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immunoglobulin loci in nearly all BLs.

efficiency with PIM1 and/or PIM2 knockdown.
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Background: A promising therapeutic approach for aggressive B-cell Non-Hodgkin lymphoma (NHL), including
diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL) is to target kinases involved in signal
transduction and gene regulation. PIM1/2 serine/threonine kinases are highly expressed in activated B-cell-like
DLBCL (ABC-DLBCL) with poor prognosis. In addition, both PIM kinases have a reported synergistic effect with
c-MYC in mediating tumour development in several cancers, c-MYC gene being translocated to one of the

Methods: For these reasons, we tested the efficiency of several PIM kinase inhibitors (AZD1208, SMl4a, PIM1/2
inhibitor VI and Quercetagetin) in preventing proliferation of aggressive NHL-derived cell lines and compared their

Results: We observed that most of the anti-proliferative potential of these inhibitors in NHL was due to an
off-target effect. Interestingly, we present evidence of a kinase-independent function of PIM2 in regulating cell
cycle. Moreover, combining AZD1208 treatment and PIM2 knockdown additively repressed cell proliferation.

Conclusion: Taken together, this study suggests that at least a part of PIM1/2 oncogenic potential could be
independent of their kinase activity, justifying the limited anti-tumorigenic outcome of PIM-kinase inhibitors in NHL.

Background

Diffuse large B cell lymphoma (DLBCL) and Burkitt
lymphoma (BL) are aggressive lymphomas, which re-
quire intensive chemotherapy regimens. BL is charac-
terised by a germinal centre B-cell phenotype and an
isolated c-MYC-rearrangement placing the c-MYC gene
into close proximity of one of the Ig enhancers (IgH, Igk
or Igh) [1]. BL depends on the activity of the transcrip-
tion factor and proto-oncoprotein ¢-MYC for prolifera-
tion and survival [2, 3] and can be successfully treated
with high intensity chemotherapy. DLBCL is significantly
more common than BL, accounting for about one third
of the NHL cases and is a heterogeneous disease [4].
DLBCL can be classified into two principle classes
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predictive of disease outcome: germinal-centre B cell-like
(GCB), and activated B cell-like (ABC) [5-7]. GCB-
DLBCL cells derive from activated germinal centre B cells
and about 85 % of the cases express BCL6 a key transcrip-
tional regulator of the GC response [8]. ABC-DLBCL cells
are post-germinal centre B cells, with features indicative of
arrest during plasmablastic differentiation, and frequently
show evidence of NFkB pathway activation [6, 7, 9]. Both
ABC-DLBCL and GCB-DLBCL can be associated with c-
MYC deregulation or evidence of ¢-MYC activation. C-
MYC-translocations occurring in the presence of a second
or third translocation usually affecting BCL2 or BCL6
identify poor risk DLBCL referred to as double or triple hit
lymphoma. Deregulation of c-MYC is therefore a common
feature amongst aggressive lymphoma either occurring as
an isolated event or with additional rearrangements.
Amongst the genes distinguished by differential ex-
pression in DLBCL subsets are the PIM (proviral
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integration site for Moloney murine leukaemia virus)
kinases. High PIM1 and PIM2 mRNA levels are charac-
teristic of ABC-DLBCL compared to GCB-DLBCL cells
[7, 10]. Expression of PIM1 and/or PIM2 is predictive of
disease-free, disease-specific and overall survival in
non-GCB DLBCL [11, 12] and predominant nuclear
PIM1 staining is highly correlated with disease stage in
this type [11]. These kinases are of particular interest
because of a potential role as co-regulators of ¢c-MYC
dependent oncogenesis, with c-Myc and Pim1 showing
co-operation during lymphomagenesis in mouse models
[13, 14]. Furthermore c-MYC and PIM1 have also been
shown to cooperate in prostate tumourigenesis, while
the inhibition of PIM kinases in c-MYC-expressing can-
cers decreases proliferation, survival and tumourigeni-
city [15, 16].

The related kinases PIM1, PIM2 and PIM3 form the
PIM kinase family of constitutively active serine/threo-
nine kinases [17]. PimI and Pim2 were initially identified
as targets for the integration of Moloney murine leukae-
mia virus (MMLV) in murine T cell lymphoma, indicat-
ing that they function as oncogenes [18, 19]. Early
studies showed that PIMI is overexpressed in 30 % of
human lymphoid and myeloid leukaemias, while PIM?2 is
overexpressed in AML [20]. Both PIM1 and PIM?2
mRNAs are highly expressed in CLL, DLBCL and
mantle cell lymphoma (MCL), whereas PIM2 is also
overexpressed in follicular lymphoma, MALT lymph-
oma, nodal marginal zone lymphoma and multiple mye-
loma [12, 21]. No overexpression of PIM3 is seen in
NHL [12]. Apart from haematopoietic malignancies,
PIM1 and/or PIM?2 are highly expressed in several solid
tumours [22-31].

Several mechanisms for the oncogenic potential of
PIM kinases and for the cooperation between PIM ki-
nases and ¢c-MYC have been described. PIM1 has been
shown to be recruited to the chromatin by binding to
the MYC MBII (MYC box II) domain and to stimulate
transcription elongation through phosphorylation of his-
tone H3 on serine 10 (H3S10p) [32, 33]. The presence of
the H3S10p modification is proposed to promote re-
cruitment of 14-3-3 proteins, which serve as adaptors
for the acetyl transferase MOF. MOF acetylates H4K16,
which is recognised by the bromodomain containing
protein 4 (BRD4), an adapter for P-TEFb [33]. PIM1 has
been found to be required for the expression of at least
20 % of the c-MYC-induced genes in HEK293 cells [32].
Further, it has been shown that PIM1 overexpression
in prostate cancer cell lines enhances the expression
of c-MYC target genes [34]. These findings suggest
that a central role for PIM kinases in c-MYC-
dependent gene regulation may be generalizable to
other cell systems. Indeed, PIM1 was described to be
nuclear in BL, which would allow for interaction of
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PIM1 and c-MYC at the chromatin level [35]. Cooper-
ation has also been identified between PIM2 and c-
MYC and requires the ability of PIM2 to stimulate the
NFkB pathway via activation of the kinase COT.
Blocking NF«B in ¢-MYC and PIM2 overexpressing
cells induces apoptosis in vitro and inhibits growth in
a tumour graft model [36]. Both PIM1 and PIM2 can
also directly stabilise c¢c-MYC by phosphorylating
Serine 329 [37].

In addition, PIM kinases have several other pro-
survival effects. PIM1, PIM2 and PIM3 phosphorylate
BAD at S112 and other sites, which leads to binding of
14-3-3 proteins and inhibits its interaction with anti-
apoptotic BCL-X; [38, 39]. PIM1 has also been shown to
phosphorylate and inhibit the apoptosis signalling kinase
1 (ASK1), which results in reduced JNK and p38 MAPK
phosphorylation and protects cells from H,O,-induced
apoptosis [40]. PIM kinases share several substrates with
AKT and PIM2 can compensate for mTORCI inhibition
during haematopoiesis and in AML [41, 42]. Addition-
ally, PIM kinases stimulate cell cycle progression by
phosphorylating MARK3, CDC25A, CDC25C, p21<™,
p27""*! and SKP2 [43-49]. PIM1-mediated phosphoryl-
ation has also been found to promote the degradation of
FOXO1la and FOXO3a, which inhibits FOXO-mediated
activation of CDKNIB transcription (encoding for
p27"'"1) [46]. Thus several mechanisms have been iden-
tified for c-MYC-independent regulation of proliferation
and survival by PIM kinases.

Taken together, these observations provide a rational
for targeting PIM1 and PIM2 in ¢-MYC expressing
aggressive lymphomas including ABC-DLBCL and
BL, in which PIM kinase inhibition might reduce c-
MYC-mediated cell proliferation. In this study, we
have assessed the anti-proliferative potential of the
pan-PIM kinase inhibitor AZD1208 and other PIM
inhibitors in aggressive NHL-derived cell lines and
compared it with PIM1 and/ or PIM2 knockdown.
Interestingly, our experiments reveal a kinase-independent
function of PIM2 in regulating cell cycle. Both
AZD1208 treatment and PIM2 knockdown synergis-
tically block cell proliferation, indicating that PIM
kinase inhibitors are not sufficient to completely abol-
ish PIM function in NHL.

Results

Inhibition of PIM kinases has a minor effect on BL and
ABC-DLBCL cell viability

The high level of expression of PIM1 and PIM2 in ABC-
DLBCL (Additional file 1: Figure S1) and the reported
synergistic effect of these two kinases with ¢-MYC in
several cancers, prompted us to test the efficiency of the
pan-PIM kinase inhibitor AZD1208 in preventing prolif-
eration of aggressive NHL-derived cell lines. To this end,
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Fig. 1 NHL cell lines are resistant to AZD1208 treatment. a Cells were seeded into duplicate wells of 6-well plates and treated with DMSO, 1 UM,
5 uM or 10 uM AZD1208 for indicated times. The medium was replaced every day and cell number was measured by MTT assay. The means and
SD of at least two independent experiments, conducted in duplicate wells of six-well plates, are plotted. b, ¢ Cells were treated like in (a). Aliquots
were harvested every second day and analysed by western blot. d Cells were treated with 1 uM, 2.5 uM, 5 uM, 7.5 uM or 10 uM AZD1208 or a
respective amount of DMSO for three days. Then, protein expression was evaluated by western blot

two BL-derived cell lines, Raji and Ramos, and two
ABC-DLBCL-derived cell lines, OCI-Ly3 and OCI-Ly10,
were treated with different concentrations of AZD1208
(1 pM to 10 uM) or DMSO, and cell number was
assessed over a period of six days. Interestingly, Raji and
Ramos cells were mostly resistant to the drug (Fig. 1a),
with a moderate inhibition of cell growth seen in Ramos
cells at 10 pM AZD1208 only. Similarly, OCI-Ly3 cells
showed a moderate reduction in cell number at 5 pM
and 10 pM AZD1208 and only OCI-Ly10 cells displayed
a reduced cell number already at 1 pM AZD1208
(Fig. 1a). Nevertheless, PIM kinases were already strongly
inhibited in all cell lines at 1 uM AZD1208, as assessed by
BAD-S112 phosphorylation (p-BAD) (Fig. 1b, c). This ob-
servation suggests that PIM kinase activity is not required
for proliferation and survival of these NHL cells. An
upregulation or stabilisation of BAD was seen in Raji,
OCI-Ly3 and OCI-Ly10 cells at higher AZD1208 concen-
trations (Fig. 1b, ¢). Moreover, a compensatory upregula-
tion or stabilisation of PIM1 and PIM2 could be observed
in all four cell lines (Fig. 1b, d), suggesting a mechanism
compensating for the loss of PIM activity. C-MYC protein
levels were also elevated in inhibitor-treated compared to
DMSO control cells (Fig. 1b, d). In summary, ABC-
DLBCL cell lines showed modest sensitivity to PIM kinase
inhibition and both ¢-MYC-dependent BL cell lines were
able to grow independently of PIM kinase activity. This
suggests that PIM kinase activity might not be essential
for c-MYC-dependent transcription in these cells.

In order to confirm the limited impact of repressing
PIM kinases on NHL cell proliferation, two structurally
similar kinase inhibitors, SMI4a, and PIM1/2 inhibitor VI
(inh VI), and another structurally distinct inhibitor, Quer-
cetagetin, were tested in the same cell lines (Additional file
1: Figures S2, S3). When cells were treated with low doses
of these compounds, the anti-proliferative effect was lim-
ited (data not shown). Therefore, subsequent experiments
were performed with 40 uM of the drugs. In all cell lines,
SMl4a caused a marked reduction in cell number and via-
bility (Additional file 1: Figure S2). Quercetagetin and inh
VI also repressed cell proliferation with various efficiency
in the NHL cell lines tested (Additional file 1: Figures
S3A, S3B). As a control, PIM1/2-low SUDHL6 and OCI-
Ly19 cells, two GCB-DLBCL-derived cell lines, were also
treated with all three inhibitors. The cell number was re-
duced in inhibitor-treated SUDHL6 and OCI-Ly19 cells
compared to DMSO-treated cells on days 3 and 4.

Interestingly, Quercetagetin was very toxic for OCI-Ly19
cells, although PIM1 and PIM2 were undetectable in these
cells (Additional file 1: Figures S1A, S3C). Altogether, the
high inhibitor concentration (40 M) necessary to observe
any significant reduction in cell proliferation and the over-
all lack of consistency in response to treatments between
the cell lines tested, suggest that the anti-proliferative ef-
fect of these molecules might be an off-target effect inde-
pendent of PIM kinase inhibition.

Knockdowns of c-MYC, PIM1 or PIM2 differentially affect
growth of Raji cells

To further analyse the role of PIM kinases in mediating
proliferation and survival of NHL cells, validated
shRNAs against PIMI1, PIM2 and c-MYC, cloned into
the pLKO_IPTG_3xLacO expression vector, were stably
transfected into Raji cells and single cell clones were
generated. shRNA expression was induced with 5 mM
IPTG and the effect of PIM1, PIM2 or ¢-MYC knock-
down on cell viability, cell number and protein expres-
sion of IPTG-treated cells was assessed for up to ten
days post IPTG treatment. C-MYC knockdown was very
efficient (Fig. 2e) and consistent with the established ob-
ligatory dependence of BL cells on ¢-MYC function, re-
sulted in a rapid loss of cell viability compared to
untreated cells (Fig. 2f, g). This confirmed that the Raji
cell system provided a suitable model in which to test
co-modulators of ¢-MYC function. For PIM1, knock-
down of protein expression was seen in IPTG-treated
cells from day 4 onwards, while expression of PIM2 and
¢-MYC remained unchanged confirming specificity
(Fig. 2a). However, there was no effect on cell viability
when knockdown cells were compared to their untreated
counterpart (Fig. 2b, g). Therefore, PIM1 is either dis-
pensable for Raji cell viability or the residual low amount
of PIM1 is sufficient to fulfil its essential cellular func-
tions. Knockdown of PIM2 was more efficient than
PIM1 knockdown and occurred from day 2 onwards
(Fig. 2c). Interestingly, a moderate upregulation of c-
MYC was seen after knockdown. Cell viability was sig-
nificantly reduced on day 8 and day 10 in these cells
(Fig. 2d, g). These findings suggest that, in Raji cells,
PIM2 plays a more important role than PIM1 in maintain-
ing cell viability, and possibly c-MYC-function. Alterna-
tively, a dose effect could explain these observations, with
cell viability being affected when the general PIM kinase
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Fig. 2 PIM2 knockdown represses proliferation of Raji cells. a, ¢, @ Western blots showing knockdown of PIM1, PIM2 and c-MYC after treatment with
5 mM IPTG in one representative clone each. In absence of IPTG, the different shRNAs were not expressed. b, d, f Cell numbers, as determined by
MTT assay, of untreated and IPTG-treated cells were normalised to untreated cells. The means and SD of n independent experiments conducted in
duplicate wells of six-well plates are shown. n =3 for shPIM1, n =3 for shPIM2, n =2 for shMYC. g Means and SD of absolute cell numbers from (b, d

and f) are plotted
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comparing DMSO and AZD1208 treatments

Fig. 3 Both AZD1208 treatment and PIM2 knockdown act additively to block Raji cells proliferation. a-d Cells from two different single cell clones
expressing shPIM2 were incubated with or without 5 mM IPTG for two days before drug treatment and then maintained throughout with 5 uM
AZD1208 or DMSO used as vehicle control. In absence of IPTG, shPIM2 was not expressed. Media was changed and fresh drug/IPTG added every
2 days. a Western blots showing knockdown of PIM2 at day 6, after treatment with or without 5 mM IPTG and DMSO (d) or AZD1208 (a). b
Viable cell counts using trypan blue. The means and SD of 2 independent experiments conducted in triplicate wells of six-well plates are shown.
c Analysis of clone 1 cell viability at day 6, using Annexin V and propidium iodide (PI) staining as measured by flow cytometry and expressed

in % viable and apoptotic cells. No change in the percentage of apoptotic cells is observed with clone 2. d Cell cycle analysis: cellular DNA was
stained with Pl and the percentage of cells in GO/G1, S and G2/M phases measured by flow cytometry. For each clone, the experiment has been
repeated twice. Paired student’s ¢ test comparing no IPTG versus IPTG is indicated at the bottom of the figure. This t test is not significant when

level fall below a certain threshold, independently of the
targeted PIM.

Combining AZD1208 treatment and PIM2 knockdown
synergistically affects Raji cell growth

To further analyse the impact of PIM kinases on the
proliferative potential of BL-derived cell lines, we cul-
tured two individual shPIM2 clones with a low (clone 1)
or high (clone 2) proliferation rate. The two clones were
incubated with or without IPTG for 48 h, then
AZD1208 or DMSO was added for up to 6 days. In ab-
sence of the pan-PIM kinase inhibitor, the PIM2 knock-
down reduced cell proliferation by 30 % (clone 2) and
45 % (clone 1) on day 6 (Fig. 3a, b), which is in agree-
ment with the results previously observed (Fig. 2). When
treated with AZD1208 in the absence of IPTG, clone 1
was very sensitive to AZD1208 treatment with almost
60 % reduction in cell proliferation, whereas clone 2 was
resistant (Fig. 3b). However, when these cells where
treated with both the pan-PIM kinase inhibitor and
IPTG, cell proliferation decreased by approximately
55 % (clone 2) to 80 % (clone 1) indicating an additive
effect between both approaches to targeting PIM kinases
(Fig. 3b). Importantly, while AZD1208 induced apop-
tosis, PIM2 knockdown was mainly associated with an
alteration of the cell cycle (Fig. 3¢, d). Compared to un-
treated cells, PIM2 knockdown resulted in a 15 to 20 %
decrease in cells in S phase and an 8 to 22 % increase in
cells in GO/G1 phase, independently of the presence of
the pan-PIM kinase inhibitor (Fig. 3d). These different
effects of AZD1208 and PIM2 knockdown argue for a
kinase-independent role of PIM2 in regulating cell
growth in Raji cells.

AZD1208 and PIM2 knockdown differentially alter histone
H3K9acS10p at a c-MYC/ PIM1-bound promoter

Since PIM1 has been shown to promote c¢c-MYC-
dependent transcriptional activity [34], we sought to
identify possible PIM1 and c-MYC target genes in
lymphoma cell lines. The DLBCL mRNA expression
profile generated by Care et al. identified PIMI and
PIM2 among the top 20 genes associated with ABC-
DLBCL [10]. Therefore, it seemed plausible that other

genes associated with the ABC profile in this study
might be transcriptionally regulated by PIM kinases. For
further analyses, we focused on the known oncogene
guanine nucleotide binding protein-like 3 (GNL3) and
the methionine sulfoxide reductase Bl gene (MSRBI)
also known as SEPXI, which have known E box ele-
ments in their promoters. First, ChIP-qPCR was used to
identify PIM1 and c-MYC binding sites in these target
genes. The known E box elements in GNL3 (GNL3 +
0.1 kb, GNL3 + 0.4 kb) and SEPXI (SEPXI1 -0.3 kb) were
tested. Further, Zippo et al. described regions upstream
of the ID2 (ID2 -1.4 kb, ID2 -1.7 kb) and within the
FOSL1 gene (FOSLI +1.15 kb), which are occupied by
PIM1 and ¢-MYC in HEK293 cells [32]. These were also
assessed in the present study. The FOSL1 -37 kb region
served as a negative and NPMI + 1 kb served as a posi-
tive control, as it is a known MYC-bound site in BL cell
lines [50]. ChIP-qPCR showed that PIM1 and c¢-MYC
were bound to the GNL3 promoter and the NPMI in-
tronic enhancer in both Raji and Ramos cells (Fig. 4a, b,
Additional file 1: Figure S4). No binding was observed at
any of the other regions tested in Raji cells (Additional
file 1: Figure S4). The GNL3 promoter and NPMI en-
hancer regions were also occupied by POL II in both cell
lines, indicating that these genes are either actively tran-
scribed or poised for activation (Fig. 4c, Additional file 1:
Figure S4). Moreover, POL II was detected at the SEPX1
promoter (Additional file 1: Figure S4). As expected,
phosphorylation of the known PIM1 target site, H3S10,
was seen around the GNL3 promoter.

Then, we analysed PIM1 and ¢-MYC recruitment to
the GNL3 cis-element in Raji cells following PIM kinase
inhibitor treatment. Cells were treated with 5 pM
AZD1208 for one, three or seven days. Consistent with
effective inhibition of PIM kinase activity, H3K9acS10p
was reduced after AZD1208 treatment (Fig. 5d). How-
ever, a transient increase in ¢-MYC and PIM1 binding at
the GNL3 promoter on day 1 was observed which was
not sustained on day 3 and 7 (Fig. 5a, b). This correlated
with the increased ¢-MYC and PIM1 protein levels in
AZD-treated cells (Fig. 1b) and suggests that PIM kinase
activity is required for turnover at the GNL3 promoter.
Surprisingly, however, no significant change in the
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three independent experiments are shown

Fig. 4 PIM1 and c-MYC bind to the GNL3 promoter. ChIP was carried out using chromatin from Raji cells and antibodies against PIM1 (a), c-MYC
(b), Pol Il CTD (c) or H3K9acS10p (d). Eluted gDNA was then subjected to gPCR using primer pairs in different regions of the GNL3 gene. a gPCR
results were normalised to input and the GNL3 -3.5 kb region. Means and SD of six independent experiments are shown. b Results are shown
normalised to input and the GNL3 -3.5 kb region. Means and sd of five independent experiments are shown for Raji cells, whereas one experiment
was carried out in OCl-Ly10 cells. ¢ Results are again normalised to input and the GNL3 -3.5 kb region. Means and SD of two independent experiments
are shown for Raji cells, one experiment was done in OCI-Ly10 cells. d Results are normalised to H3 and the GNL3 -3.5 kb region. The means and SD of

recruitment of the elongating POL II S2p could be seen
(Fig. 5c¢), suggesting that H3S10p is not required for
GNL3 active elongation. In agreement, transcript levels
of GNL3 were unaltered (data not shown).

ChIP experiments confirmed that PIM1 binding to the
GNL3 promoter was significantly reduced after knock-
down compared to non-IPTG-treated cells (Fig. 5e).
Interestingly, PIM2 knockdown led to an increase in
PIM1 binding to DNA, suggesting that PIM2 might
interfere with PIM1 recruitment or affect PIM1-binding
turnover (Fig. 5e). As expected, PIM1 binding to the
GNL3 promoter also decreased after PIM1/2 double
knockdown. Surprisingly, c-MYC knockdown had no ef-
fect on the presence of PIM1 at the GNL3 + 0.1 kb site,
although the presence of c-MYC was reduced in this re-
gion (Fig. 5e, f). This suggests, that PIM1 can occupy
cis-regulatory elements independently of ¢c-MYC. In the
reciprocal experiment, knockdown of the PIM kinases
did not alter ¢-MYC occupancy at the GNL3 promoter
(Fig. 5f). No change in H3K9acS10p was seen in PIM1
or PIM1/2 knockdown cells, while there was an increase
after PIM2 knockdown, consistent with the increased
binding of PIM1, and a decrease in c-MYC knockdown
cells (Fig. 5h). Given that AZD1208 treatment reduced
H3K9acS10p, while knockdown of PIM1 and PIM2 did
not, another AZD1208 sensitive kinase may substitute
for H3S10 phosphorylation in the absence of PIM1/2.

Discussion

In this study, the potent and selective PIM kinase inhibitor
AZD1208 did not significantly reduce proliferation of BL
or ABC-DLBLC cell lines. AZD1208 has been extensively
tested against a panel of 442 kinases and inhibited only 13
kinases other than PIM1/2/3 by 50 % or more, but was
still at least 43-fold selective for PIM kinases [51]. Further-
more, in the study by Keeton et al., AZD1208-sensitive
cell lines showed increased apoptosis already at 1 pM
AZD1208 [51], a concentration at which none of the cell
lines tested in this study displayed reduced viability.
Nevertheless, AZD1208 efficiently inhibited PIM kinases,
as evaluated by BAD-S112 phosphorylation, at a concen-
tration of 1 pM in the two BL and the two ABC-DLBCL
cell lines assessed in our study. In agreement with a previ-
ous study, in which pan-PIM kinase inhibition led to sta-
bilisation of PIM3 [52], efficient inhibition of PIM kinases

also led to a stabilisation of PIM1 and PIM2. In contrast,
SMI4a, inh VI and Quercetagetin had a significant impact
on cell proliferation in the same cell lines. However, their
anti-proliferative potential was observed at high concen-
tration and was heterogeneous between the different cell
lines suggesting an effect independent of PIM kinase in-
hibition. Consequently, these data argue for a limited role
of PIM kinase activity in maintaining oncogenicity in
NHL and are consistent with previous findings [11]. In
agreement with this conclusion, knockdown of PIM1 had
no significant impact on Raji cell proliferation. In addition,
while AZD1208 treatment correlated with a decrease in
H3K9acS10p at the GNL3 promoter, this histone post-
translational modification was not significantly reduced by
¢-MYC or PIM kinase knockdown, suggesting that an-
other kinase may target H3S10 at the GNL3 promoter, at
least in absence of PIM1. Several kinases have been shown
to target H3S10 [53] and a certain level of redundancy be-
tween all these enzymes might exist, which would pre-
serve a normal gene expression programme if the activity
of one of them was altered.

In contrast, PIM2 knockdown significantly reduced
Raji cell number, suggesting that PIM2 might have an
important function in maintaining Burkitt lymphoma
cell growth. This is consistent with PIM2 being more
frequently overexpressed in different haematological ma-
lignancies than PIM1 and more significantly associated
with the activation of oncogenic pathways [12]. On the
other hand, the knockdown of PIM2 was consistently
more efficient than that of PIM1, and it cannot be ex-
cluded that PIM1 depletion in this study might not have
been sufficient to alter the proliferative capacity of NHL
cell lines. Because pan-PIM kinase inhibition did not sig-
nificantly reduce cell proliferation, although it clearly abro-
gated PIM activity as assessed by BAD phosphorylation, it
can be hypothesised that PIM2 might have kinase-
independent functions in DLBCL and BL. A function of
PIM, independent of its kinase activity, has already been
described for PIMI. First, overexpression of kinase-dead
PIM1 can mimic some functions of active PIM1 [54, 55].
Furthermore, PIM1 is recurrently targeted by aberrant
somatic hypermutation in DLBCL, but out of 5 mu-
tant proteins analysed, only one showed increased
kinase activity, while three mutants were significantly
less active than the wildtype protein [56]. Altogether,



Page 10 of 14

Kreuz et al. Molecular Cancer (2015) 14:205

d7

d1l

N N~ 1 o
i (=}

:o:coac_\ﬁw@mcc_
B \_EEOUn__r_U\uwm_mun__r_U

MYC

d7

d3

PIM1
|

< o N - O
0.43U0d 198481
(fouo)yy iaBie)

A \_obcoun:cU\uwm‘_En__cU

GNL3 +0.1

GNL3 +0.1

[o0]
I
2 3
N
a <
E O
—
o
o
S  oummm ¢
—
wv)
(8]
© —
K
~
on
T
n = un o
i o

(1013u02)€H
diyo
(] \:wm;cmx dIyd

\_ob:oUn__r_U\uwm‘_mum_LU

d7

d1l

T

POL Il S2p

[32] N — o
:o‘_EOqu_\rmm‘_m:C_
c \_o‘_EOun__LU\uwm‘_En__sU

GNL3 +0.1

GNL3 +0.1

C-MYC

L.

PIM1

w

Tﬂ T ZINIdUS
ﬁ T TIAIdYS
o i o
:obcogc_\twm‘_mtc_
\_ochn__LU\ummLSn:cU
h, 172/T TIdYS
| Tﬂ T TINIdUS
| g T TWIdUS

N N W wno

~ — o

(jos3u02), , /(1984e1)
uy/ u|

\_o::oun__r_U\me_Sn__sU

GNL3 +0.1

GNL3 +0.1

I

H3K9acS10p

Hno IPTG
OIPTG

i o
o
e

MmN ANWN—ENno

(o] — o

:obcoimxn___.‘_U\rwm_mtmxn___c_u
\_cbcoUn__r_U\umm‘_En__:U

POLII'S2p

2

=— T
— 7l T

i o

:ob:osc_\ﬁmm;mtc_

\_ob:oU&_r_U\umm‘_ﬂﬁ:LU

GNL3 +0.1

GNL3 +0.1

Fig. 5 (See legend on next page.)




Kreuz et al. Molecular Cancer (2015) 14:205

Page 11 of 14

(See figure on previous page.)

two-tailed Student’s t test was performed: *p < 0.05

Fig. 5 PIM2 knockdown increases PIM1 binding to the GLN3 promoter. a-d ChIP was performed in Raji cells after AZD1208 treatment. The cells
were treated with 5 uM AZD1208 or DMSO from day 0 for 1, 3 or 7 days. ChIP was done with antibodies against PIM1 (a), c-MYC (b), H3K9acS10p
(c) or Pol Il S2p (d). Results are normalised to input or H3 and control regions (CTCF1 and CTCF2 for PIM1, c-MYC and Pol Il S2p, CTCF2 and GNL3
+9 for H3K9acS10p) and DMSO-treated cells. The means and SD of 2 independent experiments are shown for days 1 and 7, the result of one
experiment is shown for day 3. e-h ChIP was performed in untreated or IPTG-treated pLKO-shRNA-transfected cells. Antibodies against PIM1 (e),
c-MYC (), Pol Il S2p (g) or H3K9acS10p (h) were used. The results are normalised to input and control regions (GNL3 -3.5 and GNL3 + 9 for PIM1
and c-MYC (e, f), CTCF1 and GNL3 -3.5 for Pol Il S2p (g) and CTCFT for H3K9acS10p (h)) and plotted relative to untreated cells. Means and SD of n
independent experiments are shown, with n =3 for shPim1, n=3 for shPim2, n=1 for shPim1/2 and n =2 for shcMyc. For n =3 experiments,

these previous observations and our current work
suggest that PIM kinases have kinase-independent
functions in lymphomagenesis.

In agreement with a role of PIM2 in cell proliferation
independent of its kinase activity, a combination of
AZD1208 treatment and PIM2 knockdown additively re-
pressed proliferation of Raji cells for clones either sensi-
tive or resistant to AZD1208 treatment only. In this
context, AZD1208 was associated with a reduction in
cell viability, whereas PIM2 knockdown altered cell cycle
progression. Several studies have pointed to a function
of c-MYC in DNA replication licensing, c-MYC being
known to control DNA replication by direct interaction
with the pre-replication complex [57]. Because, none of
the inhibitor or knockdown experiments conducted in
this study had any impact on GNL3 gene expression, the
presence of ¢-MYC and PIM1 at the GNL3 promoter
might participate in c-MYC-associated DNA replication
licensing. Interestingly, repression of S-phase entry after
PIM2 knockdown is in agreement with a defect in DNA
replication licensing and coincides with an increase in
PIM1 recruitment to the GNL3 gene. This enhanced re-
cruitment might be a consequence of direct competition
for protein-protein interaction with c-MYC, or might indi-
cate other interactions between PIM1 and PIM2 import-
ant for PIM1 function. PIM2 could, for example, inhibit
nuclear translocation of PIM1 or inhibit association of
PIM1 with chromatin. Nevertheless, this inverted correl-
ation between cell proliferation and PIM1 enrichment at
the c-MYC-bound GNL3 promoter suggests a repressive
role of the chromatin-associated PIM1 in cell cycle pro-
gression, independent of its kinase activity. For example,
the presence of this kinase might prevent the recruitment
of another complex at c-MYC-bound cis-regulatory ele-
ments. Further investigations, beyond the scope of this
work will be necessary to clarify this observation.

Conclusions

In conclusion, our data show that PIM kinase inhibition
has a limited impact on NHL cell growth, possibly due
to the fact that this inhibition does not completely abol-
ish PIM function and a kinase-independent role of PIM
kinases in cell cycle regulation.

Methods

Cell culture

OCI-Ly3 and OCI-Lyl0 cells (kind gift of Prof. R.E.
Davies) were maintained in IMDM substituted with 20 %
Foetal Calf Serum (FCS) and Penicillin-Streptomycin
(pen/strep). OCI-Lyl9, SUDHL6, Raji and Ramos cells
(ATCC) were maintained in RPMI-1640 with 10 % FCS
and pen/strep. Treatment of cells with PIM kinase inhibi-
tors was done with 40 uM SMI4a (Enzo Life Sciences),
40 uM Quercetagetin (Merck Millipore), 40 uM PIM1/2
inhibitor VI (Merck Millipore), 1 to 10 uM AZD1208 (Ac-
tive Biochemicals) or DMSO (control). The medium was
changed every second day and cell proliferation was mea-
sured using an MTT assay (Sigma-Aldrich).

Flow cytometry

Apoptosis was assessed using the Annexin V Apoptosis
Detection Kit with propidium iodide (PI) (Biolegend
Pacific Blue™) according to the manufacturer’s recom-
mendations. For cell cycle analysis, DNA was stained
with PI and cells were analysed using a BD LSRII flow
cytometer. The percentage of cells in each stage of the
cell cycle was then determined using the ModFit soft-
ware (Verity Software House).

Generation of stably transfected Raji cell lines

The pLKO_IPTG_3xLacO-shLuc vector was purchased
from Sigma Aldrich and shMYC, shPIM1 and shPIM2
were cloned into this vector (for shARNA sequences see
Additional file 2: Table S1). Raji cells were transfected
using the Amaxa™ Nucleofector™ as indicated by the
manufacturer. Briefly, 107 cells and 10 pug DNA were
suspended in 100 ul Nucleofector Solution V and trans-
fected using programme M-013. Stable cells were se-
lected with 1 pg/ml puromycin and single cell clones
were generated. For experiments, stably transfected Raji
cells were seeded into appropriate tissue culture dishes
and left untreated or were treated with 5 mM IPTG in
normal culture medium. The medium with IPTG was
renewed every second day and the cells were counted or
RNA, protein or chromatin were harvested after two to
ten days.



Kreuz et al. Molecular Cancer (2015) 14:205

Western blots

Cells were lysed in RIPA buffer (10 mM Tris—HCI,
1 mM EDTA, 0.5 mM EGTA, 140 mM NaCl, 0.1 % SDS,
1 % Triton X-100, 0.1 % Na Deoxycholate, proteinase in-
hibitor cocktail (P8340, Sigma Aldrich), 2 uM PMSE,
1 mM DTT, 0.5 mM NaF, 2 mM NaVOs3) and protein
concentrations were determined using the Bradford
assay (Bio-Rad). Western blots were carried out under
denaturing conditions with SDS-PAGE, proteins were
transferred to PVDF membranes (for blocking conditions
and primary antibody concentrations see Additional file 2:
Table S2). HRP conjugated secondary antibodies were used
at 1:10,000 (eBioscience).

Chromatin immunoprecipitation assays and real-time PCR
analysis

Chromatin immunoprecipitation was performed as pre-
viously described [58] using 10 ul dynabeads protein G
(Invitrogen) with 2.4 ug of anti-POL II (Abcam, ab817),
anti-histone H3 (Abcam, ab1791), anti-H3K9acS10p
(Abcam, ab12181), anti-c-MYC (Santa Cruz Biotechnol-
ogy, sc-764), anti-PIM1 (Bethyl Laboratories, A300-313A)
and anti-RNA POL II S2p (Abcam, ab5095) antibodies.
For ChIP primer sequences see Additional file 2: Table 1.

Additional files

Additional file 1: Figure S1. PIM1 and PIM2 expression in NHL cell
lines. A Protein expression of PIM kinases was assessed in different BCL
cell lines by western blot after nuclear-cytoplasmic fractionation. The data
are representative of three independent experiments. B mRNA expression
of PIM1 and PIM2 was measured by RT-qPCR and is shown relative to
TBP expression. Means and sd of two to five independent experiments
are plotted. Figure S2: Smi4a represses proliferation of NHL cell lines. (A)
Raji, (B) Ramos, (C) OCI-Ly10 and (D) OCl-Ly3 were treated with 40 uM
SM4a starting from day 0. Cell number was assessed by MTT assay. Left:
One experiment is shown for each cell line. Right: The means and SD of
at least two independent experiments conducted in duplicate wells of a
6-well plate are plotted. For n 2 3 Student's t test was performed:

*p < 0.05, **p < 0.01. Figure S3: Anti-proliferative potential of various PIM
kinase inhibitors on NHL cell lines. Burkitt lymphoma Raji and Ramos (A),
ABC-DLBCL OCl-Ly3 and OCl-Ly10 (B) and GCB-DLBCL SUDHL6 and OCl-
Ly19 cells (C) were treated with 40 pM Quercetagetin or PIM1/2 inhibitor
VI or SMi4a (SUDHL6, OCl-Ly19) for indicated times. Treatment started

on day 0 and cells were counted daily using Trypan blue staining and

a haemocytometer. The averages of one experiment conducted in
duplicate wells are shown. For DMSO averages and standard deviations
of two independent experiments are plotted. Figure S4: Identification of
c-MYC/PIM1-bound cis-regulatory elements by ChIP in BL-derived cell
lines. ChIP for PIM1, c-MYC and Pol Il was done in Raji and Ramos cells
and primers for different possible c-MYC binding sites were used for
qPCR. For Raji cells, means and standard deviations of two technical
replicates are shown, values for Ramos cells are from one experiment.
PIM1 and c-MYC binding was observed at the GNL3 promoter (+0.1kb,
+0.4kb from the TSS) and the NPMT enhancer (+1kb from the TSS) in
both cell lines. The ID2, SEPXT and FOSLT sites were negative for PIM1
and c-MYC in Raji cells, but binding at the /D2 -1.4kb region and the
FOSLT gene was observed in Ramos cells. POL Il was enriched at the
GNL3 promoter and NPM1 enhancer, but also at the SEPXT promoter in
both cell lines. The other tested regions were showed only very low Pol Il
binding. (PDF 1050 kb)
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Additional file 2: Table S1. Designed primers and ShRNAs. Table S2:
Western Blotting antibodies. (PDF 102 kb)
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