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Epidermal growth factor receptor regulates
b-catenin location, stability, and transcriptional
activity in oral cancer
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Abstract

Background: Many cancerous cells accumulate b-catenin in the nucleus. We examined the role of epidermal
growth factor receptor (EGFR) signaling in the accumulation of b-catenin in the nuclei of oral cancer cells.

Results: We used two strains of cultured oral cancer cells, one with reduced EGFR expression (OECM1 cells) and
one with elevated EGFR expression (SAS cells), and measured downstream effects, such as phosphorylation of
b-catenin and GSK-3b, association of b-catenin with E-cadherin, and target gene regulation. We also studied the
expression of EGFR, b-catenin, and cyclin D1 in 112 samples of oral cancer by immunostaining. Activation of EGFR
signaling increased the amount of b-catenin in the nucleus and decreased the amount in the membranes. EGF
treatment increased phosphorylation of b-catenin (tyrosine) and GSK-3b(Ser-(9), resulting in a loss of b-catenin
association with E-cadherin. TOP-FLASH and FOP-FLASH reporter assays demonstrated that the EGFR signal
regulates b-catenin transcriptional activity and mediates cyclin D1 expression. Chromatin immunoprecipitation
experiments indicated that the EGFR signal affects chromatin architecture at the regulatory element of cyclin D1,
and that the CBP, HDAC1, and Suv39h1 histone/chromatin remodeling complex is involved in this process.
Immunostaining showed a significant association between EGFR expression and aberrant accumulation of
b-catenin in oral cancer.

Conclusions: EGFR signaling regulates b-catenin localization and stability, target gene expression, and tumor
progression in oral cancer. Moreover, our data suggest that aberrant accumulation of b-catenin under EGFR
activation is a malignancy marker of oral cancer.

Background
The Wnt/b-catenin pathway plays important roles in
morphogenesis, normal physiological functions, and
tumor formation. At the molecular level, b-catenin is
involved in two apparently independent processes, cell-
cell adhesion and signal transduction [1]. In the absence
of a mitotic signal, b-catenin is sequestered in a
“destruction complex” which consists of the adenoma-
tous polyposis coli (APC) gene product, casein kinase 1
(CK1), a serine threonine glycogen synthetase kinase
(GSK-3b), and axin, an adapter protein [2]. This
destruction complex is phosphorylated and degraded by
the ubiquitin-proteasome system [2]. b-catenin also
plays a role in the transcription activation pathway [3,4].

Following stimulation of mitosis signal, b-catenin accu-
mulates in the cytoplasm, moves to the nucleus, and
then binds to a member of the TCF/LEF-1 family of
transcription factors that modulate expression of TCF/
LEF-1 target genes [5-7]. Previously, we and others
reported that aberrant expression of b-catenin was com-
mon in oral cancer and this change correlated with the
malignancy index and patient prognosis [8,9]. However,
the molecular mechanisms that lead to aberrant expres-
sion of b-catenin in oral cancer are unclear, and the
mechanisms by which b-catenin promotes activation of
target genes are also not well understood.
Certain mutations of APC or b-catenin increase

b-catenin signaling, leading to overexpression of onco-
genes and promotion of neoplastic growth [10-15].
However, for some cancers, b-catenin accumulates in
the nucleus even though mutation of b-catenin or APC* Correspondence: ndmcyss@ndmctsgh.edu.tw
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is rare. For example, in endometrial cancers, 12 of 20
cases (60%) exhibited b-catenin accumulation in the
nucleus, but only two of these cases had mutations in
the b-catenin gene [16]. In hepatocellular carcinomas,
nearly 50% of cases exhibited nuclear accumulation of
b-catenin, but APC mutation was very rare and only 16-
26% of cases had mutations in b-catenin [10,17-19].
Similar findings have been reported for oral cancer [8].
Therefore, it is possible that mechanisms other than
mutation are involved in the aberrant b-catenin expres-
sion observed in tumors.
Recent reports have suggested that receptor tyrosine

kinases (RTKs) can regulate b-catenin function [20,21].
Epidermal growth factor receptor (EGFR) is a member
of the receptor tyrosine kinase family, and overexpres-
sion of EGFR is associated with poor prognosis and pro-
gression of many human cancers, including oral cancer
[22,23]. At the molecular level, stimulation of EGFR
induces intrinsic tyrosine kinase activity and cellular sig-
naling that results in cell growth and proliferation.
EGFR stimulation is associated with perturbation of
E-cadherin-mediated cell adhesion, development of
fibroblast-like morphology, and increased cell motility in
certain tumors [24-26]. Moreover, EGFR interacts with
the b-catenin core region and induces tyrosine phos-
phorylation of catenins in several types of tumors
[27,28]. This raises the possibility that EGFR signaling
may play a role in the regulation of b-catenin. It is not
yet known whether EGFR plays a role in the aberrant
expression of b-catenin that is seen in oral cancer.
In the present paper, we describe the effect of EGFR

signaling on the nuclear accumulation of b-catenin in
oral cancer. This extends our previous research into the
mechanisms that underlie aberrant accumulation of
b-catenin.

Methods
Cell culture and reagents
All cell lines were maintained in DMEM or RPMI1640
media that were supplemented with 10% bovine serum
and 1% gentamycin. Cells were maintained in a humidi-
fied atmosphere containing 5% CO2 at 37°C and the
medium was changed three times per week. Cell lines
were grown until they were 89-90% confluent. All cul-
tures were negative for mycoplasma infection.
Recombinant human EGF was obtained from R&D

Systems (Minneapolis, MN, USA), EGFR inhibitor
(AG1478) from A.G. Scientific (San Diego, CA, USA),
lithium chloride from Acros Organics Co. (Geel, Bel-
gium), Erbitux from Merck (Darmstadt, Germany),
mouse anti-E-cadherin and mouse anti-b-catenin from
BD Transduction Lab (Lexington, KY, USA), phospho-
GSK-3b (Ser-9), phorpho-b-catenin (Ser33/37/Thr41),

EGFR antibody, and phosphor-tyrosine antibody from
Cell Signaling Technologies (Beverly, MA, USA), anti-
HDAC1, anti-cyclin D1, goat anti-rabbit IgG-HRP, don-
key anti-goat IgG-HRP, and protein A/G Plus-Agarose
immunoprecipitation reagent from Santa Cruz Biotech-
nology (CA, USA), anti-Suv39h1 (05-615), anti-acetyl
histone H4 (06-88-66), anti-trimethyl-histone H3K9
(07-442), and anti-trimethyl-histone H3K4 (07-473)
from Upstate Chemicon (Temecula, CA, USA), rabbit
anti-mouse IgG conjugated to HRP antibody from
Novus Biologicals (Littleton, CO, USA), anti-human
EGFR and anti-CBP, anti-Lamin B1, and anti-alpha-
tubulin from Abcam (Cambridge, UK).

Patients and tissue specimens
All specimens were obtained from the archives of Tri-
Service General Hospital (Taipei, Taiwan) and included
112 samples of oral squamous cell carcinoma (HNSCC).
The study design was approved by the Internal Review
Board of Tri-Service General Hospital (TSGHIRB 095-
05-116). More detailed information about the specimens
was provided previously [29]. A series of 5-μm sections
were cut from each tissue block. A 5 μm flanking sec-
tion was stained with hematoxylin and eosin (H&E) for
pathological evaluation and to identify the cancerous
and normal regions. Serial sections were used for immu-
nohistochemistry (IHC).

Cell fractionation and Western blotting
Cellular fractionation was performed as described pre-
viously [30]. Briefly, cells were washed twice with ice-
cold phosphate-buffered saline, harvested by scraping
with a rubber policeman, and lysed in a buffer (20 mM
HEPES, pH 7.0, 10 mM KCl, 2 mM MgCl2, 0.5% Noni-
det P-40, 1 mM Na3VO4, 10 mM NaF, 1 mM phenyl-
methanesulfonyl fluoride, 2 μg/mL aprotinin). After
incubation on ice for 10 min, the cells were homoge-
nized by 20 strokes in a tightly fitting Dounce homoge-
nizer. The homogenate was centrifuged at 1,500 × g for
5 min to sediment the nuclei. The supernatant was then
centrifuged at 16,000 × g for 20 min, with the resulting
supernatant considered the non-nuclear fraction. The
nuclear pellet was washed three times with lysis buffer
to remove contamination from cytoplasmic membranes.
To extract nuclear proteins, isolated nuclei were resus-
pended in NETN buffer (150 mM NaCl, 1 mM EDTA,
20 mM Tris-Cl, pH 8.0, 0.5% Nonidet P-40, 1 mM
Na3VO4, 10 mM NaF, 1 mM phenylmethanesulfonyl
fluoride, and 2 μg/mL aprotinin), and the mixture was
sonicated briefly to facilitate nuclear lysis. Nuclear
lysates were collected after centrifugation (16,000 × g
for 20 min at 4°C). Samples of each lysate were sub-
jected to electrophoresis on an 8% SDS-polyacrylamide
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gel. Then, proteins were transferred to nitrocellulose
membranes, immunoblotted with antibodies, and
detected by electrochemiluminescence.

Preparation of cell lysates and immunoprecipitation
Cell monolayers were rinsed with 1× Tris-based saline
(TBS) and then scraped into 1 mL of TBS. After a brief
centrifugation, cells were solubilized in 1 mL of cell lysis
buffer (150 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1
mM EDTA, 1% TRITON® X-100 plus 1:100 protease
inhibitor cocktail, P8340 from Sigma, and 1:100 phos-
phatase inhibitor cocktails, P5726 from Sigma). Before
immunoprecipitation (IP), all samples were centrifuged
at 12,000 × g for 30 minutes to remove insoluble cellu-
lar debris. For IP studies, lysates were pre-cleared for 1
h by use of protein A/G PLUS-agarose (sc-2003, Santa
Cruz Biotechnology, CA, USA), incubated with antibo-
dies at 4°C, and then treated with protein A/G PLUS-
agarose for an additional 1 h. Immunoprecipitates were
then washed 4 times with 1 mL TBS. After heating at
95°C for 10 minutes, proteins were resolved on SDS-
PAGE, transferred to PVDF membranes for Western
blot analysis, and immunoblotted with antibodies.

Luciferase reporter assays
SAS and OECM1 oral cancer cells were plated in
24-well dishes and incubated overnight at 37°C. The fol-
lowing day, cells were transfected with 1 μg of b-cate-
nin-LEF/TCF-sensitive (TOP) or b-catenin-LEF/TCF-
insensitive (FOP) reporter vector using Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. On the following day, cells
were washed with serum-free medium and treated with
EGF (OECM1 cells; 100 ng/μL) or AG1478 (SAS cell;
20 μM). Reporter assays were performed using the luci-
ferase reporter system (Promega, Madison, WI, USA).

Chromatin immunoprecipitation assay
The chromatin immunoprecipitation assay (ChIP) was
performed using a kit from Upstate (Lake Placid, NY,
USA) according to the manufacturer’s instructions.
Briefly, following treatment, cells were washed with PBS,
cross-linked with 1% formaldehyde for 10 min, rinsed
with ice-cold PBS, collected into PBS containing pro-
tease inhibitors, and then resuspended in lysis buffer
(1% SDS, 10 mM EDTA, 50 mM Tris at pH 8.1 with 1%
protease inhibitor cocktails). Cells were sonicated to
produce 200-1000 bp of DNA fragments, followed by
centrifugation to remove insoluble material. Samples
were precleared for 1 h at 4°C with 60 μL of a 50%
slurry of protein G agarose and salmon sperm. DNA
immunoprecipitation was performed with indicated anti-
bodies. Then, cross-links were reversed, and the bound
DNA was purified by phenol:chloroform extraction. RT-

PCR was performed using primers specific for human
cyclin D1 promoter (5’-CCGACTGGTCAAGGTAG-
GAA-3’ and 5’-CCAAGGGGGTAACCCTAAAA-3’).
PCR reactions were run with PCR Master Mix (Pro-
mega), which consisted of 30 cycles of: 94°C × 30 s,
55°C × 30 s, and 72°C × 1 min, followed by 5 min at
72°C. PCR products were analyzed by 1.5% agarose gel
electrophoresis, visualized with ethidium bromide, and
then photographed. Images were saved as TIFF files and
then analyzed with ImageJ http://rsb.info.nih.gov/ij/. Sig-
nal intensities of the PCR data obtained from ChIP
assays or from whole-cell lysates (Input DNA) were
quantified from TIFF images by use of ImageJ, and then
compared to the signal obtained for input control. Each
ChIP experiment was repeated at least three times, and
representative results are shown. Means and standard
deviations (SDs) were calculated from the signal
intensities.

Immunohistochemistry
Specimens that were embedded in paraffin blocks were
cut into 5-μm sections. These were routinely stained
with H&E for histological diagnosis, and additional
sequential sections were selected for immunohistochem-
ical studies. Immunodetection was performed with a
standard DAKO EnVision stain system (Dako Corp,
Carpinteria, CA, USA). Sections were dewaxed and sub-
jected to antigen heat retrieval. Endogenous peroxidase
activity and nonspecific binding were blocked by incuba-
tion with 3% hydrogen peroxide and nonimmune serum,
respectively. Slides were then incubated sequentially
with primary antibodies (16 h at 4°C) and DAKO
labeled polymer secondary antibody (1 h at room tem-
perature, then peroxidase-labeled polymer (30 min at
room temperature). Diaminobenzidine hydrochloride
(DAB) was used to visualize peroxidase activity. Then,
sections were counterstained with hematoxylin and a
cover slip was added prior to visualization.

Assessment of immunoreactivity
Using a semi-quantitative scale described previously [8],
the staining results of EGFR and cyclin D1 were classi-
fied as “high” or “low” staining. Briefly, in the clyclin D1
staining, tumors were evaluated as high if more than
10% of cells displayed nuclear staining and as low if
otherwise. For the EGFR staining, scores representing
the percentage of stained cancer cells were as follows: 0,
no stained cells; 1, 1%-30%; 2, 31%-50%; and 3, >50%.
Intensity was graded from 0 (no staining) to 3 (strong)
in comparison with normal epithelium. Tumors were
defined as high EGFR expression if the final score was 5
or 6 and as low if otherwise. The staining results for
b-catenin were classified as membranous or cytoplas-
mic/nuclear, as in a previous report [8]. Briefly, tumors
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were regarded as cytoplasmic/nuclear stain if unequivo-
cal cytoplasmic and/or nuclear staining was present in
at least one area of the tumor, and membranous stain if
b-catenin was localized solely in the membrane. Immu-
nostaining results were evaluated by two investigators
(YSS and LCC) who had no prior knowledge of the his-
topathologic features of the tumor or the clinical status
of the patient from whom the cell lines were obtained.

Statistical analysis
A c2 test was used to assess the relationship of the
results of the immunohistochemical determination of
EGFR, b-catenin, and cyclin D1 expression and the clin-
ical features of patients. P values less than 0.05 were
considered statistically significant.

Results
APC and b-catenin mutation in oral cancer cell lines
In many cancers, activation of the Wnt/b-catenin path-
way is associated with mutations of APC and b-catenin,
with exon 15 of APC and exon 3 of b-catenin the most
common mutation sites [10,31]. Our initial examination
of five oral cancer cell lines (SAS, SCC25, YD8, YD38,
and OECM1) found no evidence of mutations of APC
or b-catenin (data not shown).

EGFR signal-mediated subcellular localization of b-catenin
To investigate the effect of the EGFR signal on b-catenin
redistribution, we used two lines of oral cancer cells, SAS
and OECM1. SAS cells have elevated levels of EGFR, and
were used for loss-of-function assays; OECM1 cells have
reduced levels of EGFR and were used for gain-of-function
assay. When OECM1 cells were treated with EGF, which
activates EGFR, the amount of nuclear b-catenin increased
over time (Figure 1A). After one day, cells became elon-
gated and spindle-shaped (resembling mesenchymal cells)
and had greatly reduced cell-cell contacts (Figure 1C).
When SAS cells were treated by AG1478, which inhibits
the EGFR signal, there was a decrease of nuclear b-cate-
nin, and an increase in membranous b-catenin (Figure
1B), and cells had the typical epithelial phenotype, with
close cell-to-cell contacts (Figure 1C).

EGFR signal- induced phosphorylation of b-catenin and
GSK-3b
To determine whether the phosphorylation of b-catenin
or GSK-3b is associated with the nuclear translocation
of b-catenin, we treated cells with AG1478 or EGF and
examined the phosphorylation status of b-catenin and
GSK-3b. Treatment of SAS cells with AG1478 markedly
suppressed the phosphorylation of GSK-3b (Ser-9) and
b-catenin (tyrosine) (Figure 2A); treatment of OECM1
cells with EGF increased the phosphorylation of GSK-3b
(Ser-9) and b-catenin (tyrosine) (Figure 2A).

GSK-3b phosphorylates cytosolic b-catenin at Ser-33,
Ser-37, and Thr-41 prior to b-catenin degradation, but
phosphorylation of GSK-3b at Ser-9 inhibits its kinase
activity. Thus we measured the phosphorylation of
b-catenin at these three residues by use of phosphoryla-
tion-specific antibodies. As shown in Figure 2A,
AG1478 increased the phosphorylation of b-catenin at
all three sites in SAS cells, but treatment with EGF led
to decreased phosphorylation of all three sites in
OECM1 cells. Then we examined the effect of EGFR on
the formation of complexes of E-cadherin and b-catenin.
The results indicate that inhibition of EGFR by AG1478
increased the amount of b-catenin that was associated
with E-cadherin in SAS cells (Figure 2B), and that EGF
decreased the amount of b-catenin associated with E-
cadherin in OECM1 cells (Figure 2B). We observed
similar results when performing immunoprecipitation
for E-cadherin (Figure 2B).

Effect of EGFR signal on transcription activity of b-catenin
Activation of the EGFR signal leads to nuclear transloca-
tion of b-catenin. Thus, we determined whether b-cate-
nin-mediated promotion of transcription in cancer cells
also depended on EGFR activity. Nuclear-localized b-
catenin interacts with transcription factors of the TCF
family, leading to increased expression of genes such as
cyclin D1. Therefore, we tested RNA and protein levels
of cyclin D1 using RT-PCR and Western blotting. EGF
markedly stimulated cyclin D1 expression in OECM1
cells, and LiCl (a GSK-3b inhibitor) had a similar effect
(Figure 3A). In contrast, AG1478 markedly decreased
cyclin D1 expression in SAS cells, and Erbitux (an EGFR
monoclonal antibody) had a similar effect (Figure 3B).
Next, we examined the effect of the EGFR signal on

TCF transcriptional activity by transfected with the TCF
luciferase reporter (TOP-FLASH) or a control vector
(FOP-FLASH) in cells. Activated EGFR signal increased
TCF transcriptional activity in OECM1 cells (Figure
3C), and inhibition of the EGFR signal suppressed tran-
scription activity in SAS cells (Figure 3D).

Histone modification and chromatin remodeling in the
regulation of cyclin D1 expression
Transcriptional activation is preceded by the formation
of an activation complex with ATP-dependent chroma-
tin remodeling enzymes and histone acetyltransferase in
the promoter regions. Thus, we performed ChIP assays
with primers that encompassed the cyclin D1 promoter
region to test for site-specific histone modification and
chromatin remodeling in the mediation of EGFR-regu-
lated cyclin D1 expression. In OECM1 cells treated with
EGF or LiCl, there was significantly increased associa-
tion of the cyclin D1 promoter with CBP (a transcrip-
tional co-activator) and a decrease in HDAC1 (a histone
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Figure 1 Effect of EGFR on the subcellular distribution of b-catenin in oral cancer cell lines. Time-dependent effects of EGF or AG1478 on
the subcellular distribution of b-catenin in OECM1 (A) and SAS (B) cells. Cancer cells were treated with EGF (100 ng/mL) or AG1478 (20 μM/mL)
for the indicated time, and b-catenin was assayed by Western blotting. (C) Immunocytochemical staining of b-catenin in oral cancer cells. EGF
treatment of OECM1 cells induced scattering of cancer cells, breakup of cell-cell junctions, and decreased level of membranous b-catenin (upper
panels). AG1478 treatment of SAS cells led to close cell-to-cell contact and abundant membranous b-catenin (lower panels).
Immunofluorescence for b-catenin (Rhodamine, Red) and the nucleus (Dapi) in cultured cells was performed 24 h following treatment. Cells
were permeabilized with 100% methanol, blocked with 1% BSA, and incubated with the antibody for 30 min. A rhodamine conjugated antibody
was used as the secondary antibody.

Figure 2 Effects of EGFR signal on the phosphorylation and function of b-catenin and GSK-3b. (A) AG1478 treatment of SAS cells
decreased phosphorylation of GSK-3b (Ser-9) and b-catenin (Tyr). EGF treatment of OECM1 cells increased phosphorylation of GSK-3b (Ser-9) and
b-catenin (Tyr), as determined by immunoprecipitation of GSK-3b or b-catenin. (B) In SAS cells, association of E-cadherin and b-cadherin
increased following treatment with AG1478; in OECM1 cells, association of E-cadherin and b-catenin decreased following treatment with EGF as
determined by immunoprecipitation of E-cadherin or b-catenin.
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deacetylase) and Suv39h1 (a histone methyltransferase)
(Figure 4A). In addition, analysis of histones in this area
indicated an increase of methylated histone H3K4 and
acetylated histone H4, and a decrease of methylated his-
tone H3K9 (Figure 4A). Treatment of SAS cells with
AG1478 or Erbitux significantly decreased CBP, methy-
lated histone H3K4, acetylated histone H4, and
increased HDAC1, Suv39h1, and methylated histone
H3K9 association with the cyclin D1 promoter.

Association of EGFR, b-catenin, and cyclin D1
immunostaining in oral cancer
To investigate the clinical significance of our results
with cultured cells, we performed immunohistochemical
analysis of 112 samples of oral cancer and adjacent nor-
mal epithelium. In normal epithelial cells, there was
weak expression of EGFR in basal and parabasal layers,

homogeneous membranous staining of b-catenin, and
rare or undetectable presence of cyclin D1 (Figures 5A-
C). In tumor cells, there was elevated EGFR immunor-
eactivity in most samples (Figure 5D), decreased
membranous staining and increased cytoplasmic/nuclear
staining of b-catenin (Figure 5E), and positive staining
for cyclin D1 (Figure 5F). Notably, in some serial sec-
tions of tumor cells, there was high EGFR immunoreac-
tivity that was accompanied by cytoplasmic and nuclear
b-catenin staining and high cyclin D1 immunostaining
(Figure 6).
We observed reduced EGFR immunostaining in 66

samples (59%), and elevated expression of EGFR in 46
samples (41%). A blinded observer scored 86 samples
(77%) as membranous b-catenin staining and 26 cases
(23%) as cytoplasmic/nuclear b-catenin staining. The
observer scored 59 samples (53%) as having low cyclin

Figure 3 EGFR signaling regulates cyclin D1 expression and b-catenin/TCF transcription activity. (A) Cyclin D1 expression increased when
OECM1 cells were treated with EGF or LiCl (a GSK-3b inhibitor). (B) SAS cells treated with AG1478 or Erbitux had suppressed cyclin D1
expression. RNA and protein were isolated 24 h after treatment and subjected to RT-PCR and Western blotting. (C, D) TOP-FLASH or FOP-FLASH
were transfected into OECM1 (C) or SAS (D) cells which were then treated with EGF, LiCl, AG1478, or Erbitux. Luciferase activity was determined
after 24 h. Relative changes in expression are shown compared with the levels of FOP-FLASH in untreated (control) cells. Data represent
means ± SDs of three independent experiments. Column, mean fold change; bar, SD.
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Figure 4 ChIP assay in the cyclin D1 regulation element. (A) OECM1 cells treated with EGF or LiCl, and SAS cells treated with AG1478 or
Erbitux. (B, C) Quantification of proteins is described in “Materials and Methods” (B, OECM1 cells; C, SAS cells). (CT, control; H3K4me, H3K4
methylation; H3K9me, H3K9 methylation; H4ac, H4 acetylation).

Figure 5 Immunohistochemical staining of EGFR, b-catenin, and cyclin D1 in oral cancer and adjacent normal tissues. EGFR-positive cells
located in the basal and parabasal layer of a normal epithelium (A). b-catenin exhibited homogeneous expression in the membrane (B), and
cyclin D1 expression was weak/undectectable (C). In tumor tissues, there was an increase of intensity and percentage of EGFR staining (D) and a
loss of membranous stain (arrow head), increased cytoplasmic and nuclear accumulation (arrow) of b-catenin (E), and increased positive-staining
cells of cyclin D1 (F). (Original magnifications; A, D: ×-20; B, E: ×-100; C, F: ×-400)
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D1 staining and 53 cases (47%) with high cyclin D1
staining.
We examined the association of these results with var-

ious clinicopathologic features of the patients (Table 1).
We found significant correlation of EGFR expression
and tumor stage (P = 0.042), b-catenin and tumor size
(P = 0.025) and stage (P = 0.031), and of EGFR expres-
sion and b-catenin cytoplasmic/nuclear expression and
cyclin-D1 immunoactivity (P < 0.0001 for both) (Table
2). However, there was no significant correlation
between b-catenin and cyclin D1 expression.

Discussion
Dysregulation of the Wnt/b-catenin signaling pathway
has been linked to various human cancers, and this dys-
regulation is often associated with mutations in the

b-catenin destruction complex components or in b-cate-
nin itself [26,32]. However, b-catenin signaling is ele-
vated in oral cancer cells even though mutations of APC
and b-catenin are rare. This suggests that alternative
mechanisms may contribute to b-catenin dysregulation.
The present study demonstrated that the EGFR signal
participates in the dysregulation of b-catenin in oral
cancer. First, we found that the EGFR signal stabilized
b-catenin and enhanced b-catenin nuclear accumulation
by phosphorylated regulation. Moreover, we also showed
that histone markers of open or repressed chromatin
control the expression of cyclin D1, a b-catenin target
gene. Finally, our study of oral cancer patients suggests
that b-catenin-mediated cross-talk between EGFR and
Wnt signaling may underlie the effect of EGFR during
tumor development.

Figure 6 Immunohistochemical staining of EGFR, b-catenin, and cyclin D1 in oral cancer. Representative serial sections showed the area in
tumor with high EGFR immunoreactivity (A) that was accompanied by cytoplasmic and nuclear b-catenin staining (B) and high cyclin D1
immunostaining (C). (Original magnifications; A, B, C: ×-20).

Table 1 Association of clinical features of patients and immunohistochemical expression of EGFR, b-catenin,
and cyclin D1

EGFR expression b-catenin expression Cyclin D1 expression

Low High Mem C/N Low High

Clinicopathologic features (n = 66) (n = 46) (n = 86) (n = 26) (n = 59) (n = 53)

Gender

Male (n = 93) 56 37 70 23 55 38

Female (n = 19) 10 9 16 3 9 10

Size

≤4.0 cm (n = 66) 43 23 55 11* 37 29

> 4.0 cm (n = 46) 23 23 31 15 27 19

LN involvement

No (n = 64) 33 31 17 23 38 26

Yes (n = 48) 22 26 18 14 21 27

Differentiation

Well (n = 41) 28 13 32 9 23 18

Moderate (n = 43) 22 21 32 11 25 18

Poor (n = 28) 16 12 22 6 16 12

Staging

Early (n = 50) 35 15** 43 7*** 30 20

Advanced (n = 62) 31 31 43 19 34 28

LN, lymph node; Mem, membranous; C/N, cytoplasmic/nuclear. *, p = 0.042; **, p = 0.025; ***, p = 0.031.
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Numerous cell signals can impact b-catenin function. It
was recently demonstrated that numerous oncogenic tyr-
osine kinases promote accumulation of b-catenin in the
nuclei of different types of cancer [33-36]. EGFR is the
most commonly overexpressed receptor tyrosine kinase
in oral cancer [22]. The present study showed that an
activated EGFR signal decreased membrane-bound
b-catenin, increased nuclear accumulation of b-catenin,
and induced mesenchymal cell morphology. This result
was consistent with previous reports that the EGFR sig-
nal is associated with perturbation of E-cadherin-
mediated cell adhesion, acquisition of fibroblast-like cell
morphology, and increases in cell motility that are pre-
sumably related to tumor invasion and metastasis
[37,38]. b-catenin plays a critical structural role in cad-
herin-based cell-cell adhesion and is also an essential
coactivator of Wnt-mediated gene expression. The extent
to which b-catenin participates in these two functions is
controlled by the availability of b-catenin binding part-
ners, and there is increasing evidence that these binding
interactions are regulated by phosphorylation. For exam-
ple, binding of b-catenin to E-cadherin and to a-catenin
was substantially reduced when tyrosine in b-catenin was
phosphorylated by EGFR [27,39]. Moreover full activa-
tion of GSK-3b generally requires phosphorylation of
Tyr-216, whereas phosphorylation of Ser-9 inhibits GSK-
3b activity. Therefore, our results suggest that the EGFR
signal enhances accumulation of b-catenin in the nuclei
of oral cancer cells directly, by phosphorylation of b-cate-
nin, and indirectly, by stabilization of b-catenin through
phorsphorylation and inhibition of GSK-3b.
The identification of many nuclear partners of b-cate-

nin indicates that this protein functions as a transcrip-
tion regulator by covalent modification of chromatin
[40,41]. Many of these nuclear partners regulate chro-
matin structure by histone modification and chromatin
remodeling. In the present study, the results of our
ChIP assay demonstrated that an activated EGFR signal
greatly increased the amount of CBP/P300 coactivator
and reduced the amount of HDAC1 and Suv39h1 in the
regulatory element of cyclin D1. A previous study

showed that the central repeats of b-catenin (span R3-
R10) is the region that interacts with TCF [42]. In the
absence of a nuclear b-catenin, TCFs recruit Groucho
(TLF1 in mammals), a long-range chromatin repressor
that functions with histone deacetylases (HDACs) to
compress local chromatin and inhibit transcription
[43,44]. Upon stimulation, b-catenin enters the nucleus
and competes with Groucho for TCF binding, thus
replacing the repressor with an activation scaffold [45].
Our results showed that the extent of H3K4 methylation
(H3K4me3) increased significantly following activation
of cyclin D1 transcription by b-catenin in EGFR-acti-
vated cells, and that it gradually declined when the gene
was inactivated in EGFR-inhibited cells. H3K4me3 is
more common in active genes, and is believed to pro-
mote gene expression via recognition by transcription-
activating effector molecules [46]. A recent study
showed that H3K4me3 also regulates another b-catenin
target gene, c-myc [47]. To the best of our knowledge,
this is the first report to demonstrate b-catenin regu-
lated cyclin D1 via histone modification/chromatin
remodeling. Taken together, our results suggest that the
EGFR signal promotes nuclear accumulation of b-cate-
nin, which ultimately forms b-catenin-TCF complexes
with histone-acetylating activity, and that these displace
the repressor complexes. These b-catenin complexes
remodel the chromatin structure of target gene promo-
ters so that they are more accessible to the basal tran-
scription machinery, thus enhancing transactivation of
genes that leads to cellular responses.
The results of our experiments with cancer tissues

corroborated the results of our experiments with cul-
tured cells. In cancer tissues, EGFR expression corre-
lated with the presence of nuclear b-catenin, and
nuclear b-catenin correlated with the tumor malignancy
index. This implicates the EGFR signal in mediating
entry of b-catenin into the nucleus and progression of
oral cancer. Our results are consistent with other studies
which reported that nuclear b-catenin was present in
19-23% of oral cancer cells and associated with prolif-
eration, invasiveness, and poor outcome of oral cancer

Table 2 Relationships among EGFR, b-catenin, and cyclin D1 expression

b-catenin expression Cyclin D1 expression

Mem C/N p value Low High p value

EGFR

Low (n = 66) 63 3 <0.0001 49 17 <0.0001

High (n = 46) 23 23 15 31

b-catenin
Mem 53 33 0.065

C/N 11 15

Total 64 48

Mem, membranous; C/N, cytoplasmic/nuclear.
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[8,48]. In contrast, Gasparoni et al. reported that nuclear
b-catenin was rare in oral cancer and found no clear
association between intranuclear b-catenin and histo-
pathological and malignancy indexes in vivo [49]. The
discrepancies between these studies could be explained
by their use of different antibodies and methodologies.
Although we did not find a close association between
expression of nuclear b-catenin and cyclin D1, we did
observe an association of nuclear b-catenin with the
amount of cyclin D1 expression in some samples. This
may be because multiple mechanisms regulate cyclin D1
expression in oral cancer cells [50,51]. For example, it is
known that cyclin D1 amplification participates in over-
expression of this gene in oral cancer [52,53]. Thus, in
oral cancer, overexpression of cyclin D1 is more com-
mon than nuclear b-catenin expression (42% vs. 23%)
[8]. Taken together, EGFR activation is an alternative
mechanism that induces b-catenin translocation to the

nucleus of certain oral cancer cells. We suggest that
measurement of the activation of this pathway may be a
useful marker for measuring the progression of oral
cancer.

Conclusions
In summary (Figure 7), our study demonstrated that, in
addition to mutation of APC and b-catenin, oncogenic
changes downstream of EGFR play important roles in
regulating the nuclear translocation of b-catenin, a pro-
cess that remodels histone/chromatin binding regions in
target genes, and ultimately leads to the progression of
oral cancer.
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Figure 7 Proposed model of a EGFR/b-catenin/cyclin D1 signaling pathway in oral cancer. EGFR induces phosphorylation of b-catenin
(Tyr) and GSK-3b (Ser-9). Phosphorylation of b-catenin (Tyr) leads to its dissociation from membranes. Phosphorylation of GSK-3b (Ser-9) inhibits
its kinase activity so that b-catenin is not degraded, but is translocated to the nucleus. In the absence of an EGFR signal, b-catenin target genes
are occupied by a repression complex (e.g., HDAC and Suv39h1), and histones in this area are in a compressed status, marked by high level of
H3K9 methylation. Following EGFR signal activation, nuclear-translocated b-catenin combines with TCF/LEF transcription factors to recruit
coactivators (e.g., CBP, Brg, etc.) to the regulatory element. These replace the repression complexes, leading to decompression of chromatin and
high level of histone acetylation and H3K4 methylation.
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