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Abstract

Background: While hepatitis B and C viral infection have been suppressed, non-B non-C hepatocellular carcinoma
(NBNC-HCC) is considered to be rising in incidence terms in some developed countries where prevalence of those
viral infections among HCC patients had been very high (such as Japan, Korea, and Italy). To elucidate critical
molecular changes in NBNC-HCC, we integrated three large datasets relating to comprehensive array-based analysis
of genome-wide DNA methylation (N = 43 pairs) and mRNA/miRNA expression (N = 15, and 24 pairs, respectively)
via statistical modeling.

Results: Hierarchical clustering of DNA methylation in miRNA coding regions clearly distinguished NBNC-HCC
tissue samples from relevant background tissues, revealing a remarkable tumor-specific hypomethylation cluster.
In addition, miRNA clusters were extremely hypomethylated in tumor samples (median methylation change for
non-clustered miRNAs: -2.3%, clustered miRNAs: -24.6%). The proportion of CpGs hypomethylated in more than
90% of the samples was 55.9% of all CpGs within miRNA clusters, and the peak methylation level was drastically
shifted from 84% to 39%. Following statistical adjustment, the difference in methylation levels within miRNA
coding regions was positively associated with their expression change. Receiver operating characteristic (ROC)
analysis revealed a great discriminatory ability in respect to cluster-miRNA methylation. Moreover, miRNA methylation
change was negatively correlated with corresponding target gene expression amongst conserved and highly matched
miRNA sites.

Conclusions: We observed a drastic negative shift of methylation levels in miRNA cluster regions. Changes in
methylation status of miRNAs were more indicative of target gene expression and pathological diagnosis than
respective miRNA expression changes, suggesting the importance of genome-wide miRNA methylation for tumor
development. Our study dynamically summarized global miRNA hypomethylation and its genome-wide scale
consequence in NBNC-HCC.
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Background
Hepatocellular carcinoma (HCC) is a common refractory
cancer especially in areas where hepatitis virus infection
is common, including Japan. (746,000 deaths/782,000
new cases in the world, GLOBOCAN 2012) [1]. While
hepatitis B virus (HBV) and C virus (HCV) infection
have been suppressed with development of public health
measures and medical treatment, non-B non-C hepato-
cellular carcinoma (NBNC-HCC) is rising in incidence
terms in Japan [2–4]. The relative proportion of NBNC-
HCC in respect to total HCC has been increasing in
etiological terms from approximately 10% to 15-20%, with
elevated rates of nonalcoholic fatty liver disease (NAFLD)
also being a potentially contributory factor [2–4]. A simi-
lar tendency is observed in some developed countries
where prevalence of HBV or HCV infection among HCC
patients had been very high (around 80-90%), such as
Korea, and Italy [5]. The mechanism(s) underlying the
carcinogenesis of NBNC-HCC can be different from
virus-mediated cancers; accordingly, to suppress all types
of liver cancer efficiently, the molecular basis of each
etiology should be elucidated.
In terms of molecular oncology, altered epigenetic

regulation is known to be an important contributory
factor in tumor development. Epigenetic marks such as
DNA methylation patterns are observed to be signifi-
cantly different between cancer and non-cancer tissues,
and a number of studies have indicated various cancer-
specific epigenetic characteristics for every cancer type
[6, 7]. In terms of HCC, altered DNA methylation pat-
terns are also indicative of tumor-associated processes
[8–11]. The main focus of DNA methylation research
has been on cancer-specific CpG island methylation
within promoter regions of individual genes of interest,
but the recent development of epigenome-wide analysis
approaches has enabled the DNA methylome to be
assessed comprehensively [9, 11, 12]. Genome-wide
hypomethylation is a common epigenetic change in
tumor cells compared to normal cells, as well as region-
specific hypermethylation of promoter regions of cancer-
related genes [13]. Recently, it was reported that HBV
encodes a DNA methylation suppressor protein (HBx).
This factor is considered oncogenic, with a strong influ-
ence on genome-wide methylation experimentally revealed
[12, 14, 15]. Whether there are external “epimutagens” in
other tumors including NBNC-HCC is an important
research question.
To study the dynamic interplay between DNA methy-

lation and messenger RNA (mRNA) expression, epigen-
etic information should be connected to genome-wide
expression information; however, such integration is a
challenging task. Even if genome-wide surveillance is
employed, the full extent of the generated data is not
often completely utilized or appreciated. In addition,

gene activity is also controlled post-transcriptionally by
microRNAs (miRNA), with this complexity making the
regulation of general (not local) gene expression more
difficult to understand [16]. Oncogenic miRNAs have
been reported, as well as oncogenic epigenetic alter-
ations, in the case of HCC [11, 17]. For example, expres-
sion of has-mir-216a and b was found to be upregulated
in HCC, with oncogenic behavior also observed for both
miRNAs [17]. miRNA expression can also be regulated
by DNA methylation, albeit the correlation between
these is not always positive or negative and is region-
dependent [18]. Moreover, although DNA methylation
alterations in CpG islands within promoter regions have
been well studied in the oncology filed, the dynamics
and function(s) of DNA methylation in other regions,
such as gene bodies or non-island CpG sites, is poorly
understood [19].
Here, in this study, to elucidate critical molecular

changes in NBNC-HCC, we integrated three large-scale
datasets relating to comprehensive analysis of genome-
wide DNA methylation and mRNA/miRNA expression,
together with statistical modeling. We firstly focused on
comparison of genome-wide DNA methylome and
mRNA transcriptome between tumor and non-tumor
background tissues. After detecting tumor-specific dif-
ferences in the DNA methylome, we explored the conse-
quences of these alterations at a functional level in
terms of corresponding expression changes, if present.
We also found a remarkably broad pattern of aberrant
DNA methylation within miRNA coding regions, with
its relationship to target gene expression determined by
constructing statistical models. Our finding describes the
dynamics of DNA methylation-expression interplay and
associated modification by concomitant epigenetic alter-
ation of miRNAs. We believe that this study provides
highly generalizable findings relating to global regulation
of gene expression as influenced by epigenetic alter-
ations during carcinogenesis.

Results
Differences in methylome state between NBNC-HCC
tumor tissues and non-tumor background tissues
Tissues from a total of 43 patients were used for this
study, including 13 (30.2%) females and 30 (69.8%)
males. The mean age of patients was 68.1 years (stand-
ard deviation: 12.4). Non-supervised hierarchical cluster-
ing (1% randomly extracted) based on genome-wide
DNA methylation distinguished NBNC-HCC samples
clearly from their background non-tumor tissues (Fig. 1a).
Tumor samples were characterized by hypomethylated
CpGs (defined as a negative change of methylation level
compared to respective background). Hierarchical cluster-
ing for the difference in methylation level between paired
tumor and background tissues also showed commonly
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hypomethylated probes in cancer tissues (Fig. 1b). This
suggests there are certain subgroups characterized by dif-
ferent methylation patterns (see orange and blue bars in
Fig. 1b).
The functional impact of DNA methylation in respect

to effects on gene expression differs depending on the
characteristics of the respective CpG locus, such as dis-
tance from the transcription start site (TSS) and CpG
island. We therefore stratified the data according to
these factors based on the annotations defined by the
Infinium HumanMethylation450 BeadChip Kit (summa-
rized in Fig. 1c), and plotted the methylation change
(tumor – background) in Fig. 1d. Methylation levels
were highly downregulated for most sites except CpG
islands within upstream regions (where generally pro-
moters exist), where hypermethylation was dominantly
observed (see the leftmost bar in Fig. 1d). Medians of
the methylation change were distributed from –15.1%
(non-island in non-coding region) to 0% (CpG island in
any region). Absolute methylation levels in non-tumor
background tissues were generally very high in gene
body/3′UTR regions, and shelf/non-island regions. In-
deed, the methylation levels in background tissues
ranged from 70 to 90%, with tumor tissues exhibiting
decreases of, on average, 10 to 20% of this level (Fig. 1e);
on the other hand, changes of methylation levels were
very discrete within CpG islands.

Extensive DNA methylation alterations within miRNA
coding and clustered miRNA regions
As described above, hypomethylation was a common ob-
servation in tumor tissues. In particular, we detected
marked hypomethylation within miRNA coding regions
(Fig. 2). As shown in Fig. 2a, clustering on the basis of
methylation of miRNA coding regions alone distin-
guished NBNC-HCC from background tissues, with re-
markable evidence of a hypomethylation cluster being
found. Methylation levels within miRNA coding regions
were highly down-regulated compared to protein-coding

gene regions, even when respective upstream regions
were compared (Fig. 2b). Moreover, clusters of miRNAs,
defined in this study as regions where three or more
miRNAs were coded within 15,000 base pairs, were ex-
tremely hypomethylated in tumor samples (median for
non-cluster miRNAs: -2.3%, cluster-miRNAs: -24.6%;
Fig. 2c). To investigate this further, the distribution of
methylation levels between tumor and background tis-
sues, as well as between non-clustered and clustered
miRNAs, were compared (Fig. 2d). As shown in Fig. 2d,
the peak methylation level within the clustered miRNAs
was clearly shifted from around 84% to 39%. The sharp-
ness of the peaks and the peak shift was more obvious
within clustered miRNAs.
In fact, 66.2% of the CpG probes within cluster miR-

NAs were annotated to non-island areas, a highly hypo-
methylated region, in the tumor. As the proportions of
non-island areas were only 36.3% and 49.7% within all
probes and all miRNAs, respectively, this imbalance can
cause a bias. However, using statistical modeling ap-
proaches, it was suggested that the methylation level of
the clustered miRNAs was significantly lower than that
observed with protein-coding genes and non-clustered
miRNAs, which was independent of the distance from
the TSS and the CpG island (Additional file 1: Table S1,
Fig. 2e). In Fig. 2f, we investigated a proportion of
significantly hypomethylated CpGs within each miRNA
cluster. As a result, 80% of CpGs were significantly
hypomethylated (paired-t test, P < 0.05) within 56.7%
(17/30) of miRNA clusters (17/30, 56.7%).

Regulation of global miRNA expression by DNA
methylation within miRNA coding regions
We subsequently assessed the association between DNA
methylation within miRNA coding regions and expres-
sion of respective miRNAs, with baseline level of expres-
sion and methylation also taken into consideration. As
shown in Additional file 1: Table S2 and Fig. 3a, we con-
structed and utilized a statistical model (linear mixed

(See figure on previous page.)
Fig. 1 Genome-wide DNA methylation analyses of tumor and background tissues in non-B non-C hepatocellular carcinoma patients. a. Hierarchical
clustering of genome-wide methylation data from analysis of tumor and background tissues. Each column corresponds to a single sample. Methylation
analysis was performed using the Infinium HumanMethylation450 BeadChip. One percent of probes were randomly sampled for the
analysis. b. Hierarchical clustering of the difference in genome-wide methylation level between tumor and background pair tissues.
Each single column corresponds to each case. Yellow indicates tumor > background (hypermethylation), and blue indicates background > tumor
(hypomethylation). The orange bar under the heatmap suggests a subgroup that shows relatively stronger hypermethylation, and the
blue bar suggests a subgroup with remarkable hypomethlyation and low frequency of hypermethylated genes. c. Upper: a schema of the
structure of a CpG island, and the definition of regions around such CpG islands. Middle: a schema of the structure of protein-coding
genes, and relative positions of the terms related to distance from transcription start site. Lower: a schema of the structure of miRNA-
coding regions. We defined “upstream” and “gene body” regions as shown in the figure. d. Relative methylation change (background
levels subtracted from tumor levels) stratified by probe annotation (relative location from gene and CpG island: upstream/gene body/
non-coding regions and CpG island/shore/shelf/non-island). e. Absolute methylation levels stratified by probe annotation (relative location
from gene and CpG island). The gap between green and red lines indicates the difference in the methylation levels between background
and tumor tissue. The gap was clearly observed in shelf/non-island regions and ranged from 10 to 20%
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model) for this assessment. The model indicated that
DNA methylation changes were generally positively as-
sociated with corresponding differences in expression of
the respective miRNAs. In particular, following statistical
adjustment of miRNA methylation and expression in
corresponding background tissues, altered methylation
levels of CpG sites in shore, shelf and non-island areas
within miRNA coding regions were significantly associ-
ated with expression changes of the relevant miRNAs.
The expression of conventional protein-coding genes was
negatively associated with methylation of CpG islands
within upstream regions; however, this association was
not observed in the case of miRNA expression.

Varied, albeit globally positive correlation, between
expression and methylation within clustered miRNAs
Almost half of miRNAs are clustered together, which
demonstrated impressive hypomethylation in tumor tis-
sues (Fig. 2d). Methylation and expression levels were
similarly controlled amongst closely-located miRNAs,
with the number of CpG sites involved in transcriptional
regulation being relatively small, compared to protein-
coding genes (Additional file 2: Figure S1). This suggests
that transcriptional regulation via methylation in miRNA
coding regions is possibly more visible with cluster-level
summarized data. Thus, we then focused on analysis of
cluster-level regulation of expression. Summary data re-
garding methylation and expression levels for miRNA
clusters is shown in Additional file 1: Table S3.
As shown in Additional file 3: Figure S2A, methylation

and expression levels of the same miRNA cluster were
quite similar across all of the background tissues. How-
ever, across the tumor tissues, this similarity was
disturbed by demethylation tendency within miRNA
clusters, with methylation levels in tumor tissues being
relatively more varied in nature. A statistical model pro-
viding cluster level analysis (constructed in a similar way
to that shown in Fig. 3a) also suggested a positive correl-
ation between average change in methylation and ex-
pression within each cluster (Additional file 1: Table S4,
Fig. 3b). Figure 3c shows in detail the distribution of
average miRNA cluster expression according to different
methylation levels. Figure 3d also shows the association
between differences in methylation and expression of

miRNA clusters, when taking into consideration con-
founding effects due to background tissue expression. In
every stratum stratified by the quartile of background
tissue expression, the majority of clusters showed a posi-
tive association between methylation and expression
change of clustered miRNAs. Pearson’s correlation coef-
ficients of their association were R = 0.144 to 0.211 (not
strong, but significant with P < 0.05 in 3/4 strata). The
red circle in the figure indicates up-regulated clusters
found within the lowest background expression group,
with remarkable up-regulation observed in samples dis-
playing 0% of difference in methylation (i.e. no methylation
change). Even though tumor-specific hypomethylation and
up-regulation of miRNA cluster expression were observed
within the same miRNA cluster, expression was seemingly
paradoxically up-regulated in certain cases within the
intact-methylation group. For example, miRNA clusters on
2p16.1 and 7q32.2 were, respectively, the first and 2nd most
up-regulated miRNA clusters across all the samples; both
clusters were highly hypomethylated, but tumor-specific
upregulation was observed in samples with no methylation
change (Fig. 3e).
The detailed methylation changes around the largest

cluster on 19q13.42 is shown in Fig. 4a. A remarkable
hypomethylation pattern was specifically observed
within this miRNA cluster, with methylation differences
fading when out of the cluster region. Subsequently, we
assessed the extent of correlation between methylation
and expression more precisely (at a single probe scale)
within several miRNA clusters. Since regulation of the
miRNA clusters on 1p36.33 (the 2nd most down-
regulated) and 7q32.2 (the 2nd most up-regulated) have
been reported in detail [20, 21], we selected these for fo-
cused analysis. As shown in Fig. 4b, the methylation
levels within miRNA cluster on 1p36.33 was positively
correlated with expression of its linked miRNAs. How-
ever, this miRNA cluster also has a large CpG island in
the upstream region of the cluster within 20k bps, with
methylation level in this area negatively correlated with
expression of miRNAs within the cluster. A similar regu-
latory pattern was also observed in the case of the
miRNA cluster on 7q32.2 (Fig. 4c). The miRNA cluster
on 2p16.1, where there is no CpG island within the up-
stream region of the cluster, demonstrates only a

(See figure on previous page.)
Fig. 2 DNA methylation analyses for microRNA coding regions of tumor and background tissues in non-B non-C hepatocellular carcinoma
patients. a. Hierarchical clustering of methylation data from tumor and background tissues relating to microRNA-coding regions. Methylation analysis
was performed using the Infinium HumanMethylation450 BeadChip. All probes annotated within microRNA regions were used for the
analysis. b. Relative methylation change (background levels subtracted from tumor levels) stratified by probe annotations (upstream regions/gene body
and protein-coding gene/microRNA). c. Relative methylation change (background levels subtracted from tumor levels) stratified by probe annotations
(non-clustered microRNAs/clustered microRNAs). d. Comparison of histogram plots showing methylation levels between background and tumor
tissues stratified by non-clustered and clustered microRNA coding regions. e. Visualization of a statistical model showing methylation level
in accordance to particular probe annotations (relative location from gene and CpG island, and protein-/miRNA-/clustered miRNA-coding).
f. A proportion of significantly hypo/hyper-methylated CpGs within each miRNA cluster
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simplistic positive correlation (Fig. 4d). Correlation coef-
ficients determined between methylation and expression
for miRNA clusters with upstream sequences within 20k
bps are summarized in Fig. 4e. Consistent with the
analysis shown for 2p16.1, methylation at CpG sites in
non-island areas was highly positively correlated with
expression. CpG islands were mainly located within up-
stream regions of miRNA clusters (68.8%), with approxi-
mately half of these showing a negative correlation in
terms of methylation status with expression, such as that
evidenced in Fig. 4b and c. Methylation-expression correl-
ation analysis at a chromosome-wide scale is summarized
in Additional file 3: Figure S2B, showing correlation coeffi-
cients are varied in nature (positive to negative) depending
on location.

Ability for tumor discrimination: comparison of
expression and methylation data
A major perceived impact in respect to methylation-
dependent influences on tumorigenesis is thought to
relate to regulation of gene expression. However, cluster-
ing using genome-wide expression data, as shown in
Fig. 5a, provided little evidence of tumor versus back-
ground tissue discriminatory power, in contrast to the
potential power of methylation data to produce a robust
separation (as seen in Fig. 1a). Ability to provide tumor
versus background discrimination was quantified using
ROC analysis for every protein-coding gene and miRNA
probe (in terms of both methylation and expression).
Accordingly, a great discriminatory ability was shown
when data from clustered miRNA methylation was
utilized (Fig. 5b). Consistent with the results shown in
Fig. 5a, methylation was superior to expression in
respect to discriminatory power.

Significance of DNA methylation alteration within
miRNA coding regions for target gene expression:
a genome-wide integrative analysis
For comparison purposes, a statistical model for protein-
coding genes was then constructed and analysed
(Additional file 1: Table S5, Fig. 5c). As previously
known, methylation differences in CpG islands within

upstream regions was significantly negatively correlated
with relative gene expression (regression coefficient = -0.91:
decreasing -0.91 x SD when 100% methylation increase, P <
0.001), with this correlation pattern gradually changing to
positive when progressing further from the CpG island. On
the contrary, methylation within gene body regions posi-
tively regulated expression, particularly in CpG-sparse
regions (shelf and non-island CpGs). Additionally, we
assessed the association between expression change of
several DNMTs (DNMT1, DNMT3A, DNMT3B) and aver-
age methylation difference of clustered miRNAs. Correl-
ation coefficients for z-transformed log-ratio of DNMTs
and methylation difference were 0.135 for DNMT1, 0.375
for DNMT3A, 0.093 for DNMT3B.
Finally, we assessed the significance of dynamic hypo-

methylation in miRNA coding regions for target gene
expression in the context of tumor development. As
described above, the ability to provide tumor versus
background tissue discrimination was easier to achieve
when utilizing the methylation status of miRNA coding
regions than expression levels of particular miRNAs. We,
therefore, suggest that methylation status is also a better
estimator of target gene expression than expression of the
respective miRNA. Target genes for each miRNA was de-
termined based on TargetScan 7.0 (www.targetscan.org).
For this investigation, we selected all conserved
miRNA sites and corresponding target genes with
greater context++ score (index for degree of match-
ing: lower than -0.2) [22]. We then used a modeling
approach similar to that shown in Fig. 5c, but includ-
ing changes in miRNA methylation, miRNA expres-
sion, and target gene methylation (upstream region
and gene body) and their absolute values in back-
ground tissues. Also, taking into account the affinity
of miRNA sites are dependent on the context++
score, we stratified the analysis according to three differ-
ent levels of context++ score (results summarized in
Fig. 6a and Additional file 1: Table S6). Amongst the
highly matched miRNA sites (context++ score < -0.6),
miRNA methylation changes were significantly negatively
correlated with corresponding target gene expression
change independently from miRNA expression (regression

(See figure on previous page.)
Fig. 3 Association between methylation levels of microRNA-coding regions and respective microRNA expression. a. Visualization of a statistical
model relating microRNA expression with respective methylation change, stratified by relative location from gene and CpG island. The effect of
methylation change was estimated from regression coefficients for the relative methylation change. Methylation and expression levels in background
tissues were also included as a covariate. Darkest line: CpG island, darker: Shore, lighter: Shelf, lightest: Non-island. b. Visualization of a statistical model
relating average clustered microRNA expression with respective methylation change (cluster-level analysis). The effect of methylation change was
estimated from regression coefficients for the relative methylation change. Methylation and expression levels in background tissues were also included
as a covariate. Dark green line: Clustered miRNA methylation, blue dotted: background expression of clustered miRNAs. c. Box plots for correlation
between clustered microRNA expression and methylation change. d. Scatter plots for correlation between average expression and methylation of
microRNA cluster 2p16.1 and 7q32.2. Gray: 2p16.1, green: 7q32.2. e. Relative methylation change (backgroun. Scatter plots and associated regression
regarding correlation between clustered microRNA expression and methylation stratified by quartile of microRNA expression in background tissues.
Circles were painted in different colors according to miRNA clusters
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coefficient: -0.27, P < 0.001; decreasing -0.27 x SD in the
case of 100% methylation increase). Absolute value of
regression coefficients gradually increased in relation to
the context++ score (degree of matching). These data sug-
gest that miRNA hypomethylation is associated with up-
regulation of target gene expression.
In addition, to identify the influence of the clustered

miRNAs, we performed a similar analysis to Fig. 6a only
applying the target genes that were targeted by the
clustered miRNAs within highly matched miRNA sites
(context++ score < -0.6). As shown in Fig. 6b (and
Additional file 1: Table S6), we observed the highest
regression coefficient for miRNA methylation change
than any previous analyses (Regression coefficient: -0.32,
P < 0.001). This suggests that the influence of methyla-
tion change is more efficient among target genes that
are targeted by high-affinity clustered miRNAs. Subse-
quent hierarchical clustering using such highly-sensitive
target genes demonstrated much better separation of
tumor from background tissues than in Fig. 5a, showing
tumor-specific overexpression of several target genes in
which an established oncogene, GPC3, for hepatocellular
carcinoma was included (Fig. 6c). A similar analysis to
Fig. 5b for the same target genes also showed better abil-
ity for tumor discrimination (Fig. 6d), compared to the
result of non-specified gene expression (see the right
upper graph in Fig. 5b). These results suggest an import-
ance of miRNA methylation change for tumor develop-
ment or progression via regulation of their target gene
expression.

Discussion
Our integrated analyses of methylome and transcrip-
tomic data revealed highly tumor-specific hypomethyla-
tion of clustered miRNAs in NBNC-HCCs. The
methylation pattern of clustered miRNAs between back-
ground and tumor tissues were much more discrimina-
tive than expression data from protein-coding genes or
miRNAs. The expression change of miRNAs was, on
average terms, positively associated with methylation
change in the corresponding coding region of miRNA;
however, this pattern of regulation was not simple and
depended on the relative location from genes. Finally,
our result indicated an independent association in re-
spect of miRNA methylation alteration with target gene
expression changes from background to tumor tissue.
The findings suggest that the broad tumor-specific

hypomethylation in miRNA coding regions functionally
influence tumor development through regulating target
gene expression.
Global hypomethylation is established epigenetic alter-

ation in tumor cells [14, 15]. Cluster miRNA hypome-
thylation seems to be happening independently from
non-specific global hypomethylation (Fig. 2e). Clustered
miRNA hypomethylation has been reported by several
studies; however, its significance and relevance to regula-
tion of gene expression is not well understood [23–26].
Jeong M et.al. reported DNMT3A as being key to clarify
and ensure distinctions between low and high DNA
methylation areas in the genome [27]. However, in our
data, even though DNMT3A expression was highly up-
regulated, total methylation levels were down-regulated
in the tumor samples although a slight positive correl-
ation was observed between global methylation level and
expression of each DNMT. The gene encoding the TET
protein, which was recently identified to be involved in
DNA demethylation [28], was not found as a key fac-
tor for tumor-specific hypomethylation in this study.
Nevertheless, we could not identify the cause of
global hypomethylation observed within NBNC-HCC
tissues in this study.
Several studies have reported that hypomethylation of

miRNA clusters is associated with re-activation of corre-
sponding miRNA expression [24, 25, 29]. However, we
could not conclude that tumor-specific hypomethylation
was simply associated with tumor-specific expression
(see Additional file 3: Figure S2A and Fig. 3c, d). Para-
doxically, up-regulation mostly occurred in methylation-
intact samples and the expression of hypomethylated
samples was not overly up-regulated. It can be explained
via the influence of other factors involved in transcrip-
tion regulation, such as transcription factors, chromo-
some amplification/deletion, etc. Even if transcriptional
signals were turned into “on” through tumor develop-
ment, if methylation of miRNA coding regions positively
regulated affinity downstream of the signal, results as
seen for Fig. 3d may be observed.
In addition, as shown in Fig. 4b and c, expression of

miRNA clusters on 1p36.33 and 7q32.2 was negatively
correlated with CpG island methylation within the up-
stream regions of the clusters, and positively correlated
with methylation in miRNA-coding regions. This finding
is consistent with previous reports [20, 21]. It indicates
that a typical regulation pattern for protein-coding genes

(See figure on previous page.)
Fig. 4 Methylation level for each probe and transcriptional regulation of microRNA clusters. a. Average methylation levels of each probe around
the largest microRNA cluster on 19q13.42. Dark yellow bars indicate the miRNA coding regions. b-d. Average methylation levels and correlation
coefficients between methylation level and microRNA expression around microRNA cluster on 1p36.33 (B), 7q32.2 (C), and 2p16.1 (D). e. Histogram
plots of correlation coefficients between average expression of microRNA clusters and methylation level of miRNA clusters including upstream from
clusters within 20k bps stratified by relative location from CpG island
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Fig. 5 Assessment of ability for tumor discrimination, and regulation of protein-coding gene expression by methylation. a. Hierarchical clustering
of genome-wide microRNA and protein-coding gene expression analysis data from tumor and background tissues. One percent of probes were
randomly sampled for the analysis of protein-coding genes. b. Histogram plots of area under curves (AUC) of repeated receiver operator characteristic
(ROC) analysis in respect of ability to discriminate tumor from background tissue. Curves shown below are images of representative results from ROC
analysis for various probes. c. Visualization of a statistical model relating expression of protein-coding genes with respective methylation
change stratified by relative location from gene and CpG island. The effect of methylation change was estimated from regression coefficients for the
relative methylation change. Methylation and expression levels in background were also included as covariate. Darkest line: CpG island, darker: Shore,
lighter: Shelf, lightest: Non-island
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was found within both clusters, which is characterized
by transcriptional regulation depending on methylation
in promoter CpG islands. It also suggests that the differ-
ence in the transcriptional correlation of methylation
change within upstream regions between each miRNA-
coding region (please note it is different from “upstream
region of the cluster”) and protein-coding genes (defined
as Fig. 1c, and compare Figs. 3a, 4 and 5c) could be due
to the difference in promoter activity of such regions.
However, the correlations observed in the upstream
regions of the clusters (see Fig. 4b, and c) are not neces-
sarily representative pattern of miRNA transcription
regulation (see the distribution of correlation coefficients
in Fig. 4e). A similar inconsistent phenomenon was
observed in the CTCF binding site. The CTCF binding
site is considered important for miRNA expression regu-
lation, as well as DNA methylation, and it modifies cor-
relation patterns positively and negatively between
expression and methylation [18, 30].
Although aberrant methylation within promoter-

bound CpG islands has been well studied for some time,
the significance of gene body methylation and non-CpG
island areas has until recently been minimized. Our
results suggested the significance is not that small com-
pared to promoter CpG islands, being consistent with
recent reports about positive correlation between gene
body methylation and expression [19, 31]. In tumor sam-
ples, large portions of gene bodies were relatively highly
hypomethylated, and the relationship between this and
tumor development should be studied. more Yang X et.
al. described that gene body methylation may lead to
genome instability and reduced efficiencies of post-
transcriptional activity; other reports also support this
idea [15]. Similar to miRNA regulation, direction of
correlation between methylation of gene body and
expression varies across the genome [13, 31].
In Fig. 6, miRNA methylation seems to regulate target

expression directly amongst highly matched miRNA
sites as it were independent from miRNA expression.
Such results may be due to instability of expression
measurement especially for miRNA, and stability of
methylation measurement. In addition, transcription is
regulated by multiple factors and dynamically changes
moment by moment, with miRNAs also affecting

surrounding/other cells by forming exosomes [32].
These findings might provide some explanation towards
the discriminatory capability of tumor discrimination be-
ing present when methylation is considered (Fig. 5b).
Moreover, our results in Fig. 6 indicate that expression
of target genes of highly-matched clustered miRNAs dif-
fers between tumor and background tissues. This could
be attributable to drastic hypomethylation of miRNA
clusters. In general, global hypomethylation develops
gradually through tumor development. For example, the
pre-myeloma condition MGUS (Monoclonal gammopathy
of undetermined significance) demonstrated intermediate
methylation levels between normal and myeloma cells
[15]. Pre-cancerous infections (e.g. HBV, HCV) also affect
global methylation level in a similar way [10, 12]. In
addition, an established oncogene of hepatocellular carcin-
oma, GPC3 [33], was included in these target genes
(Fig. 6c), and showed a tumor-specific overexpression pat-
tern. Taken together, we consider that broad hypomethyla-
tion of miRNA clusters develops gradually through
tumorigenesis, and not only as a specific phenotype but
also a functionally significant factor.

Conclusion
We observed a dramatic negative shift in methylation
levels within miRNA cluster regions, and investigated
ways to correlate with expression data. Methylation
changes in miRNAs were more indicative for target gene
expression than miRNA expression change itself, sug-
gesting the importance of genome-wide miRNA methy-
lation for cancer development. Our study dynamically
summarized the global miRNA hypomethylation and its
genome-wide consequence in NBNC-HCC.

Methods
Subjects and sample collection
All subjects (N = 43) were diagnosed as HCC without
HBV or HCV infection by expert hepatologists from Jan.
2004 to Dec. 2013. After informed consent for research
was given, histologically diagnosed paired tissue samples
(HCC and background liver) were collected from surgery
samples at Osaka City University Hospital, Kyushu
University Hospital, Tokushima University Hospital, and
Tohoku University Hospital. This study was firstly

(See figure on previous page.)
Fig. 6 Regulation of target gene expression depending on miRNA methylation. a. Visualization of a statistical model relating target gene
expression with methylation change of corresponding microRNAs stratified by three different levels of context++ score, which is an index
determining the degree of matching. The effect of methylation change was estimated from coefficients for the relative methylation change.
Methylation and expression levels of microRNAs in background tissues, and target gene methylation were also included as covariates. Green line:
miRNA methylation, blue: miRNA expression, dark yellow: target gene methylation (promoter), yellow: target gene methylation (body). b. A similar
analysis to Fig. 6a only applying the target genes targeted by clustered miRNAs within highly matched miRNA sites (context++ score < -0.6).
c. Hierarchical clustering of expression of target genes targeted by clustered miRNAs with context++ score < -0.6. Blue dotted line is a border for
tumor-background. A red arrow indicates a cluster characterized by tumor-specific overexpression of target genes. d. A similar analysis to Fig. 5b
only applying target genes targeted by clustered miRNAs with context++ score < -0.6 (highest matching)

Nojima et al. Molecular Cancer  (2016) 15:31 Page 13 of 15



approved by Nagoya City University ethical board as the
primary center of the study (the submission number:
805-2), followed by ethical boards in each of the partici-
pating hospitals.

Comprehensive analyses for DNA methylation and
miRNA/mRNA expression
The DNeasy Blood & Tissue Kit (QIAGEN, USA) was
used for DNA extraction, and mirVana miRNA Isolation
Kit (Ambion, USA) and miRNeasy Mini Kit (QIAGEN,
USA) was used for RNA extraction (the former was used
for miRNA extraction, the latter was for total mRNA
extraction). All collected samples were large enough to
avoid major contamination of background tissue into
tumor samples (median major axis: 47mm, interquartile
range: 29-67.5mm, range: 16 to 170mm). Genome-wide
DNA methylation status was assessed by an Infinium
HumanMethylation450 BeadChip Kit (Illumina, USA,
N = 43 pairs of tumor and background). Genome-
wide mRNA expression analysis was performed using
a SurePrint G3 Human GE 8x60K c2 Microarray
(Agilent, USA, N = 15 pairs of tumor and background).
These analyses were performed at the CDM center, Takara
Bio Inc. (Shiga, Japan). A 3D-Gene® Human miRNA Oligo
Chip V20 (Toray, Japan, N = 24 pairs of tumor and back-
ground) was used for comprehensive miRNA expression
analysis. Data files for these genome-wide experiments
were submitted to ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) under accession numbers of E-MTAB-
4169, E-MTAB-4171, and E-MTAB-4170, respectively. All
analyses were performed according to the procedure
provided by the manufacturer. Target genes for miRNAs
were identified using TargetScan 7.0 (http://www.targets
can.org). We used all conserved miRNAs for human tran-
scripts with greater context++ score (less than -0.2) [22].

Statistical analyses
General data mining and statistical analyses were per-
formed via use of SPSS 20 (IBM, USA). Genome-wide
methylation analysis was performed using beta values for
all CpG loci represented on the Infinium HumanMethy-
lation450BeadChip. For integrated analyses, the average
methylation level or each gene (also stratified by up-
stream region/gene body and CpG island/shore/shelf/
non-island) was calculated, and then average expression
of each gene (log-transformed signal and log-ratio) and
average expression of each miRNA were annotated ac-
cording to the corresponding methylation data. Clustering
was performed using Cluster 3 [34]. Values measured by
comprehensive analyses were transformed logarithmically
and z-standardized as necessary. Continuous variables
were generally compared by t-test or paired t-test. Area
under curve (AUC) was calculated by receiver operating
characteristic (ROC) analysis. General linear and liner

mixed models were used for statistical modeling for deter-
mining expression-methylation association. In the mixed
models, a patient identifier was included as a random
effect. The other variables indicated in figures and tables
were included as fixed effects. P < 0.05 was considered
significant.

Availability of supporting data
The data sets supporting the results of this article are
available in the ArrayExpress repository, under accession
numbers of E-MTAB-4169, E-MTAB-4170, and E-MTAB-
4171 in https://www.ebi.ac.uk/arrayexpress/.
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Table S2. A linear mixed model for miRNA expression change between
tumor and background tissues attributed to their methylation change
stratified by distance from CpG island and transcription start site.
Table S3. Summary for methylation and expression of miRNA clusters.
(Expression difference was z-transformed after obtaining log-ratio
between background and tumor tissues. Thus, it was not equal to
simple subtraction of background from tumor). Table S4. A linear
mixed model for miRNA cluster expression (average within each cluster)
change attributed to average cluster methylation change. Table S5.
A linear mixed model for expression change of general protein-
coding genes between tumor and background tissues attributed to
their methylation change stratified by distance from CpG island and
transcription start site. Table S6. A linear mixed model for target
gene expression change between tumor and background tissues
attributed to corresponding miRNA methylation change. (DOC 252 kb)

Additional file 2: Figure S1. Correlation coefficients between
methylation/expression change of microRNAs within selected
microRNA clusters (1p36.31, 1q24.3, 2p16.1, and 7q32.2). The selected
clusters consist of the most and 2nd most up-/down- regulated
clusters (see Supplementary Table S3). (TIFF 3351 kb)

Additional file 3: Figure S2. Association between methylation levels
of microRNA-coding regions and microRNA expression. A. Scatter plots
showing correlation between clustered microRNA expression and methylation
stratified by background and tumor tissues. B. Chromosome-wide correlation
coefficients between methylation level as determined by each probe and
corresponding microRNA expression. (TIFF 2122 kb)
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