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In-depth genomic data analyses revealed complex
transcriptional and epigenetic dysregulations of
BRAFV600E in melanoma
Xingyi Guo1,2, Yaomin Xu1,3,4 and Zhongming Zhao1,4,5*
Abstract

Background: The recurrent BRAF driver mutation V600E (BRAFV600E) is currently one of the most clinically relevant
mutations in melanoma. However, the genome-wide transcriptional and epigenetic dysregulations induced by
BRAFV600E are still unclear. The investigation of this driver mutation’s functional consequences is critical to the
understanding of tumorigenesis and the development of therapeutic strategies.

Methods and results: We performed an integrative analysis of transcriptomic and epigenomic changes disturbed
by BRAFV600E by comparing the gene expression and methylation profiles of 34 primary cutaneous melanoma tumors
harboring BRAFV600E with those of 27 BRAFWT samples available from The Cancer Genome Atlas (TCGA). A total of 711
significantly differentially expressed genes were identified as putative BRAFV600E target genes. Functional enrichment
analyses revealed the transcription factor MITF (p < 3.6 × 10−16) and growth factor TGFB1 (p < 3.1 × 10−9) were the most
significantly enriched up-regulators, with MITF being significantly up-regulated, whereas TGFB1 was significantly
down-regulated in BRAFV600E, suggesting that they may mediate tumorigenesis driven by BRAFV600E. Further investigation
using the MITF ChIP-Seq data confirmed that BRAFV600E led to an overall increased level of gene expression for the MITF
targets. Furthermore, DNA methylation analysis revealed a global DNA methylation loss in BRAFV600E relative to BRAFWT.
This might be due to BRAF dysregulation of DNMT3A, which was identified as a potential target with significant
down-regulation in BRAFV600E. Finally, we demonstrated that BRAFV600E targets may play essential functional roles in
cell growth and proliferation, measured by their effects on melanoma tumor growth using a short hairpin RNA
silencing experimental dataset.

Conclusions: Our integrative analysis identified a set of BRAFV600E target genes. Further analyses suggested a complex
mechanism driven by mutation BRAFV600E on melanoma tumorigenesis that disturbs specific cancer-related genes,
pathways, and methylation modifications.
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Introduction
Next-generation sequencing has enabled us to identify
numerous genetic alternations in melanoma genomes.
These genetic alterations provide us with opportunities
not only to investigate the novel insights into the mo-
lecular mechanisms of melanoma tumorigenesis but also
to provide a new discovery basis for the identification of
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biomarkers for personalized targeted therapies [1-3].
So far, several driver genes including BRAF, NRAS,
KIT, GNAQ, and GNA11 have been characterized and
routinely used in clinical screenings for melanoma
[4-6]. Other clinically relevant mutations or genes as-
sociated with those driver genes were systematically
explored from 241 melanoma genomes [7]. Among
these driver genes, the BRAF mutation at position 600
(BRAFV600) occurs in approximately 50% of melanoma
patients, and among them, V600E accounts for
approximately 79% [8]. The BRAFV600 in melanoma
tumor genomes is currently one of the most clinically
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Figure 1 Workflow for identifying significantly altered
transcriptional and epigenetic regulations associated with
the BRAFV600E driver mutation in melanoma. Matched
expression A) and methylation profiles B) are built for BRAFV600E and
BRAFWT samples. Expression and methylation data in the column
highlighted in the same color are derived from the same sample. We
used the Snowball approach (top) to identify significantly and
differentially expressed genes. A schematic demonstration of the
Snowball approach for the identification of BRAFV600E putative targets is
shown in the top right panel. Gene expression profiles for multiple
cancer samples are measured in two groups, BRAFV600E and
BRAFWT. All genes (g1-g7) can be powerfully detected based on
their co-expression profiles from the BRAF mutation and wild-type
groups (for details see Materials and methods). The LIMMA method
was applied to detect differential methylation loci between BRAFV600E

and BRAFWT samples (bottom).
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relevant mutation sites in melanoma [4,9]. Import-
antly, BRAF inhibitors such as vemurafenib and dabra-
fenib have been developed as targeted therapies for
melanoma patients that harbor the BRAFV600E muta-
tion. These compounds have provided tremendous
clinical benefit to personalized cancer treatment; un-
fortunately, like other inhibitors, patients eventually
develop resistance after treatment [10-12].
The exploration of the functional consequences of the

transcriptional dysregulations of BRAFV600E is critical to
the understanding of tumorigenesis and the potential
discovery of targeted therapy. BRAF is part of the
mitogen-activated protein kinase (MAPK) pathway that
regulates cell growth and proliferation. The gain-of-
function in BRAFV600E is well-known to highly activate
the MAPK kinase pathway that promotes tumor cell
growths in melanoma [13]. In recent years, several
groups have explored the downstream genes promoted
by BRAFV600E [14,15]. For example, Kannengiesser et al.
[14] identified a few hundred genes associated with
BRAFV600E through the differential analysis of micro-
array gene expression data in a survey of 69 human
primary cutaneous melanoma tumors. Interestingly,
they observed that most of those BRAFV600E regulated
genes controlled by MITF were associated with over-
expression. Through the investigation of transcriptome-
wide changes using transduction BRAFV600E on primary
human melanocytes, Flockhart et al. [15] have recently
reported approximately one thousand mRNA tran-
scripts that may be impacted by BRAFV600E.
Accumulating evidence has shown that aberrant

methylation leads to the initiation and progression of
tumorigenesis and this has been recognized as a hall-
mark of cancer [16,17]. Aberrant methylation in specific
cancer genes has been reported to contribute to
melanoma development [18-20]. Although the gain-
of-function of BRAFV600E can promote specific target
genes and pathways, to what extent the epigenetic
modifications (i.e. DNA methylation) are involved and
how to interplay within this process has been poorly
understood.
The Cancer Genome Atlas (TCGA) project gener-

ated massive high-throughput genomic data, including
mutation, DNA methylation, and transcription profiles
for several hundred melanoma samples. These data
provide us with an unprecedented opportunity for in-
depth exploration of the functional consequences of a
driver mutation (e.g., BRAFV600E) on tumors that inte-
grate multiple types of genomic data. For this purpose,
we performed an integrative analysis of the transcrip-
tional and epigenetic alterations associated with a
driver mutation (BRAFV600E) and applied it to the pri-
mary and metastatic tumor cutaneous melanoma sam-
ples available from TCGA.
Results
Differential gene co-expression analyses identified
putative targets of BRAFV600E

To identify the genes and related pathways perturbed by
BRAFV600E, we developed a novel statistical approach,
named Snowball, to identify differentially expressed
genes based on their aggregated association between co-
expression patterns and BRAFV600E mutation status. We
identified the regulatory network modules that were sig-
nificantly associated with BRAFV600E with a permutation
p < 0.05, followed by a Weighted Gene Co-expression
Network analysis (see Materials and methods, Figure 1A)
[21]. As a result, a total of 711 putative target genes were
identified including 330 down-regulated and 381 up-
regulated genes (Additional file 1). Figure 2A shows a
heat-map of expression patterns in the BRAFV600E and
BRAFWT samples for those significantly associated genes
identified by Snowball.
Next, we used Ingenuity Pathway Analysis (IPA) to

examine the functional categories and biological pathways



Figure 2 Functional analysis of BRAFV600E target genes
identified in primary tumor samples. A) Heat-map showing the
differential signals for BRAFV600E target genes identified by Snowball
approach. B) Enriched functional categories of the BRAFV600E target
genes. * refers to genes in CGC catalogue.

Figure 3 MITF and TGFB1 dysregulated by BRAFV600E driver
mutation in primary tumor samples. Boxplots show significantly
higher expressions of MITF but lower expressions of TGFB1 in
BRAFV600E, as compared to BRAFWT samples.
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of those putative BRAFV600E target genes. A significant
portion of them were cancer-related (p < 1.6 × 10−8), in-
cluding 20 genes from the Cancer Gene Census (CGC)
catalogue (Figure 2B). In particular, cellular growth, prolif-
eration, and development were found to be most overrep-
resented in molecular function, which was consistent with
previous studies that found the BRAF mutation activates
the MAPK pathway to facilitate various cellular processes
[22-24] (Figure 2B). The most significantly enriched ca-
nonical pathway was the Aryl Hydrocarbon Receptor Sig-
naling pathway (AHR pathway, p < 3.0 × 10−6), which
belongs to the basic helix-loop-helix/Per-Arnt-Sim family
of transcription factors (Figure 2B). This pathway has been
reported to regulate xenobiotic metabolizing enzymes
such as cytochrome P450 and has been demonstrated to
cross-talk with the MAPK pathway [25,26]. Recent studies
revealed that the AHR pathway is involved in various sig-
naling pathways that are critical to cell proliferation and
differentiation, gene regulation, cell motility and migra-
tion, and inflammation [27,28]. Another particular inter-
esting pathway that was enriched was the IL-1 signaling
pathway (p = 3.7 × 10−5), which had been reported to be
dysregulated by BRAFV600E in a previous study [29]. This
signaling pathway has also been shown to interact with
the MAPK pathway [30,31] and contribute to multiple
cancer progressions, including melanoma [32-34]. Taken
together, our results indicate that BRAFV600E may regulate
many genes and pathways that are crucial for melanoma
development.
BRAFV600E target genes mediated by MITF and TGFB1
We next examined whether BRAFV600E target genes were
regulated by specific up-regulators (i.e., transcription fac-
tors). The top two up-regulators identified using the IPA
tool were oncogene MITF and tumor suppressor TGFB1;
both were significantly enriched among BRAFV600E target
genes (p < 3.6 × 10−16 and p < 3.1 × 10−9 for MITF and
TGFB1, respectively; Figure 2B). Previous studies revealed
that the BRAF mutation hyper-activated the MAPK sig-
naling pathway and led to MITF promotion [35-37],
whereas TGFB1 was reported to be down-regulated in
multiple cancers, including melanoma [38-40]. Consist-
ently, our results showed that MITF expression was also
significantly higher in BRAFV600E than in BRAFWT

samples, whereas TGFB1 showed significantly lower
expression in BRAFV600E than in BRAFWT (Wilcoxon test,
p < 0.05 and p < 0.01 for MITF and TGFB1, respectively;
Figure 3).
In addition, we repeated the Snowball analyses on

TCGA melanoma metastatic samples. A total of 1010
putative BRAFV600Etarget genes were identified in the
analysis, and we replicated a total of 213 (30%)
BRAFV600E targets from the primary tumor samples
(Additional file 2). Functional enrichment analysis of
up-regulators using the IPA tool revealed that TGFB1
(p = 8.89 × 10−32) and MITF (p = 1.51 × 10−21) were
again significantly and consistently enriched, suggesting
that gain-of-function in BRAFV600E may generally influ-
ence the down-stream genes mediated by those two
genes or pathways in different developmental stages of
melanoma.
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To further evaluate whether BRAFV600E target genes
are mostly mediated by MITF, we collected 5,579 MITF
target genes that were reported in a ChIP-Seq experi-
ment and 732 MITF-induced targets inferred from a
small interfering RNA (siRNA)-mediated MITF knock-
down (siMITF) experiment in a melanoma cell line [41].
We found that genes targeted by MITF ChIP-Seq binding
and siMITF-induced genes were more highly expressed
overall than randomly selected background genes, regard-
less of BRAFV600E mutation status (Figure 4A, Wilcoxon
test, p < 5.0 × 10−30 for all comparisons). Furthermore, a
random subset of non-target genes with the same range of
expression levels was selected as a background to compare
to MITF ChIP-Seq binding and siMITF induced target
genes, and the result showed that both MITF ChIP-Seq
binding and siMITF induced targets showed a significantly
higher expression change in BRAFV600E versus BRAFWT

than the randomly selected background genes (Figure 4B;
Wilcoxon test, p < 3.0 × 10−11 for all comparisons). These
results support the conclusion that BRAFV600E leads to an
increased in the level of the MITF gene, which likely sub-
sequently results in the overall activation of many MITF
target genes.

Snowball identified BRAFV600E targets in response to BRAF
inhibition
To further evaluate the identified BRAFV600E regulated
genes, we analyzed a publicly available gene expression
dataset of A375 melanoma cells that harbor the
BRAFV600E mutation. This dataset contains the gene
expression profiles before and after treatment with
BRAF inhibitor vemurafenib (RAFi) [42]. Interestingly,
we found that BRAFV600E regulated genes identified by
Snowball from both the TCGA primary and metastasis
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Figure 4 MITF and its target genes dysregulated by BRAFV600E driver
relative gene expression level (median value) in tumor samples and fold ch
non-MITF target genes, 2) MITF ChIP-Seq binding targets), 3) MITF induced
tumor samples as well as the MTIF ChIP-Seq targets
[41] showed a significant response when compared to
randomly selected control genes (Figure 5). This sug-
gested that BRAFV600E regulated genes identified by
Snowball are highly reliable and BRAFV600E may regulate
MITF targets likely mediated via MITF.
In particular, we also found that TGFB1 exhibited

significantly elevated gene expression levels in cells
with BRAF inhibitor induction, supporting that low
TGFB1 expression level is associated with BRAFV600E.
However, MITF itself exhibited an opposite trend for
gene expression. Recent work by Konieczkowski et al.
has suggested that most drug-sensitive cell lines
exhibit high MITF expression and activity, but this was
not observed in A375 cells based on the analysis of 29
BRAFV600E-mutant melanoma cell lines [21]. This dis-
crepancy might indicate that MITF plays a complex
role in melanoma drug response.

Global loss of DNA methylation associated with BRAFV600E

We next compared DNA methylation profiles between
BRAFV600E and BRAFWT samples (see Materials and
methods). A genome-wide DNA methylation loss was
observed in BRAFV600E samples based on the compari-
son of DNA methylation profiles between BRAFV600E

and BRAFWT (Figure 6A). After carrying out the differen-
tial DNA methylation analysis, we identified 523 aberrant
methylation loci (i.e. CpG sites) using criteria of raw p <
1×10−3 and absolute intercept ≥ 0.2 (see Materials and
methods). Surprisingly, 97.9% (512 of 523) showed hypo-
methylation in BRAFV600E relative to BRAFWT samples.
This indicates a consistent, dominant loss of DNA methy-
lation associated with BRAFV600E (Figure 6B). We further
repeated the same differential DNA methylation analysis
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mutation in primary tumor samples. A) and B) Boxplots show the
anges (absolute value) between BRAFV600E and BRAFWT samples for:1)
genes, and 4) MITF ChIP-Seq binding and induced targets.



Figure 5 Boxplot of gene expression fold changes (absolute
value) on A375 melanoma cells before and after the treatment
of vemurafenib, for Snowball identified BRAFV600E targets from
both TCGA primary and metastatic tumour samples, MITF
targets from literature and control genes. P value for each
comparison was derived from Wilcoxon test.
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on 56 BRAFV600E versus 37 BRAFWT TCGA metastatic
samples (see Materials and methods). The same trend of
genome-wide DNA hypomethylation as well as significant
aberrant methylation sites was found to be associated with
BRAFV600E (Additional file 3). These results were consist-
ent with the previous findings [43,44].
To explore the possible mechanism associated with

the genome-wide hypomethylation, we systematically
examined whether BRAFV600E dysregulated any previ-
ously reported chromatin regulatory factors, such as
DNA methyltransferases. Interestingly, only DNMT3A,
functioning as a de novo DNA methyltransferase,
showed significantly lower expression in BRAFV600E

(Figure 6C) and was identified as a putative BRAFV600E

target. In the preceding analysis, DNMT3A also exhib-
ited significantly elevated expression levels in the A375
melanoma cells after being induced with the BRAF
inhibitor (Figure 6D). It should be noted that no
significantly differential gene expression patterns were
observed based on the analysis of metastatic samples.
One possible explanation is that DNMT3A might play
a critical role in the initiation of tumorigenesis but
may not be necessary in the later metastatic stage to
maintain global hypomethylation. Taken together,
these results suggest that BRAFV600E might initiate
genome-wide epigenetic modifications through the
regulation of DNMT3A, facilitating the initiation of
melanoma tumorigenesis [35,37].
BRAFV600E targets associated with melanoma proliferation
We have shown that putative BRAFV600E target genes
may play essential roles in melanoma tumorigenesis. To
further verify the effects of those genes on cancer cell
proliferation, we used a publicly available, large-scale
gene silencing dataset from the short hairpin RNA
(shRNA) screens of three melanoma cell lines (see Mate-
rials and methods, [45]). Among the 711 putative
BRAFV600E target genes, we found that down-regulated
genes significantly increased cell growth and prolifera-
tion, whereas up-regulated genes slightly decreased both
(Figure 7). According to the effects of putative BRAFV600E

targets on melanoma cell proliferation, we identified top
tumor suppressor genes including TGFB1, TGFB1I1,
PRODH, NAT6, ZNF205, ZNF142, FRS3, RUNX3,
IGFBP5, HPGD, MAPK11, and NFIC, which significantly
increased cell growth and proliferations. In contrast, top
oncogenes including MET, BFSP1, CDH19, and ST6GAL-
NAC3 were found to be associated with decreased cell
growth and proliferations. In summary, our results suggest
that BRAFV600E may play essential functional roles in cell
growth and proliferation.

Discussion
To our knowledge, this study is among the first attempts
at an in-depth exploration of the functional conse-
quences of a single driver mutation using an integrative
genomic data analysis strategy. We applied our recently
developed Snowball approach and identified 711 putative
BRAFV600E target genes, many of which are known to be
involved in tumorigenesis. We further demonstrated that
BRAFV600E might dysregulate specific cancer-related
pathways and epigenetic modifications in melanoma
tumorigenesis.
Although previous findings based on the differential

gene expression analysis of BRAFV600E and BRAFWT

samples provided novel insights into the understanding
of BRAF-driven biology in melanoma [14,15], applying a
sensitive detection method towards the functional conse-
quences of the driver mutation BRAFV600E from a cohort
of clinical samples is challenging. Traditional analyses
used to detect significantly and differentially expressed
genes are based on statistical parametric models, typically
in a regression framework [46,47]. Those approaches as-
sume expression independence among genes and apply a
gene-by-gene strategy. However, analyses based on those
approaches may result in ineffective detection of import-
ant gene or pathway targets due to the fact that a driver
mutation is typically part of a small sample size situation
and is expected to alter the expression of its cognate genes
and genes in the same downstream pathways. The
Snowball approach was implemented to meet the specific
challenges in identifying the functional consequences
of a driver mutation on clinical samples. Based on gene



Figure 6 Methylation alterations associated with BRAFV600E driver mutations in primary tumor samples. A) Density plots of the median
methylation intensity of each CpG site in BRAFV600E samples and BRAFWT samples. Methylation loci with Δβ > 0.1 were labeled with black dots.
The plot indicates a global DNA methylation loss associated with BRAFV600. B) Heat-map showing differential methylation signals between
BRAFV600E and BRAFWT samples, indicating a dormant methylation loss in BRAFV600E samples. C) Boxplots showing significantly lower expressions of
DNMT3A in TCGA BRAFV600E versus BRAFWT samples. D) Boxplot of DNMT3A expression level on A375 melanoma cells before and after the treat-
ment of vemurafenib.
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transcriptions and their interactions in the context of
regulatory networks and the fact that a driver mutation
may disturb the gene regulatory networks and generate
differential co-expression profiles, the Snowball ap-
proach specifically utilizes a multivariate, distance-
based regression to provide a more sensitive detection
based on the co-expression profile of a given set of
genes and its association with the mutation status. It is
known that each tumor genome may have about 2–8
driver mutations, and their frequencies in the popula-
tion are typically not high [48]. It is a real challenge to
detect them using traditional differential signals. The
Snowball approach is specifically developed to amplify
the detection power by aggregating with resampling.
Our simulation and real data analyses demonstrate that
it is a more powerful approach for identifying large
numbers of potential targets for downstream analyses.
Additionally, the genetic background of patients and
their tumor samples exhibit high heterogeneity with
patient-specific and sample-specific variation. This
heterogeneous predisposition to the driver mutation
perturbation may lead to different gene expression pat-
terns per gene from sample to sample as well as from
patient to patient. Snowball utilizes a distance-based
regression based on the gene co-expression profiles
and assigns a robust ranking index to genes even when
they have different predispositions [49].
This study revealed a key regulatory mechanism in

melanoma, where BRAFV600E may play dual roles as a
positive regulator of the MITF pathway and as a negative
regulator of the TGFB1 pathway in the initiation of mel-
anoma development. Recently, several studies have pin-
pointed an alteration of MITF in patients that may fail
to eradicate tumors due to chemoresistance, which reac-
tivates the MAPK signaling pathway [50-52]. Our work,
together with those findings, highlights the potentially
important role of MITF in melanomagenesis. In contrast
to MITF, BRAFV600E represses the TGFB1 pathway,
which may lead to the deactivation of the apoptosis
process and the consequent cause of uncontrolled cell
proliferation [53]. Moreover, DNMT3A, which also acts
as a potential TGFB1 target [54], was found to be likely
to mediate BRAFV600E epigenetic modifications in this
study, thus facilitating melanoma development. While
these findings are insightful, future studies using in vitro
and in vivo assays are warranted to verify these results.



Figure 7 BRAFV600E target genes in melanoma cell proliferation.
Boxplots of shRNA values (measuring melanoma relative cell
proliferation) for BRAFV600E target genes in down-regulation (D), up-
regulation (U), and control genes (C). BRAFV600E target genes in
down-regulations showed a statistically significant increase of melan-
oma cell proliferation relative to the control, whereas up-regulation
genes exhibited a slight decrease in melanoma cell proliferation.
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In conclusion, we performed an integrative analysis to
exhaustively interrogate mutation, expression, and
methylation datasets in an attempt to detect putative
target genes and their regulations that are associated
with the BRAFV600E driver mutation in melanoma. Our
analyses identified not only known genes that contribute
to melanoma pathogenesis but also many novel genes
with potential clinical relevance. Importantly, our
analysis indicated that a substantial proportion of the
putative BRAFV600E target genes were significantly regu-
lated by the transcription factor MITF and tumor sup-
pressor TGFB1, suggesting that BRAFV600E may control
specific cancer-related pathways via MITF and TGFB1
in order to initiate tumorigenesis. In particular,
DNMT3A, one of the putative BRAFV600E targets, may
reprogram epigenetic modifications to facilitate cancer
development. These target genes were further shown to
be essential in melanoma cell proliferation. Our analysis
strategy provides a novel way to explore the functional
consequences of a driver mutation and can be similarly
applied to other driver mutations in complex diseases.

Materials and methods
Datasets
We retrieved genomic data, including somatic mutations,
from whole exome sequencing (total 385 samples), DNA
methylation (n = 413), and RNA-Seq (n = 371) of cutane-
ous melanoma samples from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/). We analyzed only
those samples derived from primary tumors with
matched mutation, expression, and methylation pro-
files in each sample. The DNA somatic mutation data
(TCGA level 2) was retrieved from the TCGA somatic
mutation annotation file (summarized as “maf” file),
from which the BRAFV600E mutation status of each
sample was examined and determined. We systemically
examined the mutational profiles across all TCGA
melanoma samples (N = 385). Since multiple driver
mutations may co-exist on the same sample, the sam-
ples with known driver mutations including NRAS,
CDKN2A, GNAQ, KIT and GNA11 have been removed
from both the case and negative control groups to re-
duce the confounding effects. We finally included a
dataset of 34 BRAFV600E samples and 27 BRAFWT sam-
ples; here, wide-type (WT) denotes pan-negative sam-
ples (those without any mutations in the above driver
genes) (Figure 1). The gene-level expression data
(TCGA level 3) was generated using Illumina HiSeq
2000 and measured by normalized RSEM (RNA-Seq by
Expectation-Maximization) read counts. The DNA
methylation data (TCGA level 3) was generated using
the Illumina HumanMethylation450 BeadChip Array.
Each methylation CpG locus was measured by a β
value representing a ratio of M/(U +M), where M is
the methylated probe intensity and U is the unmethy-
lated probe intensity. The β value ranged from 0 to 1
(0: unmethylated; 1: fully methylated).
The transcription factor MITF’s binding targets from

the ChIP-Seq data and its induced genes detected by the
small interfering RNA (siRNA)-mediated MITF knock-
down (siMITF) experiment were collected from a previous
work [41].

DNA methylation analysis
We started methylation analysis from methylation pro-
files (β value, TCGA level 3) and then converted methy-
lation β value to M value, which is compatible with the
typical assumptions of linear models. We applied the R
package Minfi [55] to detect differential methylation loci
between BRAFV600E and BRAFWT samples. Significantly
differentially methylated sites were detected used an
F-test implemented in the function ‘dmpFinder’. The
significantly aberrant methylation loci were identified
by applying raw p value < 1 × 10−3 and absolute inter-
cept ≥ 0.2.

Gene expression analysis
We developed the Snowball algorithm to identify a set
of genes or gene modules that are likely regulated by a
driver mutation [21]. This approach takes into account

https://tcga-data.nci.nih.gov/tcga/
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gene-gene interactions by evaluating each gene in a
group of other genes. It is a more effective learning ap-
proach for the identification of functionally relevant
genes or gene modules medicated by driver mutations
that spread their genetic turbulence in the gene regulatory
network to penetrate its functional impact. By applying
the Snowball approach to the BRAFV600E and BRAFWT

sample sets, we identified 1072 genes with significantly
aggregated association with the mutation BRAFV600E. We
further applied the Weighted Gene Co-expression Net-
work Analysis [48] and identified 9 gene modules, each
significantly associated with the BRAF mutation status
when assessed using a generalized distance-based regres-
sion [21] at a permutation P < 0.05. The fold change of
each gene’s expression in BRAFV600E relative to BRAFWT

was calculated based on log2-transformed RSEM
measurement.
To evaluate how Snowball identified BRAF regulated

genes in response to the BRAF inhibitor vemurafenib,
we also analyzed gene expression data on A375 melan-
oma cells harboring the BRAFV600E mutation from re-
cent literature. This dataset contained the gene
expression profiles before and after treatment with the
BRAF inhibitor (GEO: GDS5085) [6]. Briefly, using
LIMMA, we compared the gene expression profiles of
A375 melanoma cells before and after treatment with
the BRAF inhibitor, and the fold change of each gene
was computed and reported. A total of 5000 genes
were randomly selected from the genome as control
genes for the comparative analysis.
Functional analysis
For the abovementioned 711 putative BRAFV600E regu-
lated target genes, we examined their functional enrich-
ment in gene networks and biological pathways, using
the Ingenuity Pathway Analysis (IPA) tool (http://www.
ingenuity.com/). The top 5 ranked gene networks and
biological pathways were present.
Effect of gene silencing on cell proliferation using RNA
interference data
To estimate the effect of an individual gene on cancer
cell proliferation, we downloaded a comprehensive
dataset from a genome-wide shRNA analysis of
10,941 genes (comprising of 52,209 probes) for three
melanoma cell lines: A2058, HS944, and IGR39 (from
the previous study) [45]. The effect of an individual
gene’s silence for each of the three melanoma cell
proliferations (measured by shRNA value) was com-
puted using the log2 ratio of cell abundance in the
pool generated by shRNA sequences at the endpoint,
relative to the initial reference pool (details described
in [45]).
Additional files

Additional file 1: A total of 711 BRAFV600E target genes were listed
based on the analysis of primary samples.

Additional file 2: A total of 1010 BRAFV600E target genes were listed
based on the analysis of primary samples.

Additional file 3: Methylation alterations associated with BRAFV600E

driver mutations based on TCGA metastatic samples. A) Density plots
of the median methylation intensity of each CpG site in BRAFV600E samples
and BRAFWT samples. Methylation loci with Δβ > 0.1 were labeled with
black dots. B) Heat-map showing differential methylation signals between
BRAFV600E and BRAFWT samples, indicating a dominant methylation loss in
BRAFV600E samples.
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