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Abstract

identified the integrin B4 (ITGB4).

protein-protein association.

Background: Integrins and enzymes of the eicosanoid pathway are both well-established contributors to cancer.
However, this is the first report of the interdependence of the two signaling systems. In a screen for proteins that
interacted with, and thereby potentially regulated, the human platelet-type 12-lipoxygenase (12-LOX, ALOX12), we

Methods: Using a cultured mammalian cell model, we have demonstrated that [TGB4 stimulation leads to recruitment
of 12-LOX from the cytosol to the membrane where it physically interacts with the integrin to become enzymatically
active to produce 12(5)-HETE, a known bioactive lipid metabolite that regulates numerous cancer phenotypes.

Results: The net effect of the interaction was the prevention of cell death in response to starvation. Additionally,
regulation of 34-mediated, EGF-stimulated invasion was shown to be dependent on 12-LOX, and downstream Erk
signaling in response to ITGB4 activation also required 12-LOX.

Conclusions: This is the first report of an enzyme of the eicosanoid pathway being recruited to and regulated by
activated 4 integrin. Integrin 34 has recently been shown to induce expansion of prostate tumor progenitors and
there is a strong correlation between stage/grade of prostate cancer and 12-LOX expression. The 12-LOX enzymatic
product, 12(S)-HETE, regulates angiogenesis and cell migration in many cancer types. Therefore, disruption of integrin
(34-12LOX interaction could reduce the pro-inflammatory oncogenic activity of 12-LOX. This report on the consequences
of 12-LOX and ITGB4 interaction sets a precedent for the linkage of integrin and eicosanoid biology through direct
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Background

The human 4 integrin subunit was identified as a 12-LOX-
interacting protein, and thus a potential 12-LOX regulator
[1]. Integrins are multi-domain glycoproteins that promote
cellular adhesion, and coordinate growth and differentiation
signals. The B4 integrin subunit is part of a cell surface
receptor (a6P4) for laminin (LN), an extracellular matrix
component. Ligation of this surface receptor by LN or by an
activating antibody (3E1l), triggers signaling pathways
involved in cell proliferation, differentiation, apoptosis,
adhesion, invasion and metastasis [2]. 4 impacts angiogen-
esis [3], anchorage-independent growth [4], cell survival [5],
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cellular invasion [6], and tumor progression [7]. Integrin 4
is associated with increased cancer aggressiveness [8],
which is likely due to its ability to cooperate with other
receptors [9-12].

12-Lipoxygenase is associated with many of the same
(4-mediated phenotypes [13], and also promotes tumor cell
survival. Lipoxygenases (LOX) are a family of non-heme
iron-containing dioxygenases that stereo specifically insert
molecular oxygen into 1,4-cis, cis-pentadiene-containing
polyunsaturated fatty acids to ultimately produce bio-
active lipids such as leukotrienes, lipoxins, jasmonates
and 12-hydroxyeicosatetraenoic acid [12(S)-HETE] that
regulate numerous biological and pathological pro-
cesses [13, 14]. The platelet-type 12-LOX (P-12-LOX)
is one of three mammalian 12-LOX isoforms (classified as
platelet-, leukocyte-, or epidermal-type) that differ in tissue
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distribution, substrate preference, and metabolite profile,
and is notably elevated in a variety of human tumors where
it is anti-apoptotic [15, 16]. In a clinical study, 38 %
of the prostate cancer patients studied (n=132)
exhibited elevated levels of P-12-LOX in cancer tissues,
which correlated positively with tumor stage, grade
and positivity for prostate cancer cells in the surgical
margins [17].

12-LOX metabolizes arachidonic acid (AA) exclusively
to 12(S)-HETE [18]. This metabolite is intimately linked
to tumor progression and metastasis as well as to other
pathological conditions, such as psoriasis, atherosclerosis
and arthritis [13, 19-21]. 12(S)-HETE modulates integrins
(e.g., avp3), regulates secretion of proteinases, enhances
tumor cell motility and invasion, and induces angiogenesis
[13, 22, 23], which represent traits that are also regulated
by ITGB4. 12-LOX enzymatic activity is also regulated by
subcellular compartmentalization, and there is precedent
for the enzymatic activity of other lipoxygenases, namely
5-LOX and 15-LOX, being compartment-dependent [24,
25]. In the present study we utilized a cell culture model
to characterize both the physical interactions between
12-LOX and the B4 integrin subunit and the functional
outcomes of these interactions. This is the first report of
an integrin regulating an enzyme of an eicosanoid
biosynthetic pathway, and suggests a new paradigm for
both integrin and eicosanoid biology.

Results

The cytoplasmic domain of B4 interacts with 12-LOX in
tumor cells

The A431 human epidermoid carcinoma cell line has
been widely used to study 12-LOX, as it expresses
enzymatically active 12-LOX protein, but not the
leukocyte-type isoform [24]. Previously we reported that
12-LOX interacts with the C-terminal cytoplasmic domain
of the integrin 4 subunit in a yeast-two hybrid screen of
an A431 library [1]; an interaction that was validated in
the parental A431 cells and 12-LOX over-expressing
transfectants. We performed a co-immunoprecipitation
assay to examine the endogenous interaction of 12-LOX
with B4. Cells were stimulated with an antibody to
the extracellular domain of P4 subunit (3E1l), and
[4-associated proteins were subsequently immunoprecipi-
tated from extracts using antibodies that either recognized
the extracellular domain (3E1, 439-9B) or the cytoplasmic
domain of 4 (450-11A), and these were probed for the
presence of 12-LOX. In reciprocal experiments, following
stimulation with 3E1, samples were first immunoprecipi-
tated with anti-12-LOX antibody, and then probed for 4
association. In A431 cells and A431 12-LOX transfectants
(Additional file 1), we detected 12-LOX immunoprecipi-
tated with a mAb to P4 (Fig. 1A, left panels). Conversely
4 was immunoprecipitated with an antibody to 12-LOX
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(Fig. 1A, right panels). The association of 12-LOX with 4
was time-dependent beginning at 5 min post stimula-
tion. These data suggest that the interaction between
12-LOX and PB4 originally discovered in the yeast 2-hybrid
model system also occurs in a cultured human tumor
cell model.

We tested this interaction in CHO cells that express
a6p1 and low levels of 12-LOX, but not 4 [26]. After con-
firming ectopic co-expression of 4, or truncated (4, with
12-LOX from c¢DNA constructs in CHO cell transfectants,
we found that 12-LOX co-immunoprecipitated with p4,
and vice versa (Fig. 1B, upper and lower panel, respectively.
lane 3-CHO transfectants producing full-length, wild-type
B4 alone, or lane 4-in combination with 12-LOX).
Full-length 4 was recognized by antibodies to both its
extracellular (3E1 mAb) and cytoplasmic (450-11A mAb)
domains. 12-LOX also co-immunoprecipitated with trun-
cated, head-less B4 (Fig. 1B, lane 5, upper and lower panel),
but not with truncated, tail-less integrin 4 (Fig. 1B, lane 6,
upper and lower panel). While truncated, tail-less (4
(95 kDa) complexes with a6 [26], in transfectants with tail-
less B4, 12-LOX did not co-immunoprecipitate with the
mAb to the cytoplasmic domain of the p4 (450-11A) or
with either mAbD to the extracellular domain of 4, namely
3E1 or 439-9B (Fig. 1B lane 6, upper and lower panel). In
contrast, in transfectants expressing truncated, headless 4,
12-LOX co-immunoprecipitated with the 130-kDa trun-
cated 4, which was detectable with the 450-11A mAb to
the cytoplasmic tail (Fig. 1B, lane 5, lower panel), but not
with mAbs 3E1 or 439-9B. These findings suggest
that 12-LOX associates with the cytoplasmic domain
of B4 and that it interacts with 4 when the two proteins
are ectopically expressed in CHO cells. The differential
immunoprecipitation of 12-LOX with the panel of 4
constructs suggests that the cytoplasmic domain of B4 is
crucial for its interaction with 12-LOX, thus confirming
our earlier yeast two-hybrid results and those observed
with endogenous 4 in A431 cells.

Integrin 4 was detected in Western blots at the expected
molecular mass of 200 kDa. Interestingly, two minor bands
of 135 and 170 kDa from immunoprecipitates of 12-LOX
from both A431 cells and CHO transfectants were also
detected with B4 antibodies when the Ca** concentration
in the lysis buffer was high, which is in agreement with a
previous report [26] that suggested the cytoplasmic domain
of P4 is susceptible to a calcium-dependent protease
present in cellular extracts. Sequence analysis reveals two
calpain cleavage (PEST) sites that could result in the minor
bands we detected.

Finally, to verify the report that the mAb 3E1 func-
tionally stimulates 4 as well as laminin, the natural
ligand, immunoprecipitation was done with 12-LOX
antibody on laminin-treated cells with similar results
Fig. 1C.
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Fig. 1 P-12-lipoxygenase interacts with integrin 34 subunit in vitro. (a) A431 cells were stimulated with mAb 34 3E1 and harvested at timed
intervals from 5-90 min. 12-LOX and the (34 subunit co-immunoprecipitated from untransfected A431 cells (A431), [and A431 cells over expressing
12-LOX (Tx-A431)-Additional file 1]. (b) CHO cells were transfected with different 34 constructs either alone or in combination with 12-LOX: (1) control:
vector alone; (2) CHO: nontransfected cells; (3) TxB4: full-length (4; (4) TxB34 + 12-LOX: cotransfected with full-length 4 and 12-LOX; (5) Txtruncated]:
pCMV-B4 A70-660 (c-myc tagged head-less) +12-LOX; (6) Txtruncated2: pCMV-34 A854-1752 (tail-less) +12-LOX. 12-LOX and the B4 subunit
coimmunoprecipitated from three transfectants: Tx34, x4 + 12-LOX, and Txtruncated1 (headless). Positions of 12-LOX and 34 are indicated. The
experiment was repeated three times. For each experiment, mouse or rabbit IgG (control 1) and Sepharose 4B-conjugated protein G beads alone
(control 2) were used as negative controls. (C) 12-LOX and the 34 subunit co-immunoprecipitated from A431 cells after growth on laminin at the
same timed interval as with mAb 3E1 stimulation. Whole cell lysate of A431 stimulated with mAB 3E1 was loaded as a control (A431-3E1T). 34 subunit
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B4 ligation-induced translocation of 12-LOX in A431 cells

Previous studies demonstrated that EGF, Ca®* and the
phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate)
increased 12-LOX activity by inducing its translocation
from cytosol to membrane [24, 25, 27]. We examined
whether B4 interaction altered translocation of 12-LOX in
A431 cells where B4 was stimulated with 3E1 mAb for 5,
15, 30, 60 and 90 min. Membrane translocation of 12-LOX
from cytosol was observed within 5 min, peaked by 15 min,
and was sustained for 60 min (Fig. 2A4). Thereafter the

response was down-regulated. The effect of 4 stimulation
on 12-LOX translocation was specific as pl stimulation
with activating antibody (Fig. 2B) failed to induce any
significant increase in membrane-associated 12-LOX.
Furthermore, while detectable in whole cell lysates,
Bl did not interact with 12-LOX on P4 stimulation
(Fig. 2C). In all experiments, total 12-LOX protein level
was unaltered after treatment with any of the antibodies
used in this study (Fig. 2, upper panels-Total). The bio-
chemistry was validated with confocal immunofluorescence
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Fig. 2 34 ligation-induced translocation of 12-LOX in A431 cells. A431 cells stimulated with 3E1 mAb for 5, 15, 30, 60 and 90 min. (@) Membrane
translocation of 12-LOX from cytosol to membrane. (b) The effect of 34 stimulation on 12-LOX translocation is specific to 34. (c) 1 integrin is
detectable in whole cell lysates (WCL), but does not interact with 12-LOX on {34 stimulation
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data (Additional file 2, Additional file 3, Additional file 4,
Additional file 5, Additional file 6 and Additional file 7).
Collectively these results demonstrate for the first time
that p4 ligation induces the translocation of 12-LOX from
cytosol to membrane where the two proteins interact.

The interaction of 34 with 12-LOX upregulates 12-LOX
enzymatic activity

To study whether 12-LOX activity is altered following
translocation to 4, its enzymatic activity was determined
by LC/MS (Fig. 3) or RP-HPLC (Additional file 8) analyses
for its sole arachidonate metabolite, 12(S)-HETE. LC/MS
measurements of total cellular and secreted 12(S)-HETE
were made. As with the isolated membrane fractions,
there is an accumulation of 12(S)-HETE metabolite with
3E1 stimulation (Fig. 3). Cytosolic and membrane protein
fractions were isolated from A431 cells following 5,
15, 30, 60 and 90 min treatment with 3E1 or control
IgG. Subsequently each fraction was incubated with
10 uM [**C] AA in DMEM, followed by lipid extraction
as described. In accordance with a previous study [24],
RP-HPLC analysis indicated that 12(S)-HETE was the
major product formed from exogenous AA in these
subcellular fractions, whereas other HETEs including
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5-HETE and 15-HETE were not detected under our
conditions (Additional file 8a). Of the total 12-LOX
activity, 75+6 % (meants.d; n=3) resided in the
membrane fraction (100,000 x g-pellet), 20+9 % in the
10,000 x g-pellet, and only 5+1.2 % in the cytosolic
fraction. 4 ligation increased membrane-bound 12-LOX
and enhanced its activity in a time-dependent manner,
starting at 5 min and peaking at 60 min when 12(S)-HETE
production was 4-5 fold higher than control (mouse IgG)
(Additional file 8b). In agreement with the membrane
translocation experiment, 12(S)-HETE production also
declined 60 min post 4 mAb stimulation. Therefore,
recruitment of 12-LOX to the P4 subunit appears to
stimulate enzymatic activity and provides rationale for our
earlier observations that membrane-associated 12-LOX
was the dominant enzymatically active form in A431
tumor cells [24].

Activation of 12-LOX by B4 stimulation blocks A431 cells
from apoptosis induced by 12-LOX inhibitor
Lipoxygenase metabolites may act as survival factors in a
variety of tumor cells, as has been suggested [28]. As the
interaction of 12-LOX with the cytoplasmic domain of
B4 led to elevated levels of 12(S)-HETE, we explored
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Fig. 3 LC-MS analysis of 12-LOX activity. Following the stimulation with mAb (34 over a time course, each membrane fraction (100,000 x g pellet)
was harvested and incubated in DMEM at 37 °C with 10 uM ["*CJ-AA for 15 min. Cell lipids were extracted and analyzed as described in Materials
and Methods. The data were analyzed by LC-MS in triplicate and error bars represent SEM
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whether this interaction may contribute to cancer cell
survival. A DNA laddering assay revealed that pharma-
cological inhibition of 12-LOX with BMD122 induced
apoptosis in A431 cells in a dose-dependent manner,
similar to the effects found in an earlier study with
W256 cells [28] (Fig. 4B). This suggests that 12-LOX is
anti-apoptotic in A431 cells. Compared to parental A431
cells, or vector controls, only 12-LOX transfectants were

3.1+ 12LOX

= o
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3E1+BHPP BHPP
S cqg8 wm

MCgQ R S

Fig. 4 mADb B4 treatment effect on BMD122-induced apoptosis in
A431 cells by DNA laddering assay. (@) Comparison of A431 12-LOX
transfectants with empty vector control (3.1+). Cells were treated
with BMD122 (formerly BHPP) at the concentration indicated for 24 h,
low molecular weight DNA was extracted, run on a 1.5 % agarose gel
and visualized with ethidium bromide. The middle lanes are DNA
markers for comparison. 3.7+: empty vector controls; 12LOX: A431 cells
transfected with full-length 12-LOX. (b) A431 cells were pretreated with
mAb (34 3E1 (5 pg/ml) before incubation in DMEM in the presence of
BMD122, see details in Materials and Methods. Aliquots of DNA extracts
were subjected to 1.5 % agarose gel and visualized with ethidium
bromide. C: Ethanol as vehicle control. M: DNA marker, left lane
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more resistant to apoptosis induced by BMD122 as shown
by the density of the DNA ladder (Fig. 4A). Pre-incubation
of A431 cells with mAb 4 3E1 for two hours prior to the
treatment with BMD122 (Fig. 4B), completely prevented
cells from undergoing BMD122-triggered apoptosis at low
BMD122 concentrations and significantly protected cells
exposed to high dose BMDI122 (Fig. 4B). Both ELISA
detection of cytoplasmic nucleosomes [29] and Trypan
blue-exclusion ([30] and references therein) were employed
as an alternate measure of cell death (Additional file 9 and
Additional file 10).

12-LOX activation by 4 mediates EGF-stimulated
migration of A431 cells

EGF enhances a6P4-dependent cell migration of A431
cells on laminin [31]. As 12-LOX interacts physically and
functionally with B4 in A431 cells, we tested whether
12-LOX modulates integrin-dependent migration on
laminin or Matrigel. We demonstrated that EGF induced
A431 cells, preincubated with 3E1, to migrate on laminin
by 2-2.5 fold, and inhibition of 12-LOX by pretreatment
of cells with specific inhibitors (i.e., CDC, baicalein, or
BMD122) reduced A431 cell migration to the level
observed in the absence of EGF stimulation (Fig. 5A).
Laminin and 3El antibody induced migration through
Matrigel equally well (Fig. 5B-D). However, the inhibi-
tory effect of BMD122 on migration was greater in
laminin-treated cells (Fig. 5B). Our data suggest that
a6B4-dependent cell migration on laminin in response
to EGF is also regulated by 12-LOX.

To confirm the role of 12-LOX in p4-regulated
12(S)-HETE production and EGF-stimulated migration,
we transfected A431 cells with six different shRNA
constructs, each targeted to a unique region of the
12-LOX gene, and screened for 12-LOX knockdown
after puromycin selection. Both 12-LOX gene and protein
expression were assayed to validate the knockdown
(Fig. 6A, B). Compared to the parental and non-silencing
(ns) shRNA control cells, the #1 and #2 clones showed
decreased 12-LOX mRNA expression, as measured by
RT-PCR (Fig. 6A). None of the cells transfected with
construct #4 survived selection, and so these were not
included in the analysis. At the protein level, clone #1
appeared to lack 12-LOX compared to the parental
and ns shRNA control cells (Fig. 6B). We also analyzed
12(S)-HETE production with 3E1 stimulation, which we
demonstrated activates 12-LOX enzymatic activity
(Additional file 8a). PC-3 prostate cancer cells stably
expressing 12-LOX were used as a positive control
for 12(S)-HETE production (Fig. 6C). In both the parental
A431 and ns shRNA control cells, 3E1 stimulation re-
sulted in an increase of 12(S)-HETE production com-
pared to AA treatment alone. This response was not
seen in the #1 or #2 clones, indicating that 12-LOX
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Fig. 5 The a6[34 integrin and 12-LOX activity function in EGF-induced chemotaxis. (a) Migration assay: A431 cells were pretreated with 3E1
antibody for 20 min, then plated on laminin-coated invasion plates either with or without EGF (1 ng/ml) for 3 h in the presence or absence of
pharmacological inhibitors as described in Methods. Data represent the mean number of transmigrated cells/microscopic field (+ SE). The
experiments were repeated three times in triplicate. g, P < 0.01 when compared to no-EGF treated group; b, ¢, d, P <0.01 when compared to
EGF treated control group. (b) Alternate migration assay: Comparison of chemotaxis of A431 cells toward EGF when stimulated with either mAb
3E1 or laminin in the presence or absence of the 12-LOX specific inhibitor BMD122. (10x magnification) (c) Controls for (b). (d) Absorbance

interaction with activated P4 stimulates its enzymatic
activity. Downstream of B4 stimulation and subsequent
12-LOX recruitment / enzymatic activation, 12(S)-HETE
acts back on its receptor, 122HETERI, so as to activate
MAPK signaling [32, 33, 34]. As seen in Fig. 6D, parental
and ns shRNA control cells respond to 3E1 with an
increase in ERK phosphorylation. Basal ERK activation
was higher in clone #1, which did not increase in response
to 3E1. This may be the result of compensatory survival
signaling in response to the loss of 12-LOX and its
associated pro-survival signals.

Next, we utilized the 12-LOX KD cells to confirm the
role of 12-LOX in integrin-mediated, EGF-stimulated
cell invasion (Fig. 6E). Consistent with previous results,

P4 stimulation and EGF increased invasion of the
parental and ns shRNA control A431 cells and prostate
PC3-12LOX transfectants, while BMD122 dramatically
reduced invasion. The invasion of the ns shRNA cells was
increased in all conditions compared to the parental
control and could be due to non-specific targeting effects
of the scrambled shRNA. EGF stimulation lead to
marginal, if any, increased invasion in the #1 and #2
12-LOX KD cell lines. This suggests that 12-LOX
promotes EGF-stimulated invasion. Similar to the
results seen in the parental and ns shRNA cells, BMD122
reduced cell invasion in the #2 12-LOX KD that had
residual 12-LOX protein, whereas it had no effect on
the #1 12-LOX KD cells. Therefore, despite p4 stimulation,
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PC-3 12-LOX overexpressors along (positive control for 12-LOX), 3.1 empty vector control cells, and platelet lysate (positive control for 12-LOX
expression). (€) No increase in 12(S)-HETE levels were seen with 3E1 stimulation in #1 and #2 12-LOX KD clones. 12-LOX activity was measured
by 12(S)-HETE production using LC-MS after a 6 h incubation with 3E1 and AA. (d) #1 12-LOX KD cells do not respond to 3E1 stimulation with
an increase in phosphorylated ERK levels. Western blot evaluation of phosphorylated ERK with 30 min 3E1 stimulation. Densitometry analysis
represents the ratio of phosphorylated ERK to total ERK. (e) #1 12-LOX KD cell invasion is not affected by BMD122 enzymatic inhibition of 12-LOX.
Cells were pre-treated with BMD122, then stimulated with 3E1 or EGF and allowed to invade through a Boyden Chamber insert coated with
Matrigel for 24 h. Images taken at 10 x. Invaded cells were stained with crystal violet, the dye content dissolved in 10 % acetic acid, and the
absorbance measured at ODs;onm. Columns represent the invasion reported as the mean of three samples +/— SE
J

EGF did not effectively stimulate invasion in the absence of ~ 12-LOX in prostate or breast cancer cells stimulates growth

12-LOX. in tumor xenograft models, and tumor angiogenesis [23,
35], where 12-LOX overexpression regulates HIFla [36].
Discussion The sole metabolic product of AA metabolism by 12-LOX,

The platelet-type, metabolically active, 12-LOX is upregu-  12(S)-HETE, modulates several traits related to the
lated in a variety of tumor cell types such as Lewis lung and  metastatic potential of tumor cells. These include cell
rat Walker carcinoma cells. Furthermore, overexpression of — motility [37], secretion of lysosomal proteinases cathepsins
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B and L [38], expression/secretion of MMP9 [22], in-
vasion [22, 34], expression of integrin receptor allbp3
[39], tumor cell adhesion to endothelium, and spread-
ing on subendothelial matrix [13]. The role of 12(S)-
HETE in tumor cell induced platelet activation
(TCIPA) is well-appreciated [40, 41], and additional
studies have recently identified 12-LOX as a contributing
factor to immune-mediated thrombosis [42]. 12(S)-HETE
also regulates lung colonization in vivo. This metabolite
activates downstream signaling by virtue of the cognate
receptor for 12(S)-HETE (GPR31, 12-HETER1) discovered
by our group [34]. However, until now there has been
little insight into how the activity of 12-LOX enzyme
itself is regulated.

Given that 12-LOX membrane translocation is essential
for increased activity, and that the integrin 4 subunit was
identified as an interacting protein [1], we hypothesized
that 12-LOX interaction with the cytoplasmic domain of
the 4 subunit may enhance its lipoxygenase activity,
particularly as these proteins contribute to similar cancer
phenotypes.

The enzymatic activities of 5-LOX and 15-LOX are also
increased by membrane translocation. For example,
5-LOX is predominantly cytosolic in resting neutrophils
but translocates to the nuclear membrane [43] to associate
with FLAP. Likewise, 15-LOX activity reportedly increases
in reticulocytes after membrane translocation [44].
Additional studies support that 12-LOX enzymatic activity
in rat W256, HEL, and murine Bl6a melanoma cells is
membrane-associated despite the protein being pre-
dominantly cytosolic [24, 45].

The integrin P4 is essential for the organization and
maintenance of epithelial architecture through formation
of hemidesmosomes that link the intermediate filament
cytoskeleton to the extracellular matrix. It is a dynamic pro-
tein that also has strong connections to tumor-associated
phenotypes such as invasion, angiogenesis, and tumor pro-
motion [46], and continues to appear in screens for genes
that are essential for regulating invasion and migration [47].
Following integrin stimulation, 12-LOX distinctly coloca-
lized with the p4 subunit, predominantly at the edge of cells
or at cell-cell junctions. 12-LOX was found localized to
cytosolic, perinuclear, and cell surface sites, and the (4
immunofluorescence staining pattern was consistent with
its known localization to hemidesmosomes on the ventral
surface or the trailing edge of adherent A431 cells
[48]. This represents the first identified protein that
directly associates with 12-LOX to perhaps scaffold it
with additional regulatory proteins residing at the cell sur-
face. The biochemical and imaging data in combination
with the 12-LOX knockdown studies provide significant
evidence for a physical association between 12-LOX and
the cytoplasmic domain of 4 that is functionally relevant
for enzymatic activity as demonstrated in the LC-MS
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and RP-HPLC data, where 12(S)-HETE biosynthesis was
increased following specific stimulation of $4. Importantly,
this association promotes migration in response to EGF as
a chemoattractant. As 12(S)-HETE is known to be stable,
the decline that was noted after 60 min is likely due to
esterification of the product back into the membrane and
not due to degradation.

12(S)-HETE induces a plethora of cellular responses
in tumor cells, including protection from apoptosis.
Inhibition of 12-LOX activity leads to apoptosis in
Walker 256 carcinosarcoma cells, whereas overexpression
of 12-LOX in the same cell type results in up-regulation
of the anti-apoptotic protein Bcl-2 [28], while in MCEF-7
breast cancer cells, overexpression leads to increased
cellular proliferation in nude mice [35]. Similarly, addition
of exogenous 12-LOX substrate, AA, could rescue human
gastric cancer cells from apoptosis induced by serum
starvation. This rescue could be blocked by 12-LOX
inhibitors, but not by cyclooxygenase pathway inhibitors
[28]. Previously we showed that antibody ligation of P4
rescued A431 cells from apoptosis induced by plating
cells on an inappropriate growth surface, i.e., untreated
polystyrene plates [49]. Therefore, as both 12-LOX,
through its metabolite 12(S)-HETE, and 4 ligation have
demonstrable anti-apoptotic effects [49], we sought to test
the relationship between up-regulation of 12-LOX activity
and [4 ligation in relation to cell survival. As demonstrated
in the results, ligation of 4 increased resistance of A431
cells to apoptosis induced by 12-LOX inhibitor, BMD122,
which appears to support this relationship. Nevertheless,
this may not hold true in all cell types, and suggests that
the role of B4 in apoptosis may be cell-type specific. Given
the wide range of cancer promoting properties of 12-LOX
and 12(S)-HETE combined with the tumor promoting
functions of P4, targeting their interaction in cancer cells
may prove therapeutically efficacious [50]. As noted,
f4-mediated, EGF-stimulated A431 cell invasion relied
on 12-LOX activation, and the 12-LOX specific enzymatic
inhibitor, BMD122, reduced this invasion. 12-LOX
knockdown by shRNA rendered the cells un-responsive to
EGF-stimulated invasion and resistant to the effects of
BMD122. Those residues or motifs in the cytoplasmic
domain of PB4, or conversely in 12-LOX that are critical
for interaction remain to be determined and make an
attractive therapeutic target.

Conclusions

In summary, we have demonstrated that our original
discovery using a yeast model of the interaction between
the cytoplasmic domain of the B4 subunit of the integrin
adhesin and the eicosanoid enzyme 12-LOX is valid, spe-
cific, and has functional consequences in mammalian cells.
With these data we have demonstrated for the first time
that these proteins interact both physically and functionally,
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thus providing a new paradigm for both integrin and
eicosanoid biology. Given the existing correlation between
12-LOX and tumor progression and metastasis, the
insight from this study provides the foundation for evalu-
ating this novel interaction with the 4 integrin as a target
for intervention.

Materials and methods

Antibodies and reagents

Antibodies: to human integrin f4 (mAB1964, clone 3E1;
mAB clone 450-11A) and Bp1 (mAB1951, clone P4G11)
subunits, Chemicon International, Inc. (Temecula, CA) of
Millipore (Billerica, MA), GIBCO BRL (Gaithersburg, MD),
or BD Biosciences/Pharmingen; to human 12-LOX, Oxford
Biomedical Research (Oxford, MI); to ERK and phosphory-
lated ERK (T202/Y204), Cell Signaling (Danvers, MA).
Alexaygg goat anti-rabbit IgG or Alexasy, goat anti-mouse
IgG were from Molecular Probes/Invitrogen (Eugene, OR).
The anti-B4 mAbs 450-11A and 439-9B were provided by
Dr. Steve Kennel (Oak Ridge National Laboratory, Oak
Ridge, TN).

Human laminin and EGF were from GIBCO BRL or
Sigma Aldrich (St. Louis, MO). The 12-LOX-selective
inhibitor, BMD122, formerly called BHPP for N-benzyl-
N-hydroxy-5-phenylpentanamide [45], was a generous
gift from Biomide Corp. (Grosse Pointe Farms, MI).
Other 12-LOX inhibitors: Baicalein, Calbiochem (San
Diego, CA); cinnamyl-3,4-dihydroxy-a-cyanocinnamate
(CDC), Biomol International, LP (Plymouth Meeting, PA).
[*H]-12-HETE standard and [**C]-AA were from NEN
Research Products (DuPont Company, Wilmington,
DE). ODS-Silica cartridges were from ].T. Baker Inc.
(Phillipsburg, NJ). FUGENE 6 Transfection Reagent
kit was from Boehringer Mannheim (Santa Cruz, CA).

Cell culture and treatments

A431 and Chinese hamster ovary (CHO) cells were
obtained from the American Type Culture Collection
(Manassas, VA), and cultured as recommended. Transfec-
tants were selected and cultured in media with 300 pg/ml
Geneticin (G418; Life Technologies, Inc., Grand Island,
NY). Prostate cancer cell lines PC-3 12-LOX/3.1 have
been described previously [51].

For treatment with 4 mAb (3E1), 5 x 10° A431 cells
were grown to sub-confluence in 100 mm Petri dishes
and serum-starved overnight prior to use. Cells were
washed with PBS (3x) and stimulated with p4 antibody
for 5, 15, 30, 60 and 90 min at a concentration of 5 pg/ml
in serum-free DMEM media. For experiments where the
natural a6P4 ligand was immobilized, the dishes were
coated with laminin (10 pg/ml) and cells were subse-
quently harvested as above. Otherwise, laminin was used
at 5 pg/ml in serum-free media.
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Subcellular fractionation

Cells (5x10°) were cultured to 80 % confluence [75-cm>
flasks; 37 °C; 5 % CO, in DMEM containing 10 % (v/v)
FBS], rinsed (2x) with PBS buffer, and washed (2x) in
isotonic buffer (134 mM NaCl; 15 mM Tris—HCI, pH 7.6;
5 mM glucose; 1 mM EDTA; 1 mM EGTA) before
suspension in homogenization buffer (25 mM Tris—HClI,
pH 7.6; 1 mM EGTA) containing protease inhibitors.
Cells were homogenized by sonication (15 sec, 3%, 0 °C)
(Vibracell-Microtip) with intervals of 3 min. In some
experiments, homogenates were initially centrifuged at
10,000 x g (10 min; 4 °C) and the resultant supernatant
was considered cytosolic. The membrane fraction rep-
resents the pellet obtained after a one-step centrifuga-
tion of the homogenate at 100,000 x g (1 h; 4 °C). The
10,000- and 100,000 x g pellets, respectively, were rinsed
once with homogenization buffer and resuspended in
protease inhibitor-free homogenization buffer. Samples,
standardized by protein concentration, were immediately
used for SDS-PAGE.

Measurement of 12-lipoxygenase activity by LC-MS
12(S)-HETE was measured by liquid chromatography-
mass spectrometry as previously described. Cells (8x10°)
were seeded into six well plates and serum-starved over-
night. The following day media was replaced with phenol
red-free RPMI media. Cells were then stimulated with 3E1
in the presence of 10 pm AA in 1 % fatty acid-free
BSA. AA untreated cells served as a control. As an
additional control, AA was incubated in wells without
cells to measure spontaneous oxidation of AA into
12(S)-HETE, and this value was subtracted from cell-
generated 12(S)-HETE values. The detailed lipid extrac-
tion protocol has been described [52]. For measurement
of 12(S)-HETE production in parental A431 cells stimu-
lated with 3E1 as a function of time, cells were incu-
bated with 3E1 for the indicated times, washed 1x
with serum-free, phenol red-free media, and finally
treated with 10 uM AA (in 1 % fatty acid-free BSA)
for 15 min. Similarly, media from 12-LOX knock
down (KD) cell lines plus control cell lines were col-
lected after 6 h incubation with AA alone, or AA
with 3E1 (added together for 6 h). 5 pL of 15-HETE-d8
was added as an internal standard to monitor extrac-
tion efficiency. Samples were clarified by centrifugation at
1877 x g for 5 min. Supernatants were subjected to solid
phase extraction using Strata-X 33 pm Polymeric
Reversed Phase columns (30 mg/1 mL; Phenomenex,
Torrance, CA), followed by elution of lipid extracts
with methanol, evaporation under a stream of nitrogen,
and reconstitution in 50 pL LC-MS grade methanol.
Ammonium acetate (50 pL, 35 mM) was added before
LC-MS analysis. Samples were analyzed as biological
triplicates.
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Immunoprecipitation

Cells were lysed in cold buffer (1 % Triton X-100; 150 mM
NaCl; 10 mM Tris, pH 7.4; 1 mM EDTA; 1 mM EGTA,
pH 8.0; 0.2 mM sodium ortho-vanadate; 0.2 mM PMSEF;
0.01 % aprotinin; 5 pg/ml leupeptin; 0.5 % NP-40), and
subsequently clarified (10,000 x g; 10 min). Supernatants
were immunoprecipitated with 4—6 pl of antibody against
human 12-LOX, anti-p1, or the anti-B4 subunit for 2 h,
followed by 40 ul Sepharose 4B-conjugated protein G
at 4 °C overnight. Immune complexes were washed (3x)
in lysis buffer, and used for SDS-PAGE. Whole cell lysates
were used for input controls.

Western blotting

Performed as per standard techniques with horseradish
peroxidase-conjugated secondary anti-IgG diluted 1:4500,
and enhanced chemiluminescence (ECL) (both: Amersham,
Arlington Heights, IL) for detection.

Expression constructs and transfection

Dr. Filippo Giancotti (Memorial Sloan-Kettering Cancer
Center, NY) kindly provided expression constructs
encoding wild-type or mutant, truncated human 4
subunits. These were engineered in the eukaryotic
expression vector pRC-CMV (Invitrogen Corp., San
Diego, CA) as described [53]; pRC-CMV-p4 (full-length
B4 subunit cDNA); pCMV-p4 A854-1752 (tail-less, trun-
cated P4 lacking the cytoplasmic domain); and pCMV-[34
A70-660 (headless, truncated P4, extracellular sequences
replaced by a c-myc epitope tag). The full-length
¢DNA encoding human 12-LOX was subcloned into
the EcoRI/Xbal sites of pcDNA3.1 (Invitrogen) from
pCMV-12-LOX, gifted from Dr. Colin D. Funk (Queen’s
University, Kingston, Ontario, CA). Expression vectors of
full-length 4 and 12-LOX used neomycin as a selection
marker. As deletion constructs of f4 contained no selective
marker, they were cotransfected with neomycin encoding
vector, pcDNA3.1. Cells grown in 6-well plates were
transfected with 3-12 pg of pcDNA3.1, pCMV-f4,
pcDNA-12-LOX, pCMV-p4 tail-less or pCMV-p4
headless using the FuGENE 6 Transfection Reagent
following the manufacturer’s protocol. Neomycin-resistant
cells were selected in 300 pg/ml geneticin. Knockdown of
gene expression by shRNA was performed using Lentiviral
pGIPZ constructs targeted to unique regions of the 12-
LOX gene, which were purchased from Open Biosystems
(Rockford, IL): V2LHS_112083 (#1), V2LHS_112086 (#2),
V2LHS_112087 (#3), V3LHS_335849 (#5), V3LHS_335846
(#6), RHS4346 (#8). A431 stable transfections were achieved
with 2 pg plasmid DNA, using Lipofectamine LTX
(Invitrogen), followed 48 h later by selection in DMEM
containing 1 ug/mL puromycin for 3 weeks (Invitrogen,
Grand Island, NY). Authorization to use lenti-based
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vectors for transfection was granted by the WSU Institu-
tional Biosafety Committee as protocol IBC 02-51-11.

DNA fragmentation assay

Cells (2.5x10°) were grown to sub-confluence in 10 cm
tissue culture dishes and serum-starved (18 h) prior to
use. Cells were washed with PBS (3x), treated with varying
BMD122 concentrations for 24 h, and subsequently
stimulated with 3E1 antibody for 5, 15, 30, 60 and 90 min.
For DNA isolation, cells from each time point were
harvested and lysed with lysis buffer (200 pl) for 5 min,
clarified at 500 x g (5 min), and the resulting pellet was
re-extracted using 200 pl lysis buffer (2 min) and re-
clarified. Supernatants were pooled and treated with SDS
(1 %) and DNase-free RNase (5 mg/ml) (Ambion, Austin,
TX) for 2 h (56 °C), followed by proteinase K (2.5 mg/ml)
(Ambion, Austin, TX) treatment for 2 h (37 °C).
Finally, samples were extracted (1x) with alkaline phenol/
chloroform/isoamyl alcohol (25:24:1) and DNA was
precipitated with 0.3 M sodium acetate (pH 5.2) and
ethanol. DNA laddering was assayed from equal numbers
of cells, or 20 pg resolved on a 1.2 % agarose gel followed
by ethidium bromide staining.

Migration assays

Modified Boyden chambers (Becton Dickinson, Bedford,
MA) were coated with human laminin (5 pg/ml; 2 h;
25 °C) on the upper and lower surfaces, and seeded with
A431 cells (5x10°/ml) in DMEM-0.1 % BSA. Antibodies
to P4 integrin were preincubated with aliquots of cells
for 20 min prior to seeding. EGF (1 ng/ml) was added to
the lower chamber as a chemoattractant. The final concen-
tration of 12-LOX pharmacological inhibitors added to the
lower chambers was: 10 uM CDC or baicalein, or 20 uM
BMD122. All conditions were tested in triplicate. After 3 h,
inserts were fixed in a Quick-Fix solution, double-stained
with hematoxylin and eosin (HE), and mounted for
observation and counting. The number of migrated
cells (12 fields x 100) was counted in a double-blind
manner. Alternately, inserts with 8 um pores (BD Falcon;
Franklin Lakes, NJ) were coated with 100 ul of phenol
red-free, basement membrane and matrix growth
factor-reduced Matrigel (BD Bioscience, Bedford, MA)
(250 ug/ml; 1 h; 37 °C; excess liquid removed). Inserts
were seeded from confluent, serum-starved (overnight)
A431 cells (5 x 10°) in 0.5 ml serum-free media. Where
noted, cells were pre-treated with 25 uyM BMD122 for 1 h
prior to 30 min treatments with the following: 3E1 anti-
body (3 ug/well) or the natural ligand, laminin (10 pg/ml).
The lower chamber contained serum-free medium with
EGF (2 ng/ml), and complete media with or without serum
served as positive and negative controls, respectively. After
24 h, transmigrant cells on the underside of the insert were
stained with Azure A&B/Eosin Y using the Diff Quick
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Stain Kit (IMEB, Inc., San Marcos, CA) and washed twice
with distilled water. After removing residual, non-migrated
cells, membranes were cut from the inserts, dissolved in
10 % acetic acid and assayed for dye content at an absorb-
ance of ODs7. Results are the mean of three samples.

Real-time PCR

Isolated RNA (2 pg) (NucleoSpin RNAII kit; Macherey-
Nagel, Bethlehem, PA) was reverse-transcribed (High
Capacity Reverse Transcription Kit; Applied Biosystems,
Foster City, CA) for real-time PCR (Tagman Gene
Expression Master Mix, ALOX12 (HS00167524) and
GAPDH primers; Applied Biosystems, Foster City, CA).
All sample reactions were run in triplicate on the AB 7500
Fast Real Time PCR System. Relative expression of
12-LOX was quantified by the Ct value measured against
the internal standard GAPDH using the 7500 Fast System
SDS Software v1.4.0 (Applied Biosystems).

Additional files

Additional file 1: Interaction of 12-LOX with B4 by
immunoprecipitation. The density of the 12-LOX band in transfectants
was greater (S1a, right panels) than the comparable band in the
non-transfected cells (Fig. S1a, left panels).

Additional file 2: 12-LOX colocalization with B4 by laser confocal
immunofluorescence imaging. Subconfluent, serum-starved A431 cells
were treated with 5 mg/ml laminin or 3E1 for two hours, or non-specific
mouse IgG for one hour. After fixation, cells were labeled sequentially first
with P-12 LOX antibody and its respective secondary antibody followed by
the anti-b4 antibody and its secondary antibody. Primary and secondary
antibodies were used at 1:100 and 1:500, respectively. (Fig. S2a-d).
Overlapping areas of staining, which appear in yellow in the superimposed
confocal images in laminin and 3E1 stimulated cells (Fig. S2a,b) were found
around the nuclear membrane, at cell-cell junctions and at the cell periphery.
In unstimulated controls, or cells treated with mouse preimmune serum,
virtually no positive staining was observed for 12-LOX with b4 (Fig. S2¢.d).
The surface staining in green in the IgG treated cells (Fig. S2d) either
represents a non-specific interaction of the secondary antibody with the IgG
used to stimulate the cells, or may represent a novel redistribution of 12-LOX
by a component of the pre-immune serum. As controls, 3E1-stimulated cells
were stained with secondary antibodies alone (Fig. S2e). While anti mouse
antibody detected 3E1, used to stimulate the cells, there was limited
costaining with the secondary antibodies alone. However, this was rare in
the observed fields, and the distribution is different from that seen in the
laminin and 3E1-stimulated cells (Fig. S2a,b, f; S3-7=.avi animated Z-stacks).
Mowiol-preserved samples were observed with a Leica TCS SP5 laser
scanning confocal microscope.

Additional file 3: Colocalization of 12-LOX and ITGB4. Animated
selection of confocal microscope Z-stack series corresponding to data

in Additional file 2.

Additional file 4: Colocalization of 12-LOX and ITGB4. Animated
selection of confocal microscope Z-stack series corresponding to data

in Additional file 2.

Additional file 5: Colocalization of 12-LOX and ITGB4. Animated
selection of confocal microscope Z-stack series corresponding to data

in Additional file 2.

Additional file 6: Colocalization of 12-LOX and ITGB4. Animated
selection of confocal microscope Z-stack series corresponding to data

in Additional file 2.
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Additional file 7: Colocalization of 12-LOX and ITGB4. Animated
selection of confocal microscope Z-stack series corresponding to data
in Additional file 2.

Additional file 8: Measurement of 12-lipoxygenase activity by
RP-HPLC. (A) 12(S)-HETE peak eluted with corresponding authentic
compound. (B) The data shown are the mean value (+SEM) from three
experiments as represented in (A), error bars indicate SEM. 12(S)-HETE
production was measured using reverse-phase high-performance liquid
chromatography (RP-HPLC). At designated time points, 3E1-treated A431
cells (described earlier) were harvested into homogenization buffer and
sonicated (10 sec; 2x; 0 °C). Samples were clarified by centrifugation
(10,000 x g; 10 min) and supernatants were immediately separated into
membrane and soluble fractions by centrifugation (100,000 x g; 4 °C; 1 h).
Each fraction (100,000 x g supernatants and resuspended 100,000 x g pellet)
was incubated with exogenous "“C-AA (10 uM; 37 °C; 15 min). The incubation
was terminated by acidification of the suspension to pH 3.5 with 1 N HCI.
Samples were centrifuged (2000 x g) and supernatants (cell lipids) were
extracted by the method of Benedetto and Lands [54]. Briefly, acidified
samples were applied to ODS-Silica cartridges, followed by elution of lipid
extracts with freshly redistilled ethyl acetate. These were evaporated under

a stream of nitrogen and reconstituted in acetonitrile/acetic acid (1000:1) for
HPLC analysis using chromatography conditions based on methods of Powell
and Liu. Reverse-phase HPLC was performed using a Beckman Ultrasphere
C18-0DS column (4.6 x 250 mm; 5 um) (Beckman, Fullerton, CA) with a
Vista 5500 pump system (Varian, Palo Alto, CA). Lipoxygenase metabolites of
AA were resolved in an isocratic solvent system of acetonitrile/water/acetic
acid [54:46:0.05] at 1.5 ml/min. Column effluent was continuously monitored
with a Varian 2550 UV/Vis spectrophotometer (Varian) set at 236 nm and a
radioisotope flow detector (3-RAM, IN/US, Fairfield, NJ). The lipoxygenase
metabolites were identified based on the retention time of the authentic
compounds. [°H]-12(S)-HETE was used to confirm the identity of the peak

in the sample.

Additional file 9: Detection of nucleosomes in the cytoplasm of
cells treated with BMD122. A431 cells were exposed for 48 h to
different concentrations of BMD122. After cell lysis and centrifugation, the
cytoplasmic fractions were prediluted 1:10 with incubation buffer and
tested for nucleosomes by ELISA. Substrate reaction time: 15 min.

Additional file 10: BMD122 effects on A431 cell survival by Trypan
blue exclusion assay. The maximum cell killing (i.e, the lowest cell
survival) was noticed at 100 uM BMD122. The treatment was 48 h, and
the results are expressed as % cell survival compared to ethanol control
(i.e, 0 mM BMD122). Each condition was run in triplicate, and the results
were derived from the mean +/— SE of three independent experiments.
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12-lipoxygenase and its metabolite 12(S)-HETE in cancer progression
and recently identified the 12(S)-HETE receptor.

Acknowledgments

This work was supported by National Institute of Health Grant CA-29997
(KV.H.). This material is based upon work supported by, or in part by,

the US. Army Research Laboratory and the U.S. Army Research Office

under contract/grant number DAMD 17-03-1-0102 (K\V.H.). We are grateful
to Drs. F. Giancotti, S. Kennel, and C.D. Funk for their generous gifts of
plasmid constructs and antibodies. We thank Dr. Sam Brooks for helpful
discussion. This study was supported in part by the National Center for
Research Resources, National Institutes of Health Grant STORR027926 (KR.M.).

Author details

'Department of Radiation Oncology, John D. Dingell VA Medical Center,
48201 Detroit, MI, USA. 2Department of Pathology, Bioactive Lipids Research
Program, Wayne State University School of Medicine, Karmanos Cancer
Institute, 431 Chemistry Building, 48202 Detroit, MI, USA. 3Program in Cancer
Biology, Wayne State University School of Medicine, 48202 Detroit, MI, USA.
4Department of Internal Medicine, University of Michigan, 48109 Ann Arbor,
MI, USA. *Present address: Roswell Park Cancer Institute, 14263 Buffalo, New
York, USA. ®Present address: Van Andel Institute, 49503 Grand Rapids, MI,
USA.

Received: 9 September 2014 Accepted: 8 May 2015
Published online: 03 June 2015

References

1. Tang K, Finley Jr RL, Nie D, Honn KV. Identification of 12-lipoxygenase
interaction with cellular proteins by yeast two-hybrid screening.

Biochemistry. 2000,39:3185-91.

2. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285:1028-32.

3. Mercurio AM, Bachelder RE, Bates RC, Chung J. Autocrine signaling in
carcinoma: VEGF and the alpha6beta4 integrin. Semin Cancer Biol.
2004;14:115-22.

4. Zahir N, Lakins JN, Russell A, Ming W, Chatterjee C, Rozenberg Gl et al.
Autocrine laminin-5 ligates alpha6beta4 integrin and activates RAC and
NFkappaB to mediate anchorage-independent survival of mammary tumors.
J Cell Biol. 2003;163:1397-407.

5. Bachelder RE, Ribick MJ, Marchetti A, Falcioni R, Soddu S, Davis KR, et al. p53
inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase
3-dependent cleavage of AKT/PKB. J Cell Biol. 1999;147:1063-72.

6. Chao C, Lotz MM, Clarke AC, Mercurio AM. A function for the integrin
alpha6beta4 in the invasive properties of colorectal carcinoma cells.

Cancer Res. 1996,56:4811-9.

7. Owens DM, Romero MR, Gardner C, Watt FM. Suprabasal alphatbeta4
integrin expression in epidermis results in enhanced tumourigenesis and
disruption of TGFbeta signalling. J Cell Sci. 2003;116:3783-91.

8. Falcioni R, Turchi V, Vitullo P, Navarra G, Ficari F, Cavaliere F, et al. Integrin
Beta-4 expression in colorectal-cancer. Int J Oncol. 1994;5:573-8.

9. Gambaletta D, Marchetti A, Benedetti L, Mercurio AM, Sacchi A, Falcioni R.
Cooperative signaling between alpha(6)beta(4) integrin and ErbB-2 receptor
is required to promote phosphatidylinositol 3-kinase-dependent invasion.

J Biol Chem. 2000,275:10604-10.

10.  Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4
integrin amplifies ErbB2 signaling to promote mammary tumorigenesis.
Cell. 2006;126:489-502.

11. Ni X, Epshtein Y, Chen W, Zhou T, Xie L, Garcia JG, et al. Interaction of
integrin beta4 with S1P receptors in S1P- and HGF-induced endothelial
barrier enhancement. J Cell Biochem. 2014;115:1187-95.

12. Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J, et al. beta4
Integrin signaling induces expansion of prostate tumor progenitors. J Clin
Invest. 2013;123:682-99.

13. Honn KV, Tang DG, Gao X, Butovich IA, Liu B, Timar J, et al. 12-lipoxygenases and
12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev. 1994;13:365-96.

4. Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malmsten
C. Prostaglandins and thromboxanes. Annu Rev Biochem. 197847:997-1029.

15. Funk CD. The molecular biology of mammalian lipoxygenases and the
quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim
Biophys Acta. 1996;1304:65-84.

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33

34,

35.

36.

37.

39.

Page 12 of 13

Pidgeon GP, Tang K, Cai YL, Piasentin E, Honn KV. Overexpression of
platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing
alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Res.
2003,63:4258-67.

Gao X, Grignon DJ, Chbihi T, Zacharek A, Chen YQ, Sakr W, et al. Elevated
12-lipoxygenase mRNA expression correlates with advanced stage and poor
differentiation of human prostate cancer. Urology. 1995;46:227-37.

Romano M, Chen XS, Takahashi Y, Yamamoto S, Funk CD, Serhan CN.
Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem J.
1993;296(Pt 1):127-33.

Hussain H, Shornick LP, Shannon VR, Wilson JD, Funk CD, Pentland AP, et al.
Epidermis contains platelet-type 12-lipoxygenase that is overexpressed in
germinal layer keratinocytes in psoriasis. Am J Physiol. 1994;266:C243-53.
Liagre B, Vergne P, Rigaud M, Beneytout JL. Expression of arachidonate
platelet-type 12-lipoxygenase in human rheumatoid arthritis type B
synoviocytes. FEBS Lett. 1997;414:159-64.

Virmani J, Johnson EN, Klein-Szanto AJ, Funk CD. Role of ‘platelet-type’
12-lipoxygenase in skin carcinogenesis. Cancer Lett. 2001;162:161-5.

Dilly AK, Ekambaram P, Guo Y, Cai Y, Tucker SC, Fridman R, et al. Platelet-type
12-lipoxygenase induces MMP9 expression and cellular invasion via activation
of PI3K/Akt/NF-kappaB. Int J Cancer. 2013;133:1784-91.

Nie D, Hillman GG, Geddes T, Tang K, Pierson C, Grignon DJ, et al.
Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates
angiogenesis and tumor growth. Cancer Res. 1998,58:4047-51.

Hagmann W, Gao X, Timar J, Chen YQ, Strohmaier AR, Fahrenkopf C, et al.
12-Lipoxygenase in A431 cells: genetic identity, modulation of expression,
and intracellular localization. Exp Cell Res. 1996,228:197-205.

Hagmann W, Gao X, Zacharek A, Wojciechowski LA, Honn KV. 12-Lipoxygenase
in Lewis lung carcinoma cells: molecular identity, intracellular distribution of
activity and protein, and Ca(2+)-dependent translocation from cytosol to
membranes. Prostaglandins. 1995,49:49-62.

Giancotti FG, Stepp MA, Suzuki S, Engvall E, Ruoslahti E. Proteolytic
processing of endogenous and recombinant beta 4 integrin subunit.

J Cell Biol. 1992;118:951-9.

Baba A, Sakuma S, Okamoto H, Inoue T, lwata H. Calcium induces
membrane translocation of 12-lipoxygenase in rat platelets. J Biol Chem.
1989;264:15790-5.

Tang DG, Chen YQ, Honn KV. Arachidonate lipoxygenases as essential regulators
of cell survival and apoptosis. Proc Natl Acad Sci U S A. 1996,93:5241-6.
Salgame P, Varadhachary AS, Primiano LL, Fincke JE, Muller S, Monestier M.
An ELISA for detection of apoptosis. Nucleic Acids Res. 1997;25:680-1.
Altman SA, Randers L, Rao G. Comparison of trypan blue dye exclusion and
fluorometric assays for mammalian cell viability determinations. Biotechnol
Prog. 1993,9:671-4.

Mainiero F, Pepe A, Yeon M, Ren Y, Giancotti FG. The intracellular functions
of alphatbeta4 integrin are regulated by EGF. J Cell Biol. 1996;134:241-53.
Guo AM, Liu X, Al-Wahab Z, Maddippati KR, Ali-Fehmi R, Scicli AG, et al. Role
of 12-lipoxygenase in regulation of ovarian cancer cell proliferation and
survival. Cancer Chemother Pharmacol. 2011;68:1273-83.

Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O'Byrne K, Nie D, et al.
Lipoxygenase metabolism: roles in tumor progression and survival.

Cancer Metastasis Rev. 2007;26:503-24.

Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK, et al. Identification
of the orphan G protein-coupled receptor GPR31 as a receptor for
12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem. 2011;286:33832-40.
Connolly JM, Rose DP. Enhanced angiogenesis and growth of
12-lipoxygenase gene-transfected MCF-7 human breast cancer cells

in athymic nude mice. Cancer Lett. 1998;132:107-12.

Krishnamoorthy S, Jin R, Cai Y, Maddipati KR, Nie D, Pages G, et al.
12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate
cancer cells. Exp Cell Res. 2010;316:1706-15.

Timar J, Tang D, Bazaz R, Haddad MM, Kimler VA, Taylor JD, et al. PKC
mediates 12(S)-HETE-induced cytoskeletal rearrangement in B16a melanoma
cells. Cell Motil Cytoskeleton. 1993;26:49-65.

Ulbricht B, Hagmann W, Ebert W, Spiess E. Differential secretion of
cathepsins B and L from normal and tumor human lung cells stimulated by
12(S)-hydroxy-eicosatetraenoic acid. Exp Cell Res. 1996,226:255-63.

Timar J, Bazaz R, Kimler V, Haddad M, Tang DG, Robertson D, et al.
Immunomorphological characterization and effects of 12-(S)-HETE on a
dynamic intracellular pool of the alpha llb beta 3-integrin in melanoma
cells. J Cell Sci. 1995;108(Pt 6):2175-86.



Tang et al. Molecular Cancer (2015) 14:111

40.

41,

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets
and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev.
2014;33:231-69.

Yeung J, Apopa PL, Vesci J, Stolla M, Rai G, Simeonov A, et al. 12-
lipoxygenase activity plays an important role in PAR4 and GPVI-mediated
platelet reactivity. Thromb Haemost. 2013;110:569-81.

Yeung J, Tourdot BE, Fernandez-Perez P, Vesci J, Ren J, Smyrniotis CJ, et al.
Platelet 12-LOX is essential for FcgammaRlla-mediated platelet activation.
Blood. 2014;124:2271-9.

Brock TG, McNish RW, Peters-Golden M. Translocation and leukotriene
synthetic capacity of nuclear 5-lipoxygenase in rat basophilic leukemia cells
and alveolar macrophages. J Biol Chem. 1995,270:21652-8.

Brinckmann R, Schnurr K, Heydeck D, Rosenbach T, Kolde G, Kuhn H.
Membrane translocation of 15-lipoxygenase in hematopoietic cells is
calcium-dependent and activates the oxygenase activity of the enzyme.
Blood. 1998,91:64-74.

Chen YQ, Duniec ZM, Liu B, Hagmann W, Gao X, Shimoji K, et al.
Endogenous 12(S)-HETE production by tumor cells and its role in
metastasis. Cancer Res. 1994;54:1574-9.

Vieira AF, Ribeiro AS, Dionisio MR, Sousa B, Nobre AR, Albergaria A, et al.
P-cadherin signals through the laminin receptor alpha6beta4 integrin to
induce stem cell and invasive properties in basal-like breast cancer cells.
Oncotarget. 2014;5:679-92.

Banyard J, Chung I, Migliozzi M, Phan DT, Wilson AM, Zetter BR, et al.
Identification of genes regulating migration and invasion using a new
model of metastatic prostate cancer. BMC Cancer. 2014;14:387.

Xin Z, Yamaguchi A, Sakamoto K. Aberrant expression and altered cellular
localization of desmosomal and hemidesmosomal proteins are associated
with aggressive clinicopathological features of oral squamous cell
carcinoma. Virchows Arch. 2014,465:35-47.

Tang K, Nie D, Cai Y, Honn KV. The beta4 integrin subunit rescues A431 cells
from apoptosis through a PI3K/Akt kinase signaling pathway.

Biochem Biophys Res Commun. 1999,264:127-32.

Gupta P, Srivastava SK. Inhibition of Integrin-HER2 signaling by Cucurbitacin
B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget.
2014;,5:1812-28.

Nie D, Nemeth J, Qiao Y, Zacharek A, Li L, Hanna K, et al. Increased
metastatic potential in human prostate carcinoma cells by overexpression
of arachidonate 12-lipoxygenase. Clin Exp Metastasis. 2003;20:657-63.
Maddipati KR, Zhou SL. Stability and analysis of eicosanoids and
docosanoids in tissue culture media. Prostaglandins Other Lipid Mediat.
2011,94:59-72.

Spinardi L, Ren YL, Sanders R, Giancotti FG. The beta 4 subunit cytoplasmic
domain mediates the interaction of alpha 6 beta 4 integrin with the
cytoskeleton of hemidesmosomes. Mol Biol Cell. 1993;4:871-84.

Benedetto C. Prostaglandins and related substances : a practical approach.
Oxford: Washington, D.C.: IRL Press; 1987.

Page 13 of 13

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	The cytoplasmic domain of β4 interacts with 12-LOX in tumor cells
	β4 ligation-induced translocation of 12-LOX in A431 cells
	The interaction of β4 with 12-LOX upregulates 12-LOX enzymatic activity
	Activation of 12-LOX by β4 stimulation blocks A431 cells from apoptosis induced by 12-LOX inhibitor
	12-LOX activation by β4 mediates EGF-stimulated migration of A431 cells

	Discussion
	Conclusions
	Materials and methods
	Antibodies and reagents
	Cell culture and treatments
	Subcellular fractionation
	Measurement of 12-lipoxygenase activity by LC-MS
	Immunoprecipitation
	Western blotting
	Expression constructs and transfection
	DNA fragmentation assay
	Migration assays
	Real-time PCR

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Author information
	Acknowledgments
	Author details
	References

