it is possi-
ble that the lack of an inhibitory effect of cCAMP on the



Wang et al. Molecular Cancer 2010, 9:6 Page 6 of 11

http://www.molecular-cancer.com/content/9/1/6

e N
A
Ctrl FSK PGE, Epin 6-MB
1B - . e +— P-CREB
IB e eams aass e e «—CREB
R e p—— v
B
2 control o ActD . TNF-0 ) . —
CH o [res%w f . [2.86%| * [7.43%)
| { ot
; SR
3 =
! , 8
‘— - A
TNF-a+FSK  TNF-g+ActD TNF-a+ActD+FSK O & = |
1 221 Y (3582% ° 38.21%
‘ | I |
i [ el T 0
g RSl = g = e o
| FSK - - - + - 4
PI” TNF-oo - - + + + +
Cc
+ ‘e g e NC-siRNA
- + - - + - CREB-siRNA #1
- -+ = - + CREB-siRNA #2
- - = % + + FSK
—_— &= w— — « P-CREB
B o o oo a» @ "= PATF
IB - —— — e —== — <+ CREB
IB S e e e e < Actin
E =
D ctrl TNFo  TNF-a+FSK £ 83 S
Q o g = [ - oE 5 i;r":; S o
D 5.93% | [37.46% @ ;/21.86% =
» ; | 2 : 100,
g 4 B | o | 5 NC- 1
| i { & | % SiRNA i
= - 80} =
v : ‘ : ;‘\: ok
| [asow|| | [ser2% | il4s.08% < 60}
| 2. | . CREB- 5
F : s ; SiRNA #1 Q 40
| ¥ | = s °
N (N | ) . ARSI | R S SRR | (¥}
S 20
L e84 | (T770% i 8B.21%
: | g&t| | S8 || [cREB-
F A0 T e —
- o TNFa - + + - + + = + +
Pl
Figure 3 cAMP suppresses TNF-o-induced cell death in L929 cells via CREB-mediated transcription. A, L929 cells were treated with
forskolin (10 pM), PGE, (10 puM), epinephrine (100 uM), or 6-MB-cAMP (100 uM) for 30 min. Phosphorylation of CREB and expression of CREB and
actin were analyzed by immunoblotting (IB). B, L929 cells were treated with or without actinomycin D (ActD, 1 ug/ml, 30 min) prior to forskolin
treatment (10 pM, 30 min), followed by stimulation with or without 2 ng/ml TNF-a for 12 h. Cell death was measured by Pl staining. The
percentages of cell death are shown in the right panel as mean + SD; n = 3. Left panel is representative of three independent experiments. C,
1929 cells were transfected with CREB siRNAs or the negative control (NC) siRNA (200 nM each). After 72 h, cells were stimulated with or
without forskolin (10 uM, 30 min). Phosphorylation of CREB and expression of CREB and actin were measured by immunoblotting. D, L929 cells
were transfected with CREB siRNAs or the negative control siRNA (200 nM each). After 48 h, cells were pretreated with or without forskolin (10
pM, 30 min), followed by stimulation with or without 10 ng/ml TNF-a for 24 h. Cell death was monitored by Pl staining. The percentages of cell
death are shown in the right panel as mean + SD; n = 3. Left panel is representative of three independent experiments.
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pro-survival activation of p38 by TNF-a helps 1L929 cells
escape TNF-a-induced cell death. To test this scenario,
1929 cells were pretreated with or without forskolin, fol-
lowed by treatment with TNF-a in the presence or
absence of the selective p38 inhibitor SB203580 (1 uM)
[38,39]. Cell death assay revealed that 1 uM SB203580
significantly reversed the protection of L929 cells by
cAMP from TNF-a-induced cell death (Figure 6). Thus,
our data suggest that the inhibition of p38 activation
over-rides the pro-survival effects of cAMP in TNF-o.-
induced cell death. Loss of an inhibitory effect of cAMP
on p38 activation might help certain types of tumor
cells escape from TNF-a-induced cell death.

Selective unresponsiveness to the inhibition of p38
activation by cAMP results from impaired induction of
DLC

Our previous studies have revealed that the major effec-
tors of cAMP-mediated inhibition of JNK or p38 activa-
tion are different. The induction of DLC is required for
cAMP-mediated inhibition of p38 activation [14],

whereas the induction of c¢-FLIP; and MKP-1 is
required for cAMP-mediated inhibition of JNK activa-
tion [15]. Because cAMP uncoupled JNK activation and
p38 activation in 1929 cells and loss of a cAMP-depen-
dent inhibition of p38 activation might be the key
mechanism by which 1929 cells escapes TNF-a-induced
cell death, it is of great importance to investigate
whether DLC induction by cAMP is impaired in L929
cells. For this purpose, L929 cells were treated with for-
skolin for various periods of times. Immunoblotting ana-
lysis revealed that up-regulation of c-FLIP; and MKP-1
occurred from 30 to 90 min and decreased at 120 min
after the pretreatment with forskolin (Figure 7A), which
was correlated with the inhibition of JNK activation
(Figure 4). However, there was no detectable up-regula-
tion of DLC under the same conditions (Figure 7A).
Thus, DLC induction by cAMP is indeed impaired in
L929 cells. Ectopic expression of DLC significantly
inhibited p38 activation induced by TNF-a either in the
presence or absence of forskolin (data not shown).
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Furthermore, enforced expression of DLC reversed the
protection of L929 cells by forskolin from TNF-o-
induced cell death (Figure 7B). Taken together, these
data suggest that selective unresponsiveness to the inhi-
bition of p38 activation by cAMP might result from
impaired induction of DLC.

Discussion

It has been long disclosed that cAMP elevation is asso-
ciated with impaired cell death of various tumor cells
[3-10]. In this work, we show that treatment of 1.929
fibroblastoma cells with various cAMP elevation agents
led to increased intracellular cAMP in a time-dependent
manner (Figure 2B). cAMP increased following stimula-
tion for 30 and 60 min and thereafter partially declined
(Figure 2B). This increase and decline of cAMP were
consistent with the so-called “biphasic” inhibition of
JNK activation (Figure 4A) and the induction of MKP-1
and c-FLIPy (Figure 7A). Elevation of cAMP was asso-
ciated with suppressed cell death in response to TNF-a
(Figure 2A). Even though intracellular cAMP decreased

partially after stimulation with forskolin for 90 min, the
levels of intracellular cAMP remained much higher than
no stimulation control in several hours (Figure 2B and
data not shown). Recently, it has been shown that TNF-
o induced a gradual, time-dependent increase in cAMP
levels that reached a maximum after 8-10 h of stimula-
tion in synovial fibroblasts [40]. Similar increase in
cAMP levels were also seen in 1L929 cells in response to
TNF-a [see Additional file 1]. Even though the TNF-a-
induced cAMP was weak and showed no statistically
significant effect on total intracellular cAMP induced by
forskolin [see Additional file 1], it could not be excluded
the possibility that the TNF-a-induced cAMP might
collaborate with cAMP elevation agents to suppress cell
death. Specific blockade of the TNF-a-induced cAMP
might address this issue.

Extensive studies have revealed that cAMP might pro-
mote the survival of tumor cells by various mechanisms.
PKA-mediated phosphorylation of the proapoptotic Bcl-
2 family protein BAD at Ser112 sequesters BAD in the
cytoplasm through interaction with 14-3-3, thereby
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preventing BAD interaction with Bcl-2/Bcl-XL on the
mitochondrial membrane [3]. Several CREB target genes
such as c¢-FLIPy, Bcl-2, and ¢-IAP-2 have been estab-
lished to play an anti-apoptotic role [8,9,15,41]. Eleva-
tion of cAMP in B cell precursor acute lymphoblastic
leukaemia (BCP-ALL) cells is shown to profoundly inhi-
bit DNA damage-induced cell death, which depends on
the ability of elevated cAMP levels to quench DNA
damage-induced p53 accumulation by increasing the
p53 turnover [10].

In this study, our data suggest that cAMP suppresses
TNEF-a-induced cell death in L929 cells via CREB-
mediated transcription (Figure 3 and data not shown).
Blockade of transcription with actinomycin D or block-
ade of CREB activation with CREB siRNAs or ACREB
reversed the suppression of TNF-a-induced cell death
by cAMP (Figure 3 and data not shown). Therefore, the
possible phosphorylation of BAD by PKA is not enough
for cAMP to play a pro-survival role in TNF-a-induced
cell death in 1929 cells. It is not clear how CREB activa-
tion mediated the pro-survival effect of cAMP in this
cell context. Since the protein levels of Bcl-2 and c-
IAP2 have been implicated in the resistance of L929
cells to TNF-a-induced cell death [42,43], the induction
of certain anti-apoptotic protein(s) by CREB may play a
key role in the suppression by cAMP of TNF-a-induced
cell death. Besides directly inhibiting the death machin-
ery, the CREB target gene(s) such as c-FLIP; might also
suppress TNF-a-induced cell death via regulating JNK
activity [15]. The different ability of cCAMP elevators to
inhibit the activation of JNK (Figure 4B) was correlated

with the extent these agents increased intracellular
cAMP (Figure 2B), activated CREB (Figure 3A), and
suppressed TNF-o-induced cell death in L929 cells (Fig-
ure 2A). Moreover, functional inhibition of JNK activity
was enough to antagonize TNF-a-induced cell death in
L929 cells (Figure 5). Thus, JNK inhibition should be
part of the pro-survival cAMP mechanism in TNF-o.-
induced cell death in L929 cells.

Not only cAMP-stimulated CREB activity protected
L1929 cells from TNF-a-induced cell death, but also the
basal CREB activity might affect the extent of cell death.
L929 cells exhibited considerable basal level of phospho-
CREB (Figure 3A and 3C). The basal CREB activity
might render L929 cells resistant to TNF-a-induced cell
death to certain extent by maintaining the protein levels
of anti-apoptotic protein(s). The two siRNAs tested
reduced CREB levels to different extents (Figure 3C),
and the siRNA with greater CREB depletion exhibited a
significant effect on TNF-a-induced cell death in the
absence of an exogenous cAMP stimulus (Figure 3D).
These data suggest that at a certain threshold of CREB
depletion, a basal anti-apoptotic effect of CREB is lost,
leading to a more significant level of cell death in the
presence of TNF-a. This novel finding further suggests
a protumorigenic role for CREB.

Despite that cAMP induces a similar activation of
CREB in fibroblasts, cAMP promotes TNF-a-induced
cell death in fibroblasts because it simultaneously inhi-
bits NF-xB activity through DLC-mediated suppression
of p38 activation [21,22]. The inhibitory effect of cAMP
on the pro-survival activation of p38 by TNF-a was
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Figure 7 Selective unresponsiveness to the inhibition of p38 activation by cAMP resulted from impaired induction of DLC. A, 1929 cells
were treated with forskolin (10 uM) for various times as indicated. The expression of c-FLIP;, MKP-1, DLC and actin was analyzed by
immunoblotting. B, L929 cells were transfected with a mammalian expression vector encoding Xpress-DLC or the empty vector (2 pug each well)
with a transfection marker GFP (0.5 ug each well). After 24 h, the cells were pretreated with or without forskolin (10 uM, 30 min) and then
stimulated with 10 ng/ml TNF-a for 24 h or left untreated. Cell death was measured by Pl staining. The percentages of cell death in GFP+ cells
are shown in the right panel as mean + SD; n = 3. Left panel is representative of three independent experiments.

lacking in L1929 fibroblastoma cells, which might be due
to loss of a cAMP-dependent induction of DLC. Because
the enforced inhibition of p38 activation by using p38
specific inhibitor or ectopic expression of DLC reversed
the protection of L929 cells by cAMP from TNF-a-
induced cell death, it is the lack of a pro-apoptotic path-
way that leads to a net survival effect of cCAMP in L929
fibroblastoma cells. It remains unknown why the induc-
tion of DLC, but not ¢-FLIP; and MKP-1, by cAMP was
impaired in L929 cells. Future studies are required to
address this issue.

Additional file 1: Effects of TNF-a. on the levels of intracellular
cAMP with or without forskolin. L929 cells were treated with 10 ng/ml
TNF-a for various periods of time as indicated with or without 10 pM
forskolin. Intracellular cAMP was measured using the cAMP enzyme
immunoassay kit.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1476-4598-9-6-

S1.PDF]
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