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Abstract

and can directly stimulate chemotaxis of cancer cells.

Background: One of the challenging problems of current radio-chemotherapy is recurrence and metastasis of
cancer cells that survive initial treatment. We propose that one of the unwanted effects of radiochemotherapy is
the release from damaged (“leaky”) cells of nucleotides such as ATP and UTP that exert pro-metastatic functions

Methods: To address this problem in a model of human lung cancer (LC), we employed several complementary

in vitro and in vivo approaches to demonstrate the role of extracellular nucleotides (EXNs) in LC cell line metastasis and
tumor progression. We measured concentrations of EXNs in several organs before and after radiochemotherapy. The
purinergic receptor agonists and antagonists, inhibiting all or selected subtypes of receptors, were employed in in vitro

and in vivo pro-metastatic assays.

small molecule inhibitors of purinergic receptors.

part of anti-metastatic treatment.

Results: We found that EXNs accumulate in several organs in response to radiochemotherapy, and RT-PCR analysis
revealed that most of the P1 and P2 receptor subtypes are expressed in human LC cells. EXNs were found to induce
chemotaxis and adhesion of LC cells, and an autocrine loop was identified that promotes the proliferation of LC cells.
Most importantly, metastasis of these cells could be inhibited in immunodeficient mice in the presence of specific

Conclusions: Based on this result, EXNs are novel pro-metastatic factors released particularly during
radiochemotherapy, and inhibition of their pro-metastatic effects via purinergic signaling could become an important
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Background

There are well-known side effects of chemotherapy and
radiotherapy, mainly due to the toxicity-related impaired
function of vital organs [1, 2]. However, in addition, these
therapies induce the unwanted expression and release of
several pro-metastatic factors that create a pro-metastatic

* Correspondence: mzrataOl@louisville.edu

'Stem Cell Institute at James Graham Brown Cancer Center, University of
Louisville, 500 South Floyd Street, Louisville, KY 40202, USA

“Department of Regenerative Medicine, Medical University of Warsaw,
Warsaw, Poland

Full list of author information is available at the end of the article

( BioMed Central

microenvironment [1, 3, 4]. Surprisingly, this issue has not
been fully investigated thus far.

We propose the novel concept that toxic damage in
various organs leads to an upregulation of the expression
and activity of several factors in “bystander” tissues,
including extracellular nucleotides (EXNs), which pro-
vide chemotactic signals to cancer cells that survived the
initial treatment. We propose that this mechanism plays
an important role in the metastasis of cancer cells and
indicates the need to develop efficient anti-metastatic
drugs that work in combination with, or follow, standard
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therapies in order to prevent the possibility of therapy-
induced spread of tumor cells [1, 3-5].

Nucleotides leaking through the membranes of dam-
aged cells or released through specific pathways include
purine nucleotides and nucleosides (e.g., ATP, ADP, AMD,
adenosine) as well as pyrimidine nucleotides (e.g., UTD,
UDP), which signal through purinergic receptors
expressed in almost every tissue [6]. There are both nu-
cleoside- and nucleotide-activated receptors, which belong
to different receptor families and are distinguishable by
their pharmacological properties. While P1 receptors,
which are divided into Aj, Ay, A, and Aj subtypes, re-
spond to adenosine and its analogues, P2 receptors are
activated by ATP and/or other nucleotides. P2 receptors
are further subdivided into ionotropic (P2X) and metabo-
tropic (P2Y) receptors, based on structural characteristics
[7, 8]. Ionotropic P2X receptors are assembled in a tri-
meric form as homo- or heteromers consisting of the sub-
units designated P2X1-7. P2X receptor channels are
activated by ATP, which opens the channel to allow the in-
flux of Ca®*, Na*, and K*. The mammalian metabotropic
P2 receptor family contains eight different subtypes,
denoted P2Y1, 2, 4, 6, 11, 12, 13, and 14 [7, 8].

Nucleotides may also be released from cells in re-
sponse to certain stimulatory agents and affect the cell
in an autocrine/paracrine manner. For example, the mi-
gration of leucocytes in response to analpylatoxin Cb5a is
potentiated by the release of ATP at the leading edge of
migrating cells [9]. The availability and lifetime of re-
leased ATP in a controlled manner for autocrine or
paracrine stimulation of purinergic receptors is con-
trolled by a highly efficient enzymatic cascade, including
processing that degrades nucleotides (e.g. ATP, ADP, and
AMP), finally yielding nucleosides (e.g. adenosine) and
thereby regulating activity levels of the various P2 and
P1 receptors [10]. It has been reported that, while the
interstitial ATP in normal tissues attains a concentration
of up to 1000 nM, the intratumoral ATP concentration
can be as much as 10°~10* fold higher [11].

Taking into consideration the possibility that EXNs
affect the behavior of LC cells, we became interested
in their role in progression of this tumor. We ob-
served that EXNs accumulate in several murine or-
gans in response to radiochemotherapy and that most
of the functional P2X, P2Y, and P1 receptor subtypes
are expressed in human LC cells. EXNs were found
to modulate the pro-metastatic behavior of LC cells,
and their metastasis could be inhibited in immunode-
ficient mice in the presence of specific small molecule
inhibitors of purinergic receptors. Based on these
findings, it is clear that EXNs are novel pro-metastatic
factors and that inhibition of their pro-metastatic effects
via purinergic signaling could become an important part
of anti-metastatic treatment.
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Methods

Cell lines

We used several human lung cancer cell lines (obtained
from the American Type Culture Collection, Manassas,
VA), including both non-small cell lung cancer (NSCLC;
A549, HTB177, HTB183, and CRL5803) and small cell
lung cancer (SCLC; CRL2062 and CRL5853) cell lines.
NSCLC cells were cultured in Roswell Park Memorial
Institute (RPMI) medium 1640, containing 10 % fetal bo-
vine serum (FBS), 100 U/ml penicillin, and 10 pg/ml
streptomycin. CRL2062 cells were maintained in
Waymouth’s MB 752/1 medium containing 10 % FBS,
100 U/ml penicillin, and 10 pg/ml streptomycin.
CRL5853 cells were cultured in DMEM:F12 medium sup-
plemented with 5 % FBS, 0.005 mg/ml insulin, 0.005 mg/
ml transferrin, 30 nM sodium selenite (ITS, Lonza, Allen-
dale, NJ), 10 nM hydrocortisone (Sigma-Aldrich, St. Louis,
MO, USA), 10 nM beta-estradiol (Sigma-Aldrich),
4 mM L-glutamine, 100 U/ml penicillin, and 10 pg/ml
streptomycin. All cells were cultured in a humidified
atmosphere of 5 % CO, at 37 °C, and the media were
changed every 48 h.

Preparation of conditioned media

Pathogen-free C57BL6 mice were purchased from the
National Cancer Institute (Frederick, MD, USA), allowed
to adapt for at least 2 weeks, and used for experiments
at age 7-8 weeks. Animal studies were approved by the
Animal Care and Use Committee of the University of
Louisville (Louisville, KY, USA). Mice were irradiated
with 250, 500, 1000, or 1500 cGy. Twenty-four hours
later, bone marrow and plasma were isolated. Condi-
tioned medium (CM) was obtained by 1-h incubation of
BM in RPMI at 37 °C. After centrifuging, the supernatant
was used for further experiments. In studies with the che-
motherapeutic agent vincristine, mice were injected intra-
peritoneally with 0.9 % NaCl with (0.5 mg/kg or 2 mg/kg)
or without vincristine. Twenty-four hours later, organs
were isolated, and CM was prepared as described above.

Chemotaxis assay

Chemotaxis assays were performed in a modified
Boyden’s chamber with 8-um polycarbonate membrane
inserts (Costar Transwell; Corning Costar, Lowell, MA,
USA) as described previously [3, 4]. In brief, cells de-
tached with 0.25 % trypsin were made quiescent by incu-
bation for 1-3 h in appropriate medium (RPMI,
DMEM-F12, or Waymouth’s MB 752/1), supplemented
with 0.5 % (NSCLC) or 0.2 % (SCLC) bovine serum al-
bumin (BSA). The cells were then seeded into the upper
chamber of an insert (pretreated with 1 % gelatin) at a
density of 3.5 x 10* (NSCLC) or 10x 10* (SCLC) in
110 pl. The lower chamber was filled with pre-warmed
medium containing test reagents. All nucleotides
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(adenosine triphosphate, ATP; adenosine diphosphate,
ADP; adenosine monophosphate, AMP; adenosine; uri-
dine triphosphate, UTP; guanosine triphosphate, GTP;
thymidine triphosphate, TTP; cytidine triphosphate,
CTP) were obtained from Sigma-Aldrich. Medium sup-
plemented with BSA was used as a negative control. In
some experiments, cells were pretreated with the P2 re-
ceptors inhibitor iso-PPADS (Tocris, Minneapolis, MN),
the A; receptor agonist PSB63 (Tocris), the A, receptor
antagonist ANR94 (Tocris), the A,p receptor antagonist
PSB603 (Tocris), the Az receptor antagonist MRS3777
(Tocris) or the stimulator ivermectin (Sigma-Aldrich)
for 15 min at 37 °C. Inhibitors were also added to the
lower chambers and were present throughout the ex-
periment. In experiment with apyrase, apyrase (Sigma)
was added to lower chamber together with HGF.
After 24 h, the inserts were removed from the
Transwell supports. The cells that had not migrated
were scraped off with cotton wool from the upper
membrane, and the cells that had transmigrated to
the lower side of the membrane were fixed and
stained with HEMA 3 (manufacturer’s protocol, Fisher
Scientific, Pittsburgh, PA) and counted on the lower
side of the membrane using an inverted microscope.

Adhesion assay to fibronectin

Cells were made quiescent for 3 h with appropriate
medium containing BSA and incubated with nucleotides
for 10 min. Subsequently, cell suspensions (5 x 10%/
100 pL) were added directly to 96-well plates coated with
fibronectin and incubated for 5 min at 37 °C. The wells
were previously coated with fibronectin (10 pg/ml) over-
night at 4 °C and blocked with 0.5 % BSA for 1 h before
the experiment. Following incubation, the plates were vig-
orously washed three times to remove non-adherent cells,
and the number of adherent cells was counted using an
inverted microscope.

Real-time quantitative reverse-transcription PCR

Total RNA was isolated from LC cells with the RNeasy kit
(Qiagen, Valencia, CA). Human lung RNA was obtained
from Ambion (Austin, TX). The RNA was reverse tran-
scribed with MultiScribe reverse transcriptase, oligo(dT),
and random-hexamer primer mix (Life Techonologies,
Foster City, CA). Quantitative assessment of mRNA levels
was done by real-time reverse transcription PCR (qRT-
PCR) on an ABI 7500 Fast instrument with Power SYBR
Green PCR Master Mix reagent. Real-time conditions
were as follows: 95 °C (15 s), 40 cycles at 95 °C (15 s), and
60 °C (1 min). According to melting point analysis, only
one PCR product was amplified under these conditions.
The relative quantity of a target, normalized to the
endogenous [2-microglobulin gene as control and
relative to a calibrator (normal lung tissue), is
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expressed as 2724C' (fold difference), where Ct is the
threshold cycle, ACt = (Ct of target genes) — (Ct of the
endogenous control gene, p2-microglobulin), and
AACt=(ACt of lung cancer cell line sample cDNA
for target gene)— (ACt of normal lung tissue cDNA
for the target gene). All primers that were used for
qRT-PCR are listed in Additional file 1: Table S1.

Flow cytometry

For measuring A,p expression cells were detached using
non-enzymatic reagent (CellStripper, Corning), followed
by 2 h incubation in appropriate medium with 0.5 %
BSA. Next cells were washed with PBS, fixed by 15 min
incubation at 4 °C in BD Cytofix/Cytoperm solution (BD
Biosciences, Franklin Lakes, NJ, USA), washed again and
incubated for 30 min in 0.5 % BSA in PBS. Cells were
stained with primary rabbit polyclonal anti-A2B
antibody (1:25, Bioss Inc, Woburn, MA, USA) for 1 h at
37 °C. Than cells were washed and incubated with sec-
ondary antibody Alexa Fluor 488 goat anti-rabbit (1:100,
Life Technologies). Cells were then analyzed using the
LSR cell cytometer (BD Biosciences). For all other recep-
tors cells were detached and mechanically dissociated to
a single cell suspension using TrypLE™ Express (Life
Technologies) for 1 min at room temperature, passed
through a 40 pum cell strainer and then washed twice
with phosphate-buffered saline (PBS). Cells were subse-
quently fixed with 4 % (PBS) for 30 min at RT, washed
and incubated for 30 min in a blocking solution contain-
ing 0.05 % Triton X-100, 0,05 % Tween-20 and 5 % EBS
in PBS. Staining with primary antibodies was performed
after 2 h incubation with primary antibodies: rabbit poly-
clonal anti-P2X4 (1:200, Santa Cruz Biotech, Dallas, TX,
USA), rabbit polyclonal anti-P2X7 (1:200, Aviva Systems
Biology, Corp., San Diego, CA, USA), goat polyclonal
anti-P2Y1 (1:200, Santa Cruz Biotech), rabbit polyclonal
anti-P2Y12 (1:500, Alomone, Jerusalem, Israel). Cells
then were washed and incubated for 40 min with Alexa
Fluor 488 donkey anti-rabbit (1:1,000, Life Technologies)
or Alexa Fluor 488 donkey anti-goat (1:1,000, Life
Technologies) secondary antibodies. Cells were analyzed
with the AttuneVR cytometer (Life Technologies). The
analysis of the data was performed using the FlowJo
7.2.5 or 7.6.3 software (FLOWJO, Ashland, OR, USA).
Unstained cells and cells incubated with isotype control
were used as controls.

Mean relative of fluorescence intensity analysis is pre-
sented as a value of mean of fluorescence intensity for
stained cells divided by mean of fluorescence intensity
obtained for control cells.

Cell proliferation
Cells were seeded in culture flasks at an initial density of
1.25 x 10* cells/ecm? (NSCLC) or 6 x 10* cells/cm?
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(SCLC). After 24 h, the medium was changed to new
medium supplemented with 0.5 % BSA, and the cells
were cultured in the presence or absence of nucleotides.
Full medium (with FBS) was treated as a positive con-
trol. The cell number was calculated at 24, 48, and 72 h
after the change of medium. At the indicated time
points, cells were harvested from the culture plates by
trypsinization and counted using Trypan Blue and a
Neubauer chamber.

Phosphorylation of intracellular pathway proteins

The HTB177 and CRL5803 cell lines were kept over-
night or 6 h, respectively, in medium containing 0.5 %
BSA to render the cells quiescent. The cells were then
stimulated with nucleotides at 37 °C for 5 min, then
lysed for 20 min on ice in RIPA lysis buffer containing
protease and phosphatase inhibitors (Santa Cruz
Biotech, Santa Cruz, CA). The extracted proteins were
separated on a 12 % SDS-PAGE gel and transferred to a
PVDF membrane. Phosphorylation of the serine/threo-
nine kinase AKT (phospho-AKT473) and p44/42
mitogen-activated kinase (phospho-p44/42 MAPK) was
detected by rabbit and mouse antibodies (Cell Signaling,
Danvers, MA, USA), respectively, with HRP-conjugated
goat anti-rabbit and anti-mouse secondary antibodies
(Santa Cruz Biotech). Equal loading in the lanes was eval-
uated by stripping the blots and reprobing with anti-p42/
44 MAPK monoclonal antibody (clone no. 9102, Cell
Signaling) and anti-AKT polyclonal antibody (Cell Signal-
ing). The membranes were developed with enhanced
chemiluminescence (ECL) reagent (Amersham Life
Sciences, Arlington Heights, IL), dried, and subsequently
exposed to film (Hyperfilm, Amersham Life Sciences).

Calcium measurements by microfluorimetry

Cell suspensions (5 x 10%*/100 puL) were seeded onto a
black 96-well, clear-bottom plate in appropriate medium
and cultured until reaching 80-90 % confluence. The
intracellular calcium concentration transient was mea-
sured using the FlexStation Calcium 4 Assay Kit
(Molecular Devices Corp.), as reported elsewhere [12].
To explore the mechanism of agonist efficacy, the indir-
ect fluorescence were determined using a FlexStation III
plate reader (Molecular Devices Corp., Sunny Valley,
CA). Briefly, the cells were incubated for 1 h at 37 °C
with the calcium indicator solution containing 2.5 mM
probenecid in a 200-pL final volume per well. The fluo-
phore was excited at 485 nm, and the emitted fluores-
cence was detected at 525 nm. Changes in free
intracellular calcium concentration ([Ca®*],) were deter-
mined by subtracting the minimum fluorescence intensity
from the maximum fluorescence intensity (Fmax—Fmin),
normalized by the baseline resting state.

Page 4 of 15

Quantitation of ATP, UTP and adenosine

The ATP levels secreted by cultured LC cells were mea-
sured using the Adenosine 5'-triphosphate Biolumines-
cent Somatic Cell assay kit (Sigma-Aldrich), according
to the manufacturer’s instructions. Briefly, cells were
seeded into black 96-well microplates with transparent
bottoms, and the light emitted by luciferase activity was
detected using a FlexStation III plate reader (Molecular
Devices Corp., Sunny Valley, CA), with the light inten-
sity proportional to ATP concentration. The ATP level
in bone marrow (BM), conditioned medium from BM,
and plasma were measured using the ATP Colorimetric/
Fluorometric Assay Kit and Deproteinizing Sample Prep-
aration Kit (BioVision, Milpitas, CA, USA), according to
the manufacturer protocol. Fluorescence analysis was
performed with Ex/Em set at 535/585 nm. Adenosine
level was measured using Adenosine Fluorymetic Assay
Kit (BioVision) and UTP level was measured using UTP
ELISA Kit (MyBio Source, San Diego, CA, USA) accord-
ing to the manufacturers’ protocols.

Bone marrow cell lysates and conditioned media were
obtained by flushing the bone marrow tibia and femur
cavities and resuspending cells in 3 ml of RPMI medium.
Cells suspensions were than centrifuged (680 x g,
10 min, 4 °C) and supernatants were collected and
employed in experiments as conditioned media. Bone
marrow cells were than washed with PBS, counted using
Tuerk solution and cells pellets were fast frozen and
stored in -80 °C. To obtained cell lysates frozen pellets
were resuspended in 200 pl of PBS cells and subjected
to ultrasonication 10 times (1 s) followed by centrifuga-
tion at 20,000 x g for 10 min, 4 °C to remove cell debris.

Transplant of LC cells into immunodeficient mice

To study the effects of the pharmacological inhibition of
P2X or A2b signaling on the metastasis of lung cancer
in vivo, HTB177 cells were pretreated with iso-PPADS
(100 uM), PSB603 (1 uM), or vehicle alone for 1 h. The
cells were then washed and injected intravenously (2.5 x
10° per mouse) into severe combined immunodeficient
(SCID)-Beige inbred mice (five mice per group) that were
either untreated (control) or previously irradiated with
1000 cGy for 24 h. Marrows, livers, and lungs were re-
moved 48 h after injection of these cells, and the presence
of LC cells (i.e., murine—human chimerism) was evaluated
as the difference in the level of human a-satellite DNA ex-
pression. DNA was amplified in the extracts isolated from
BM-, liver-, and lung-derived cells using real-time PCR.
Briefly, DNA was isolated using the QIAamp DNA kit
(Qiagen). Detection of human satellite and murine p-actin
DNA levels was conducted using real-time PCR and an
ABI Prism 7500 Sequence Detection System. A 25-pl reac-
tion mixture containing 12.5 pl SYBR Green PCR Master
Mix, 300 ng DNA template, 5'-ACC ACT CTG TGT
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CCT TCG TTC G-3' forward and 5'-ACT GCG CTC
TCA AAA GGA GTG T-3' reverse primers for a-satellite
DNA, and 5'-TTC AAT TCC AAC ACT GTC CTG TCT
-3" forward and 5- CTG TGG AGT GAC TAA ATG
GAA ACC -3’ reverse primers for p-actin DNA was used.
The Ct value was determined as before. The number of
human cells present in the murine organs (the degree of
chimerism) was calculated from the standard curve
obtained by mixing different numbers of human cells with
a constant number of murine cells.

Statistical Analysis

Statistical analysis of the data was done using T—test (for
data with normal distribution) or Whitney—Mann test
(data without normal distribution) with p <0.05 consid-
ered significant or one way ANOVA with Bonferroni
post hoc p <0.05 (calcium measurements and analysis of
ATP in culture medium).
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Results

The ATP level increases in response to irradiation and
chemotherapy, and EXNs induce migration and adhesion
of lung cancer cell lines

In our previous work we proposed that a side effect of ra-
diochemotherapy is the induction of a pro-metastatic en-
vironment due to upregulation of several chemokines and
growth factors as well as bioactive lipids [3, 4, 13]. Here
we tested the hypothesis that damage caused by radioche-
motherapy treatment may also release pro-metastatic
EXNs from damaged “leaky” bystander cells [1]. To test
this possibility, we analyzed the level of ATP in superna-
tants flushed from bone marrow (BM) cavities as well as
in media conditioned by cultured BM cells isolated from
untreated, irradiated, or vincristine-treated animals.

As shown in Fig. 1a and b, we observed an increase in
ATP, UTP and adenosine level in BM after irradiation or
vincristine administration. Moreover, this increase in
level of ATP, UTP and adenosine correlates with lower
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level of cells after irradiation or vincristine administra-
tion (Additional file 2: Figure S1A) suggesting that ana-
lyzed nucleotides and nucleoside are released from dying
cells. Interestingly we did not observe significant
changes in the level of ATP, UTP and adenosine in
murine plasma (Additional file 2: Figure S1b).

Next, we tested the responsiveness of human LC
cells to a chemotactic gradient of EXNs. Figure 1c
shows an example of the migration of HTB177 cells
in response to increasing levels of ATP (left panel)
compared with high and low (physiological) concen-
trations of a known chemoattractant of LC cells, hep-
atocyte growth factor (HGF, right panel). Based on
similar experiments, we established the optimal dose
of EXNs, which was subsequently employed in our
studies (Fig. 1d) unless otherwise indicated.

Figure le shows that all NSCLC cell lines responded
by chemotaxis to ATP, ADP, AMP, and adenosine in a
manner similar to a high dose of HGF (upper panel).
We observed a similar responsiveness of SCLC cell lines
to stimulation with nucleotides (lower panel). The
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correlated with increased adhesion of these cells to fi-
bronectin after stimulation with EXNs (Fig. 1f). To our
surprise lung cancer cell lines turned out to be highly
sensitive to ADP exposure and responded by enhanced
migration and adhesion to relatively low concentration
of this nucelotide (20 nM) (Fig. le and f). Of note, in
parallel experiments we also observed that several other
nucleotides, such as TTP, UTP, CTP, and GTP, chemoat-
tract and stimulate adhesion of human LC cells
(Additional file 3: Figure S2a, b).

Lung cancer cell lines express functional P1 and

P2 receptors

Since EXNs signal through cell membrane receptors, we
employed real time-PCR to assess the expression of P1
and P2 receptors in the NSCLC and SCLC cell lines
employed in our studies. We observed that, out of all
the P1 receptors, the NSCLC cell lines express the ad-
enosine A,p receptor at a high level, although it is not
expressed by the SCLC cell lines (Fig. 2a). Most of the
LC cell lines evaluated in our study also expressed the

chemotactic response of LC cells to nucleotides P2X (Fig. 2b) and P2Y receptors (Fig. 2c). In particular,
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the P2X4 and P2X5 receptors were expressed by all cell
lines employed in our studies. To confirm presence of
receptors on cell surface, we performed flow cytometry
analysis of A,p, P2X4, P2X7, P2Y1 and P2Y12 receptors
and we were able to detect expression of analyzed recep-
tors in all tested cell lines (Fig. 2d). We performed also
mean relative of fluorescence intensity (MRFI) analysis
(Additional file 4: Figure S3) of receptor expression. Level
of receptor expression by FACS corresponded in majority
of cases with our qRT-PCR data (Fig. 2a-c). However, as it
is known expression of given protein at mRNA level does
not always correlate with translated protein. Therefore,
some of differences in expression level an RNA and pro-
tein level observed could be explained for example by dif-
ferent turnover and half-life of the mRNA and
corresponding protein in different cell lines.

To better address the functionality of purinergic recep-
tors, we examined whether purinergic nucleotides and
nucleosides induce signaling pathways involved in cell
migration and adhesion [14, 15]. As shown in Fig. 3
panels a and b, ATP, ADP, AMP, and adenosine induced
MAPK p42/44 and AKT phosphorylation in the NSCLC
cell line HTB177 and the SCLC cell line CRL5853. The
left side of these figures shows a western blot, and the
right side shows the corresponding densitometry mea-
surements. Of note, we also observed that other nucleo-
tides, such as UTP, CTP, GTP, and TTP induced
phosphorylation of MAPKp42/44 and AKT in HTB177
and CRL5853 LC cell lines (Additional file 5: Figure S4).
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Next, since P2X and P2Y receptor stimulation may re-
sult in [Ca®']; increase, we measured whether LC cells
show calcium concentration transients in response to P2
receptor agonist ATP and Bz-ATP, which is a P2X7 re-
ceptor agonist that is 5-30 times more potent than ATP
and can also stimulate all P2X receptors. We found that
all cell lines tested responded by calcium signaling upon
stimulation by ATP (Fig. 3c upper panel) as well as by
Bz-ATP (Fig. 3c lower left panel), and their responsive-
ness varied with the cell line tested. Interestingly, while
expression of the P2X7 receptor was low in LC cell lines
(Fig. 2b), Bz-ATP turned out to be a potent stimulator of
calcium signaling, probably due to stimulation of all P2X
receptors. Of note, UTP, a P2Y2 and P2Y4 receptor agon-
ist, also stimulated intracellular calcium mobilization
(Additional file 3: Figure S2c). As shown in the lower right
panel of Fig. 3¢, adenosine also induced intracellular cal-
cium fluxes in human LC cell lines. All these data confirm
that human lung cancer «cells express functional
purinergic receptors.

Small molecule inhibitors of purinergic receptors
modulate the chemotactic responsiveness of LC cells in a
receptor-dependent manner

To test the efficacy of small molecule inhibitors of P1 re-
ceptor signaling in LC cells, we tested the effect of dif-
ferent P1 receptor inhibitors using the A549 cell line,
which expresses adenosine A, Aya, and A,p receptors at
the highest levels of all the analyzed cell lines but not
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the Aj receptor (Fig. 2a) as an experimental model
(Fig. 4). We found that A; (PSB36), A,, (ANR94), and,
in particular, A,g (PSB603) receptor antagonists partially
inhibited migration of A549 cells in response to adeno-
sine, which is a P1 receptor agonist. Of note, the A,g re-
ceptor was found to be highly expressed by these cells.
At the same time, as expected, since the Aj receptor is
not expressed by A549 cells, we did not observe any ef-
fect on the migration of these cells across Transwell
membranes in response to adenosine in the presence of
the Aj receptor antagonist MRS3777 (Fig. 4 lower right
panel). Interestingly, we also found that sensitivity of LC
cells to PSB603 is correlated with the level of expression
of A,p receptor. Accordingly, inhibition of migration of
HTB177 cells which express lower level of A, receptor
than A549 was already observed in presence of 1 pM
PSB603 (data not shown).

Based on our observation that the P2X receptors are
involved in migration of breast cancer [16], we became
interested in whether these receptors play a role in the
migration of LC cells. At first, we used a nonspecific an-
tagonist of all P2X receptors, iso-PPADS, and observed
its inhibitory effect on the chemotaxis of A549 and
HTB177 cells in response to the P2X agonist, ATP
(Fig. 5a). At the same time, in control experiments we
did not observe any reduction in the chemotactic re-
sponse of LC cells to HGF, which confirmed inhibitor
specificity (Fig. 5a).

Since, as reported in the literature, the P2X7 receptor
stimulates cell migration [17, 18], we employed an an-
tagonist of the P2X7R, A438079, in chemotaxis assays of
LC cell lines in response to ATP. As shown in Fig. 5b,
A438079 inhibited migration of HTB177 and HTB183 in
a P2X7-dependent manner. This result corroborated the
results of the intracellular calcium release experiments
(Fig. 5¢) as did the P2X7 expression level (Fig. 2b).

Next, since, as shown in Fig. 2b, P2X4 receptors is
expressed at the highest level in LC cell lines com-
pared with other P2X receptors, we tested its respon-
siveness to an ATP gradient in the presence of
ivermectin, which increases the response of the P2X4
receptor to ATP stimulation, as previously described
[19, 20]. Figure 5d shows that A549 and HTBI183
cells, which show the highest expression of P2X4, re-
spond more robustly to an ATP gradient in the pres-
ence of ivermectin. At the same time, as expected in
control experiments, ivermectin did not affect the mi-
gration of LC cells in response to HGF.

Autocrine release of nucleotides can play a role in the
migration of cells in response to HGF and stimulate

their proliferation

Based on findings in the literature [21-23], we tested
whether EXNs affect proliferation of LC cells. However,
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to our surprise, none of the tested nucleotides was able
to stimulate or inhibit proliferation of these cells at con-
centrations sufficient to stimulate their migration (data
not shown). On the other hand, it has been reported that
nucleotides may be released from cells in response to
certain factors (e.g., the complement cascade cleavage
fragment C5a) and stimulate the cells’ responsiveness to
autocrine/paracrine signaling axes [9].

As shown in Fig. 6a, we were able to detect ATP in
conditioned media harvested from all tested LC cell
lines. Interestingly, we also found that HGEF, which is a
chemoattractant for LC cells, enhanced secretion of ATP
by LC cells. This observation requires further study to
determine whether some of the migratory effects of
peptide-based chemoattractants could be related to the
costimulatory effect of autocrine-secreted nucleotides, as
reported for the Cbha effect on leucocyte migration [9].
To check whether increased migration in response to
HGF might be related to ATP release, we performed
chemotaxis assay in the presence or absence of apyrase,
which hydrolyzes ATP. We found that migration of
HTB177 to HGF was inhibited when apyrase was added
to the lower chamber (Additional file 6: Figure S5),
which confirms potential role of ATP in HGF induced
migration of lung cancer cells.

Finally, taking into consideration the potential effect of
autocrine EXN axes in the proliferation of LC cells, we
exposed LC cells to the P2X inhibitor isoPPADs and to
caffeine, a non-specific inhibitor of the P1 receptors,
alone or in combination (Fig. 6b). We found an inhibi-
tory effect of the inhibition of P1 and P2X signaling on
the proliferation of LC cells, which was most
pronounced for the SCLC cell lines.

Pretreatment of LC cells with antagonist of A,z or P2X
receptor decreases adenosine- and ATP-dependent
metastatic spread of lung cancer cells

Finally, we tested whether inhibition of A,p receptor in
HTB177 cells by PSB603 affects the metastatic spread
(seeding efficiency) of these cells in vivo to tissues dam-
aged by irradiation. To address this issue, HTB177 cells
were exposed to PSB603 for 1 h, washed, and injected
into control non-irradiated and 1000-cGy-irradiated
SCID/beige immunodeficient mice (Fig. 7a). We found
that irradiation increases the seeding efficiency of
HTB177 cells to liver, lung, and BM and that this effect
was significantly decreased in the case of liver and BM
after pretreatment of HTB177 cells with PSB603 (Fig. 7a).
A similar experiment was performed with cells pre-
treated with the P2X inhibitor iso-PPADS. We observed
significantly reduced seeding of HTB177 cells pretreated
with iso-PPADS (Fig. 7b), which corroborates the obser-
vation that the ATP level is highly elevated in irradiated
tissues (Fig. 1a,b).



Schneider et al. Molecular Cancer (2015) 14:201

Page 11 of 15

A
1500 1249 00 TTBL77 HTB183 CRL5803
s — 400 1000, —EF——
s = 4000 s S 800 2
= 1000 - = = 300 2 a
- a. 3000 A - -
[ = & 200 g 600 Q
< 5004 2000 < B= < 400 ‘@)
1000 100 200 E
0'_I_I_I_ O'i_l_ 0 0
DR VR L & X BRI
¥ & < (3 < & & & SR C
(s&@‘ Q‘O ﬁl‘e o\@é‘ e" Q\G 4 o"& /@ P o"& A
& &
CRL2062 CRL5853
100, % 80 w
S 80 (@]
£ s 60 -
o 60 c (@)
b T 40
40 E
20 E 20 E E
0 0
D v R PR
£ & & £ & &
‘)(‘\&’b F o&&"' I
B 2000 2000
2 A549 HTB177
]
< 1500 1500
=]
S 1000 1000
-
° 500 500
X
0 ) 0 2
day 0 day1 day2 day3 day 0 day1 day2 day3 g
-
800 - 1000 -
2 HTB183 CRL5803 g/
[ i 800 -
S 600
o
2 600 -
£ 400 -
S 400 -
S 200 -
< 200 -
0 T T T 1 0 T T T 1
day0 day1l day2 day3 day 0 day 1 day2 day3
2 2007 CRL2062 300 1 CRL5853
S _ Legend:
— 150
5 200 - g
£ - ""{ * et control
S 100 - ot I 5
4 100 A = === caffeine 1 mm
S 50 -
X )
= /= iSOPPADs 100uM
0 T T T 1 0 T T T
day0 day1l day2 day3 day0 day1 day2 day3 -+-@-- caffeine 1mM + isoPPADs 100uM
Fig. 6 The involvement of HGF-mediated release of nucleotides from LC cells and the role of autocrine ATP loops in LC cell proliferation. Panel
a. ATP levels in conditioned media from control untreated cells or cells treated with a low (0.3 ng/ml) or high (10 ng/ml) doses of HGF. Analysis
was performed at least 3 times in triplicates *p < 0.05. Panel b. Proliferation of lung cancer cells in the presence of the adenosine receptor
inhibitor caffeine and the P2X receptor inhibitor iso-PPADS. The experiment was performed three times in triplicate. *p < 0.05




Schneider et al. Molecular Cancer (2015) 14:201

Discussion

One of the most challenging clinical problems is the
tumor recurrence and metastasis of cancer cells that sur-
vive standard treatment [1, 13, 24]. To explain these phe-
nomena, we have proposed that one of the unwanted side
effects of radiochemotherapy is the induction of a pro-
metastatic microenvironment in normal tissues that are
damaged by the treatment, due to an increase in certain
peptide- and lipid-based chemottractants [1, 3, 4, 13]. In
parallel, we have hypothesized that “leaky” cells damaged
by radiochemotherapy also release nucleotides that, as
demonstrated in the past, are potent chemotactic factors
for both normal [9, 25] and malignant cells [16, 18].

In support of a role of purinergic signaling in cancero-
genesis, it is well known that malignant tumors promote
strong inflammatory reactions together with necrosis,
and nucleotides may leak from damaged cells into the
extracellular medium or even be released by specific
pathways as part of tumor cell metabolism and anti-
tumor protection mechanisms [26—29]. What is also im-
portant, nucleotides may be released from the damaged
cells in response to radiochemotherapy, as shown in this
paper. In fact, we found an increase in ATP level in irra-
diated murine tissues, including BM and liver, which are
known sites for cancer metastasis. It has also been re-
ported that nucleotides may be released from cells stim-
ulated by the fifth complement cleavage fragment, the
anaphylotoxin C5a [9], and it is well known that the
complement cascade is activated in cancer patients [30,
31]. In our studies, we found that HGF may also in-
crease the secretion of ATP from LC cells, and HGF,
along with C5a, is upregulated in response to radioche-
motherapy [13, 32]. The question remains whether, in
addition to C5a and HGF, other factors that are released
in tissues in response to anti-cancer treatment such as
certain chemokines [13] or bioactive lipids [3, 4] also in-
crease the release of nucleotides from target cells, but
this requires further studies.

In our work, we focused mainly on the biological ef-
fects of ATP, ADP, AMP, and adenosine, which are well-
established ligands for G-protein coupled P1 and P2Y
receptors and ligand-gated ion channel P2X receptors
[23]. While P1 receptors are activated by adenosine and
A receptor subtypes also by AMP [33], P2X receptors
are activated by ATP, and P2Y receptors respond to
ATP, ADP and UTP [34]. In our studies, we demon-
strated that all of these nucleotides stimulate human LC
cells. We also found responsiveness of LC cells to TTP,
CTP, and GTP. Despite some suggestions that these nu-
cleotides may also stimulate some P2X receptors, we
cannot exclude that observed effect is due to receptor
independent cell stimulation. As support of such hy-
pothesis, similar phenomenons were already described
for ATP [11] and adenosine [35]. However, we focused
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our current work on the most relevant EXNs and nu-
cleoside, which are ATP, ADP, AMP, and adenosine.

We learned that human NSCLC and SCLC cells ex-
press several functional purinergic receptors. Stimulation
by EXNs promoted migration and adhesion of LC cells.
These functional responses of LC to nucleotides are sup-
ported by the activation of intracellular pathways, in-
cluding MAPKp42/44 and AKT phosphorylation, as well
as [Ca®'], transients.

Nucleotides have already been reported to stimulate
proliferation of some malignant cells, including colon
adenocarcinoma and melanoma cells [36, 37]. To our
surprise, however, we found that, if added to LC cell cul-
tures, nucleotides did not stimulate their growth. On the
other hand, we detected ATP in conditioned media har-
vested from LC cells, and inhibition of purinergic signal-
ing in these cells by iso-PPADS and caffeine negatively
affected their proliferation. This suggests the involve-
ment of autocrine signaling axes in the proliferation of
LC cell lines. In support of a role for autocrine puriner-
gic signaling in regulating the biology of LC cells, auto-
crine signaling via release of ATP and activation of the
P2X7 receptor was found by another group to enhance
the motility of human LC cells [17].

Nevertheless, data on the effect of nucleotides and nu-
cleosides on the proliferation of LC cells are somewhat
controversial. For example, it has been reported that
treatment of A549 cells with adenosine results in their
senescence, both in vitro and in vivo, through induction
of cell cycle arrest and senescence in a p53/p2l-
dependent manner [38]. A similar effect has been ob-
served after exposure of the PC14 lung adenocarcinoma
cell line to ATP [39]. However, in another report, ATP
stimulation of P2Y receptors increased the proliferation
of human lung epithelial tumor cells [21]. These differ-
ences may be explained by the much higher concentra-
tions of ATP employed in those studies compared with
the concentrations that we used in our work.

It is well known that EXNs may affect different aspects
of LC biology. For example, ATP was found to sensitize
LC cells to cisplatin-induced apoptosis [40] and enhance
the antitumor effect of etoposide in PC14 and A549 LC
cells [39]. Moreover, it has been reported that extracellu-
lar ATP may be internalized by cancer cells by micropi-
nocytosis, which induces an increase in intracellular
ATP and drug resistance [11]. It was also shown that
ATP- or UTP-mediated activation of P2Y2 induced can-
cer cell invasion through increased production of VEGF
by cancer cells [41] and that adenosine receptors have
been found to regulate VEGF expression under hypoxic
environment in different tissues [42]. On the other hand,
EXNs are potent chemoattractants for mesenchymal
stromal cells and thus may attract these cells and pro-
mote stromalization of the growing tumor [43].
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Similarly, EXNs may exert an effect on endothelial pro-
genitors and thereby promote tumor vascularization
[44]. Altogether, given these data, purine and pyrimidine
nucleotides can be considered crucial orchestrators of
both directly and indirectly regulated pro-metastatic po-
tential of tumor cells.

What is most important in our report is that, by
employing pro-metastatic assays in vitro and in vivo, we
have demonstrated for the first time that purinergic sig-
naling may be an attractive target for small molecule an-
tagonists of purinergic receptors to inhibit the metastatic
spread of LC cells. Our results employing receptor antago-
nists lend further support to this concept. On the other
hand, it is known that degradation of EXNs in the
extracellular space is regulated by enzymatic cascades, in-
cluding ectonucleoside triphosphate diphosphohydrolases
(E-NTPDase 1, also known as CD39; E-NTPDases 2, 3,
and 8), ectonucleotide pyrophosphatases/phosphodiester-
ases (E-NPPs), ecto-alkaline phosphatases, and ecto-5'-
nucleotidase (also known as CD73), which degrade
nucleotides (e.g. ATP, ADP, and AMP), finally yielding nu-
cleosides (e.g. adenosine) and thereby regulating activ-
ity levels of the various P2 and P1 receptors [45-47].
In addition to purinergic receptors, these enzymes are
potential targets for small molecule inhibitors to con-
trol migration and metastasis of LC cells. This is of
particular importance, since, as mentioned above, the
concentration of EXNs in tumor tissue could be very
high [11, 48]. However, the evidence supporting a
functional role of ectonucleotidases in purinergic sig-
naling varies considerably between enzyme species
and thus should be taking into consideration when
looking for possible anti-cancer targets [46, 47].

We are aware that the results that we generated with
established human LC cell lines need to be verified with
LC patient primary cells. It will be important to establish
whether the pattern of purinergic receptor expression
has prognostic value and whether it correlates with more
malignant and metastatic phenotypes.

Conclusion

EXNs are novel pro-metastatic factors released during
radiochemotherapy (Fig. la and b), and inhibition of
their pro-metastatic effects, which are mediated by puri-
nergic signaling, could become a novel and important
part of anti-metastatic treatment. The results reported
here for LC cell lines may also be relevant for other can-
cers, as EXNs have been reported to stimulate several
other types of cancer cells [16, 18, 49].
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Additional file 2: Figure S1. Evaluation of the number of BM cells and
the level of EXN in plasma after irradiation or chemotheraphy. Panel A
Total number of cells isolated from tibia and femurs of animals 24 h after
irradiation (0-1500 cGy) or vincristine administration (0.5-2 mg/kg).
Combine results from three independent isolations. Panel B The level of
ATP, UTP and adenosine in murine plasma isolated from animals 24 h
after irradiation (0-1500 cGy) or vincristine administration (0.5-2 mg/kg).
(PDF 229 kb)

Additional file 3: Figure S2. Extracellular nucleotides induce
migration and adhesion of lung cancer cell lines. Panel A.
Chemotaxis of tested lung cancer cell lines in response to
extracellular TTP, UTP, CTP, and GTP. Chemotaxis in response to a
supraphysiological dose of HGF (10 ng/ml) was used as a control.
Panel B. Adhesion of tested lung cancer cell lines to fibronectin after
stimulation with extracellular TTP, UTP, CTP, and GTP. Panel C. UTP
stimulates intracellular calcium release in human lung cancer cells lines.
All data are shown as means + SD with *p < 0.05. (ZIP 296 kb)

Additional file 4: Figure S3. Lung cancer cell lines express P1 and P2
receptors. Analysis of mean relative of fluorescence intensity of A2B,
P2X4, P2X7, P2Y1, P2Y12 receptors expression obtained by Flow
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Additional file 5: Figure S4. Extracellular TTP, UTP, CTP, and GTP
stimulate human lung cancer cells. Phosphorylation of p42/44 MAPK and
AKT in the human NSCLC cell line HTB177 (Panel A) or the SCLC cell line
CRL5853 (Panel B) stimulated for 5 min by the indicated nucleotides. The
experiment was repeated twice, with similar results, and representative
western blots are shown. (PDF 177 kb)

Additional file 6: Figure S5. Autocrine release of ATP plays a role in
migration of lung cancer cells to HGF. Chemotaxis results of HTB177 cell
line to HGF (10 ng/ml) in the absence or presence of apyrase (50U/ml).
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