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t(15;21) translocations leading to the
concurrent downregulation of RUNX1 and
its transcription factor partner genes SIN3A
and TCF12 in myeloid disorders
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Abstract

Through a combined approach integrating RNA-Seq, SNP-array, FISH and PCR techniques, we identified two novel
t(15;21) translocations leading to the inactivation of RUNX1 and its partners SIN3A and TCF12. One is a complex
t(15;21)(q24;q22), with both breakpoints mapped at the nucleotide level, joining RUNX1 to SIN3A and UBL7-AS1 in
a patient with myelodysplasia. The other is a recurrent t(15;21)(q21;q22), juxtaposing RUNX1 and TCF12, with an
opposite transcriptional orientation, in three myeloid leukemia cases. Since our transcriptome analysis indicated
a significant number of differentially expressed genes associated with both translocations, we speculate an important
pathogenetic role for these alterations involving RUNX1.
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Main text
Translocations involving RUNX1 are known to decrease
the function of the encoded protein in myelodysplastic
syndromes (MDS) and acute myeloid leukemia (AML)
[1]. For those involving chromosome 15, SV2B was the
only RUNX1 partner gene identified in AML [2].
We report on two novel t(15;21) alterations leading to

the concurrent disruption of RUNX1 and SIN3A or TCF12
(Additional file 1: Table S1). Another interrupted gene is
the UBL7-AS1 long noncoding RNA gene.
In case 1, FISH experiments (Additional file 2: Table S2)

mapped the breakpoint on der(21) within intron 7 of
RUNX1 (Additional file 3: Figure S1A-C). Moreover, SNP
array analysis identified a 908-kb deletion near the 15q
breakpoint on der(15) (Additional file 4: Table S3 and
Additional file 3: Figure S1D-F). Genomic PCR revealed
that intron 7 of RUNX1 (chr21:36194775) was joined
at intron 3 of SIN3A (chr15:75708434) (Fig. 1a and

Additional file 5: Table S4) on der(21). Furthermore,
intron 7 of RUNX1 (chr21:36194861) was fused to the
inverted sequence of UBL7 (NM_032907.4) at intron 1
(chr15:74751664) on der(15), suggesting that a sub-
microscopic inversion accompanying the translocation
led to the juxtaposition of RUNX1 and UBL7-AS1 with the
same transcriptional orientation (Fig. 1a). ChimeraScan
analysis of RNA-Seq data identified the fusion of SIN3A
(exon 3; NM_015477) to RUNX1 (exon 8; NM_001754)
and of RUNX1 (exon 7; NM_001754) to UBL7-AS1 (intron
1; NR_038449.1). Both chimeric transcripts were validated
by RT-PCR (Fig. 1b and Additional file 6: Table S5). In
silico translation of the in-frame 5′-SIN3A/3′-RUNX1
showed two ORFs of 171 and 163 amino acids, respectively,
the first one retaining the transactivation domain of
RUNX1 (Fig. 1c). The out-of-frame 5′-RUNX1/3′-
UBL7-AS1 encoded a protein of 373 amino acids, showing
the substitution of RunxI with a GVQW putative binding
domain (Fig. 1d). Thus, both chimeric SIN3A/RUNX1 and
RUNX1/UBL7-AS1 encoded for truncated SIN3A and
RUNX1 proteins. Interestingly, RT-qPCR revealed that the
full-length RUNX1 (NM_001754) and the 3′ portion of
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SIN3A (NM_015477) were downregulated (Fig. 1e),
whereas UBL7-AS1 was overexpressed (Additional file
7: Figure S2). Further, we evaluated the molecular im-
pact of these fusion transcripts through a differential
expression analysis, using the control datasets of 19 AML
cases with normal karyotype from the The Cancer Genome

Atlas data bank (http://cancergenome.nih.gov/). The results
obtained by the QIAGEN’s Ingenuity® Pathway Analysis
(IPA®, QIAGEN Redwood City) [3], following the Partek
Genomics Suite 6.6 (Partek Inc., St. Louis, MO, USA),
indicated a significant number of differentially expressed
genes within the AML pathway. The cell proliferation

Fig. 1 t(15;21)(q24;q22) translocation in case 1. a Genomic breakpoints on chromosomes 15 and 21 in case 1: Top, schematic representation of
wild-type chromosomes (black lines) and involved genes (exons are shown as rectangles and introns as lines connecting exons, with arrowheads
indicating the direction of transcription). The dashed black lines indicate the breakpoints within all genes. Bottom, partial chromatograms indicate
fusion sequences on der(15) (left) [GenBank: KT336107] and der(21) (right) [GenBank: KT336106]. The splicing event creating the runt-related
transcription factor 1 (RUNX1)/UBL7-AS1 fusion transcript is indicated in green. b RUNX1 fusion transcripts: reverse transcription polymerase
chain reaction (RT-PCR) products corresponding to SIN3A/RUNX1 [GenBank: KT336104] and RUNX1/UBL7-AS1 [GenBank: KT336105] fusion transcripts
(lanes 1 and 3, respectively) in case 1 are shown in the middle of the panel. Lanes 2 and 4: negative normal bone marrow samples. Lane 5: 2-log DNA
ladder (New England Biolabs, Milan, Italy). Partial chromatograms (top) and structure (bottom) of SIN3A/RUNX1 and RUNX1/UBL7-AS1 PCR products are
on the left and on the right, respectively. c, d RUNX1 chimeric proteins: both panels show in silico translation (ORFfinder and BlastP) of both wild-type
and chimeric RUNX1 and SIN3A proteins. Arrows indicate the truncation breakpoints of wild-type proteins. e Evaluation of RUNX1 and SIN3A expression
levels in case 1: exon-specific reverse transcription quantitative PCR analysis of RUNX1 (left) and SIN3A (right) was performed in case 1 vs a control pooled
sample of patients with acute myeloid leukemia. Asterisks indicate statistically significant results (P < .05)
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and myeloid differentiation pathways were significantly
activated, whereas apoptosis exhibited reduced activity
(Additional file 8: Figure S3 and Additional file 9: Table S6).
The results obtained in case 1 clearly suggest a role as

a tumor suppressor (TS) gene not only for RUNX1 (the
shorter RUNX1 encoded by the chimeric RUNX1/UBL7-
AS1 should behave as a dominant negative mutant of
the wild-type RUNX1), but also for SIN3A. We speculate
that the inactivation of both proteins should have led to
an abnormal activation of RUNX1/SIN3A target genes,
leading to myelodysplasia. Even if haploinsufficiency was
never reported for SIN3A, its role as a TS has been de-
scribed in other tumors [4]. Notably, the SIN3A corepres-
sor was known to interact with RUNX1 [5], leading to the
transcriptional inactivation of their target genes [6].
In cases 2 and 3, FISH indicated that RUNX1 was

interrupted within intron 7. Additionally, in case 4, a 600-
kb deletion removed the 5′ portion of RUNX1 starting
from intron 6 (Fig. 2a and Additional file 1: Table S1). In

all cases, RUNX1 was joined with an opposite transcrip-
tional orientation to intron 3 of TCF12 (NM_003205), a
basic helix-loop-helix transcription factor (Fig. 2b) fused
with MLL in MDS [7] and recurrently mutated in myelo-
proliferative disorders [8]. Notably, in case 2, RT-qPCR in-
dicated the downregulation of both RUNX1 and TCF12
(Fig. 2c) and IPA analysis disclosed significant deregulation
of the AML pathway. The number of altered pathways
was slightly higher than in case 1 (146 vs. 136) and mostly
overlapped the previously described categories. Particu-
larly, RUNX1 was shown to control many differentially
expressed genes involved in cell cycle regulation, inflam-
matory response, and transcription regulation (Additional
file 8: Figure S3 and Additional file 9: Table S6).
We thus suggest a TS role for TCF12 in myeloid dis-

orders, as already described in colon carcinoma [9]. The
concurrent inactivation of RUNX1 and TCF12 should
mimic the same leukemogenic effect of the t(8;21)
RUNX1/CBFA2T1 fusion protein. E proteins, like TCF12,

Fig. 2 t(15;21)(q21;q22) translocation in cases 2, 3, and 4. a, b Breakpoints on chromosomes 21 and 15: partial karyotypes showing fluorescence in
situ hybridization (FISH) results that allowed the mapping of t(15;21) translocation breakpoints on der(21) (a) and der(15) (b), using the consistently
colored probes listed for cases 2 (first column) and 4 (second column). RP11-662O10 was used only in case 4. Cases 2 and 3 shared the same
breakpoints (data not shown). On the right, the map of the BAC probes used in the FISH experiments, according to GRCh37/hg19, and identifying both
translocation and deletion breakpoints, is shown. The black and orange dashed lines indicate the breakpoints in cases 2 and 4, respectively. The grey
rectangle encompasses the deleted region flanking the translocation breakpoint in case 4. c Evaluation of RUNX1 and TCF12 expression levels:
exon-specific reverse transcription quantitative polymerase chain reaction results of runt-related transcription factor 1 (RUNX1; left) and transcription
factor 12 (TCF12; right) in case 2. Asterisks indicate statistically significant results (P < .05)
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are inactivated through their interaction with the domain
TAFH of CBFA2T1, leading to the inhibition of the p300/
CBP histone acetyltransferase recruitment at their target
genes’ promoters and consequently to the lack of activa-
tion of genes with E-box promoters [10].
To summarize, we here identified three novel RUNX1

partner genes, including two transcription factors and a
long noncoding RNA, in 2 t(15;21) translocations. Both
of the t(15;21) translocations resulted in the concurrent
inactivation of RUNX1 and one related transcription
factor (SIN3A or TCF12), leading to the potential haploin-
sufficiency of both involved genes. Moreover, the IPA
analyses clearly indicated that the AML pathway was
significantly deregulated in our samples, and showed
that RUNX1, SIN3A, or TCF12 have a crucial impact on
differentially expressed genes. The analysis of additional
cases harboring t(15;21) translocations will be helpful
to better understand the pathogenetic impact of these
alterations in myeloid neoplasms.
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