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Abstract

Background: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive type of cancer that
lacks effective targeted therapy. Despite detailed molecular profiling, no targeted therapy has been established.
Hence, with the aim of gaining deeper understanding of the functional differences of TNBC subtypes and how that
may relate to potential novel therapeutic strategies, we studied comprehensive anticancer-agent responses among
a panel of TNBC cell lines.

Method: The responses of 301 approved and investigational oncology compounds were measured in 16 TNBC cell
lines applying a functional profiling approach. To go beyond the standard drug viability effect profiling, which has
been used in most chemosensitivity studies, we utilized a multiplexed readout for both cell viability and
cytotoxicity, allowing us to differentiate between cytostatic and cytotoxic responses.

Results: Our approach revealed that most single-agent anti-cancer compounds that showed activity for the viability
readout had no or little cytotoxic effects. Major compound classes that exhibited this type of response included
anti-mitotics, mTOR, CDK, and metabolic inhibitors, as well as many agents selectively inhibiting oncogene-activated
pathways. However, within the broad viability-acting classes of compounds, there were often subsets of cell lines
that responded by cell death, suggesting that these cells are particularly vulnerable to the tested substance. In
those cases we could identify differential levels of protein markers associated with cytotoxic responses. For
example, PAI-1, MAPK phosphatase and Notch-3 levels associated with cytotoxic responses to mitotic and
proteasome inhibitors, suggesting that these might serve as markers of response also in clinical settings.
Furthermore, the cytotoxicity readout highlighted selective synergistic and synthetic lethal drug combinations that
were missed by the cell viability readouts. For instance, the MEK inhibitor trametinib synergized with PARP
inhibitors. Similarly, combination of two non-cytotoxic compounds, the rapamycin analog everolimus and an
ATP-competitive mTOR inhibitor dactolisib, showed synthetic lethality in several mTOR-addicted cell lines.

Conclusions: Taken together, by studying the combination of cytotoxic and cytostatic drug responses, we
identified a deeper spectrum of cellular responses both to single agents and combinations that may be highly
relevant for identifying precision medicine approaches in TNBC as well as in other types of cancers.
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Background
The triple negative subtype of breast cancer (TNBC),
devoid of the hormone estrogen/progesterone recep-
tor (ER/PR+) expression and HER2 overexpression
(HER2+), is a heterogeneous group of aggressive dis-
eases that account for 15–20 % of all breast cancer
cases. While targeted treatments exist for the receptor
positive breast cancer subtypes, TNBC lacks such spe-
cific treatments. The current line of therapy is limited
to surgery, radiation and chemotherapy [1, 2]. TNBC
patients have a worse prognosis than other breast
cancer patients. In a breast cancer patient follow-up
study, 93 % 5-year survival was seen in non-TNBC-
patients, as compared to only 77 % of the TNBC-
patients [3]. Hence, there is an obvious need for
better treatment options for TNBC.
Development of targeted therapeutics for TNBC

diseases is challenging due to their heterogeneity. To
address this challenge, several studies have assigned
TNBC cases into multiple subtypes using transcripto-
mics approaches. For example, Kreike et al. [1] studied
97 TNBC samples and 7700 genes and observed five
groups (I-V) in a hierarchical analysis of gene expression
data. In another study, TNBC was grouped into seven
transcriptomics-based subtypes: basal-like 1 (BL1) and 2
(BL2), mesenchymal-like (M), mesenchymal stem cell-
like (MSL), immunomodulatory (IM), luminal androgen
receptor positive (LAR) type, and unclassified (UNC)
[4]. Recently, Burstein et al. [5] performed a similar
study and identified four subtypes; LAR, MES, BLIS and
BLIA. By assessing expression of 13 biomarkers, TNBC
was assigned to four subtypes by Elsawaf et al. [6]. Based
on intrinsic PAM50 subtyping, 80.6 % of TNBC were
found basal-like, 14.6 % normal-like, 3.5 % luminal A,
1.1 % luminal B and 0.2 % HER2-enriched [7, 8]. While
there is overlap between the results in the different
studies, such as identification of the LAR-type in two
recent studies [1, 5], it is evident that defining clear,
distinct subgroups is challenging, highlighting the
diversity of the disease.
Despite the diversity, a number of therapy-guiding

biomarkers have been proposed and efforts for tailoring
targeted therapies against TNBC are ongoing. Though
TP53, BRCA1/2, EGFR, PIK3CA and PTEN tend to be
dominant mutations in TNBC, these markers have been
elusive and inconsistently useful for guiding therapy [9, 10].
An important finding is that Poly-ADP-ribose polymerase
(PARP) inhibitors appear to be highly effective against the
BRCA1-mutant TNBC [11]. The PARP inhibitor olaparib
was recently approved for use in BRCA-mutated ovarian
cancers and several PARP inhibitors are currently in
clinical trials against BRCA-mutated TNBC. Furthermore,
inhibitors of PI3K, mTOR, CDK, HDAC and androgen
signaling are currently being explored in clinical trials as

treatments of TNBC [8]. Also drugs targeting different
growth factor receptors such as EGFR, VEGFR and FGFR
are explored in clinical trials [7].
As an alternative strategy to tailor targeted therapies to

breast cancers, chemosensitivity profiling of in vitro cell
lines is applied increasingly. This functional profiling ap-
proach allows for identification of selective vulnerabilities
in cell lines reflecting human diseases. Recently, Barretina
et al. [12] and Garnett et al. [13] tested 25 TNBC lines
against 24 anticancer agents and 10 TNBC lines against
130 compounds, respectively, as part of large comprehen-
sive pharmacogenomics studies in hundreds of cell lines.
Heiser et al. [14] performed an analysis of 77 cancer drug
compounds on 19 TNBC cell lines, and combined the
drug-sensitivity data with gene expression and copy num-
ber interrogation. In a similar study by Daemen et al. [15],
19 TNBC cell lines were screened against 90 compounds
along with integration of multi-omic molecular profiling
data to identify potential response-predictive markers.
Another study by Lawrence et al. [16] reported a com-
bined proteomics, genomics, and drug sensitivity interro-
gation using 160 compounds and 16 TNBC cell lines and
four tumor samples. Muellner et al. [17] identified the
broad-spectrum tyrosine kinase inhibitor midostaurin
(PKC412) as a post-EMT-specific drug targeting spleen
tyrosine kinase SYK in a subset of TNBC cells.
Together, these studies identified a number putative

links between drug sensitivities, TNBC subtypes and
genomic and proteomic markers, but also highlighted a
striking functional heterogeneity among TNBC cell lines.
Notably, each of these studies used cell viability readouts
to monitor the drug responses. However, the consistency
in Barretina et al. and Garnett et al. datasets [18] was
poor, possibly due to differences in experimental setup
and especially in their viability readouts. These results
highlight the importance of the well-defined functional
readouts in chemo-sensitivity profiling studies.
By studying the response of 16 diverse TNBC cell lines

to 301 compounds using our drug sensitivity and resist-
ance (DSRT) approach [19, 20], we investigated whether
going deeper than the traditional cell viability measure-
ment could provide us with improved drug response
selectivity information of translational value. Our com-
pound testing included a resazurin cytosolic reduction-
based viability assay, a cellular ATP-based viability assay,
and a cell membrane impermeable DNA-binding dye-
based cytotoxicity assay [21]. While the readouts of the
two viability assays correlated well, we found that several
classes of drugs caused an apparent drastic loss in viability
and cell numbers but failed to induce cell death. However,
among these generally cytostatic agents, sporadic cytotox-
icity occurred in specific cell lines, suggesting that some
cell lines, and presumably cancers with the same genotype
and/or phenotype, may be strongly and selectively
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responsive to such chemotherapy. Furthermore, when
testing drug combinations, the cytotoxicity readout re-
vealed both antagonistic and synthetic lethal effects that
were missed by the viability readouts.

Results
Viability and cytotoxicity readouts reveal differential drug
responses
Most drug sensitivity screening studies have been per-
formed using cell viability assays. As such assays are
based on changes in cellular metabolism, we first set out
to investigate whether a viability assay was sufficient to
reveal cell death. A panel of 19 breast cancer cell lines
(Additional file 1: Table S1) was screened against 301
oncology substances (Additional file 2: Table S2) (DSRT,
[19]) using two cell viability detection reagents, the
resazurin cytosolic reduction-based detection reagent
CellTiter-Blue and the luciferase-based cellular ATP
detection reagent CellTiter-Glo; and a cell death detec-
tion reagent, the cell impermeable DNA-binding dye
CellTox Green. The drug sensitivity score (DSS), a
measure of drug response based on the area under the
dose response curve that therefore captures both the po-
tency and the efficacy of the drug effect, was calculated
for each compound, as previously described [19, 20], and
an average response for each compound was summa-
rized (Additional file 3: Table S3). The DSS responses
from the two independent viability measurement assays
(CellTiter-Blue vs. CellTiter-Glo) were highly correlated
(R2 = 0.89; Fig. 1a). In contrast, a more heterogeneous
response was observed between the cell viability (CellTi-
ter-Glo) and cytotoxicity (CellTox Green) assays (R2 =
0.67; Fig. 1b). Overall, the compounds affected the cellu-
lar ATP-levels considerably more than cell death. A large
group of compounds appeared to inhibit the cell viabil-
ity, but the same compounds failed to induce cell death
to a similar extent. Compounds that displayed such ef-
fect across the cell panel included PI3K/mTOR inhibi-
tors, Cyclin-dependent kinase (CDK) inhibitors, Heat
shock protein 90 (HSP90) inhibitors, an NAMPT inhibi-
tor, tubulin stabilizing anti-mitotics; and protein, RNA
and DNA synthesis inhibitors (Fig. 1c). These results
suggest that inhibition of signal in cell viability assays is
not directly indicative of cell death.

Drug response patterns do not link to transcriptomics-
based grouping of TNBC
Next we investigated whether the heterogeneous re-
sponses of different TNBC cell lines to the 301 oncology
compounds could be linked to the previously published,
gene expression profile-based TNBC subtypes: basal-like 1
and 2 (BL1, BL2), immunomodulatory (IM), mesenchymal
like (M), mesenchymal stem cell-like (MSL) and luminal
androgen receptor expressing (LAR) [4]. The panel of

0 10 20 30 40
0

10

20

30

40

C
el

lT
ite

r-
B

lu
e 

(D
S

S
)

CellTiter-Glo (DSS)

a

0 10 20 30 40
0

10

20

30

40

C
el

lT
ox

 G
re

en
 (

D
S

S
)

CellTiter-Glo (DSS)

b

CompoundsMechanism of Action

Dactolisib

GSK2126458
PI3K/mTOR inhibitor

PF-04691502

Alvocidib

SNS-032Cdk inhibitor

UCN-01

BIIB021
HSP90 inhibitor

Tanespimycin

DaporinadNAMPT inhibitor

DocetaxelTubulin stabilizer

DactinomycinRNA and DNA synthesis inhibitor

OmacetaxineProtein synthesis inhibitor

c

rcor=0.89
R2 =0.89
p= 2.7e-75

AZD8055

rcor=0.67
R2 =0.7
p= 6.1e-34

Fig. 1 A number of viability-inhibiting compounds do not induce
cell death. Scatter plot showing the comparison of average DSS over
the panel of 19 different breast cancer cell lines computed using
two a independent viability measurement assays (CellTiter-Blue and
CellTiter-Glo) and b viability measurement (CellTiter-Glo) and cell
death measurement (CellTox Green) assays. The black dotted line
represents the equal score in the screens and the green solid line
represents the linear regression. Blue symbols mark compounds with
strong viability readout responses but with low to no cytotoxicity.
c The major classes of compounds highlighted in panel B that inhibit
the viability readout of the cells but do not effectively induce cell death
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Fig. 2 (See legend on next page.)
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TNBC cell lines represented the six subtypes (Fig. 2), and
for control purposes, two HER2 receptor positive (SK-BR-
3, BT-474) cell lines, and a non-cancerous triple negative
breast epithelial cell line MCF-10A were added. A select-
ive DSS (sDSS) against the average DSS for each com-
pound was calculated from in-house screening data of a
large set of cell lines originating from different tissue types
(Additional file 4: Table S4).
None of the compounds exhibited selectivity against

all TNBC cell lines screened. Instead, the cell lines ex-
hibited highly diverse responses towards the compound
panel. When comparing the DSRT data to the published
gene expression-based TNBC subgrouping [4], DSRT-
driven clustering was not linked to the transcriptomic
subtyping of the cell lines (Fig. 2, Additional file 5:
Figure S1 & Additional file 6: Figure S2). The cytotoxicity-
based drug-response clustering analysis divided the cell
lines into two groups; the toxicity sensitive and insensitive
groups. Five cell lines; CAL-51, CAL-85-1, MDA-MB-231,
MDA-MB-468 and Hs-578-T stood out from the group as
they showed higher vulnerability (cell death) towards
several types of compounds such as Vinca alkaloids,
mitotic-, CDK-, topoisomerase- and HDAC- inhibitors
along with various discrete sensitive responses towards
other kinase inhibitors and other small molecules (Fig. 2).
These results argue that personalized therapeutic strat-
egies based on functional profiling can be a more effective
way to target TNBCs rather than therapies based on
transcriptomics subtyping.

Non-toxic cell viability responses represent a reversible
cell growth arrest
As a number of compounds caused dramatic changes in
cell viability but failed to kill the cells, we next explored
whether this reflected a reversible or non-reversible re-
sponse. Eight different compounds that showed strong
viability inhibition but were non-toxic against most of
the tested cell lines were selected: dactolisib (targeting
mTORC1 and mTORC2), everolimus (mTORC1), picti-
lisib (PI3Ks), methotrexate (folate metabolism), YM155
(survivin), SNS-032 (CDK2, 7 & 9), daporinad (NAMPT)
and AVN-944 (IMPDH) (Fig. 3a). To explore the mech-
anism of the observed non-toxic cytostasis, CAL-51 was
selected as the model cell line.
Using a drug effect reversibility test in which com-

pounds were removed after 72 h followed by several

days further incubation (Fig. 3b), the static effects of the
8 compounds were all found to be reversible. In some
cases, the inhibitory effect of the drug was overcome
even in the presence of the drug during the 9-day ex-
periment. In the presence of dactolisib, pictilisib, dapori-
nad and AVN-944, the cell growth was arrested or
strongly inhibited; yet the cells began dividing again
when the compounds were washed away (Fig. 3c).
Methotrexate, everolimus, YM155 and SNS-032, on the
other hand, only caused a transient inhibitory effect that
was lost within two to five days, as the cells began to
grow even in the presence of the compounds (Fig. 3c).
Hence, the non-toxic cell viability responses are cyto-
static and reversible, sometimes even in the presence of
the inhibitor.

Broad-acting cytostatic compounds exhibit selective toxic
responses that can be linked to protein expression
signatures
Next, we focused on the compounds that exhibited
broad cytostatic effects on all or most of the cell lines.
Among these agents, highly heterogeneous effects on
cytotoxicity were discovered in the TNBC cell lines
(Fig. 4a). PI3K-AKT-mTOR pathway inhibitors were al-
most exclusively cytostatic across the panel with CAL-
148 being the only cell line showing a cytotoxic re-
sponse. The metabolic inhibitors methotrexate, dapori-
nad and AVN944 were unable to induce cell death in
most of the cell lines in contrast to their strong re-
sponses in viability readouts. CDK-inhibitors and con-
ventional antimitotics induced cytotoxicity in six TNBC
cell lines while the other cell lines were unresponsive.
Proteasome inhibitors induced potent cell viability re-

sponses in nearly all but failed to cause toxicity in four
cell lines. Similarly, the HSP90 inhibitors BIIB021 and
tanespimycin induced death in seven cell lines whereas
the nucleic acid synthesis inhibitor dactinomycin in-
duced death in nine cell lines. To explore whether these
heterogeneous toxic responses could be predicted from
molecular markers, we investigated links between known
recurring genetic alterations in the cell lines and took
advantage of the protein marker expression profiles pub-
lished by Daemen et al. [15] in which 8 out of our 16
TNBC cell lines were included. Selective toxic responses
could not be linked to particular gene mutations
(Fig. 5b). On the other hand, in comparing the Daemen

(See figure on previous page.)
Fig. 2 Drug sensitivity driven clustering is not linked to transcriptomics subtyping of TNBC cell lines. a Table representing the classification of
TNBC cell lines according to gene expression profile according to Lehmann et al. [4]. The cell lines are assigned with different colors to represent
different subtypes. b Heat map based on selective DSS (toxicity, as compared to a control set of 30 cell lines) with compound clustering shown
vertically and cell line clustering horizontally. Only a portion of the compound set is shown. See Additional file 5: Figure S1 for full heat map. The
cell line clustering based on drug vulnerabilities fails to resemble transcriptomics-based classifications (subtypes color coded as per table on
the left)
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protein expression data set with our toxicity response
profiles, cell lines exhibiting cytotoxic responses to tax-
ane antimitotics could be linked to high expression
levels of a set of proteins, including PKCα, FGFR1, c-
Jun, Caveolin-1 and low expression levels of NOTCH3,
RAB25, Bcl-2, STAT3(pY705) and HER2 as compared to
the taxane-insensitive cell lines (Fig. 5d). Similarly, strati-
fied toxic responses to proteasome inhibitors linked to
high levels of PAI1, MPK-1, AKT(pT308), p38(pT180/
Y182) and low levels of NOTCH3, CCND1 and PTEN
(Additional file 7: Figure S3). Thus, the heterogeneous
cytostatic effect of mitotic and proteasome inhibitors may
be linked to differentially expressed protein markers.

mTOR inhibitors antagonize the effects of diverse classes
of drugs
As the cellular responses to mTOR inhibitors were
almost exclusively non-cytotoxic, we tested whether
combining mTOR inhibitors with other compounds
would improve their cytotoxicity. To this end, single
concentrations of mTOR inhibitors everolimus (10 nM)
or dactolisib (100 nM) were combined with the full
oncology compound library and responses of CAL-51,
an mTOR inhibitor-sensitive cell line based on viability
data, were tested (Fig. 6 and Additional file 8: Figure S4,
respectively). Instead of identifying synergistic com-
pounds, the mTOR inhibitors were found to have
unanticipated antagonistic effects on the activity of other
cancer compounds in both viability and toxicity read-
outs, including conventional chemotherapeutics: anti-
metabolites, vinca alkaloids, taxanes, antitumor anti-
biotics and proteasome inhibitors. Daporinad, an NAMPT
inhibitor, appeared to be synergistic in combination with
everolimus, but the combination was not cytotoxic. In
summary, mTOR inhibitors not only fail to kill TNBC
cells but can also antagonize the cytotoxicity of most other
anti-cancer compounds.

Combination studies show selective synergistic cytotoxic
effects not seen in viability measurement
On combining a single concentration of MEK inhibitor
and mTOR inhibitors to our oncology compound collec-
tion, we observed several interesting combination effects

in both viability and cytotoxicity measurements. Hence,
we compiled a number of combinations based on our
screening to be tested in drug concentration combin-
ation matrices. The concentration combination matrices
were set up in which seven different concentrations of
two drugs were combined in an 8 × 8 matrix. Combining
the MEK inhibitor trametinib either with the PARP-
inhibitors iniparib and olaparib, or with the broad-
spectrum tyrosine kinase inhibitor ponatinib showed
synergistic cytotoxic combination responses in DU4475
cells (but not in CAL-148, Additional file 9: Figure S5B).
Combining the mTOR inhibitor dactolisib with trameti-
nib resulted in additive viability inhibition but striking
antagonistic cytotoxicity responses (Fig. 7a); whereas target-
ing mTOR using both a rapamycin analog and an ATP
competitive inhibitor surprisingly resulted in a synergistic
viability inhibition and synthetic lethal cytotoxicity to cell
lines DU4475 and CAL-148 (Additional file 9: Figure S5A).
The cytotoxicity readout allowed us to identify effective
synergistic drug combination concentrations that were not
revealed using the cell viability readouts.
Using viability readouts, higher concentrations of trame-

tinib alone saturated the effect (Fig. 7b). Additional file 10:
Table S5 represents the data for Fig. 7 and Additional file
9: Figure S5. In conclusion, studying drug-induced cyto-
toxicity is a potent way of identifying effective individual-
ized drug combinations using in vitro and ex vivo drug
sensitivity testing.

Discussion
In this study, we systematically explored how compre-
hensive drug responses with different cell health
readouts compared to current subgroupings and previ-
ously described biomarker information of triple-
negative breast cancers. The results led us to several
conclusions. First, the drug response clustering of the
TNBC cell lines based on their differential drug vul-
nerabilities resulted in highly heterogeneous patterns
of drug responses and distinctive grouping compared
to gene expression derived grouping. Second, by
studying cell death rather than cell viability, which has
so far been the standard readout in other large-scale
chemosensitivity profiling studies, we could separate

(See figure on previous page.)
Fig. 3 mTOR inhibitors and mitotic inhibitors cause cytostatic but not cytotoxic effects in CAL-51. a Scatter plot comparing DSS for CAL-51
computed using viability assay (CellTiterGlo) and cell death assay (CellTox Green). Some compounds caused both viability inhibition and
cytotoxicity, but a large number of compounds (represented with blue stars and listed on the right-hand side of the plot) showed high degree of
viability inhibition with little or no induction of cell death. b Schematic illustration of experimental workflow. c Growth curves affected by selected
highlighted drugs in plot (a) showing their effect in viability inhibition is due to arrest in cell cycle rather than induction of cell death. CAL-51 cells
were cultured in 96-well plates with compounds for 72 h at which point the inhibitors were either washed away or replenished (time indicated
with pink arrow). Growth measured as confluency was monitored and calculated using an IncuCyte Zoom live cell microscope for 9 days. Cell
growth was arrested in the presence of methotrexate, dactolisib, daporinad, AVN-944 and pictilisib; and released upon removal of the
compounds. Similarly, everolimus, SNS-032 and YM155 initially arrested cell growth but eventually growth was restored, also in the presence of
the compounds, pointing to a rapidly established adaptive resistance
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Fig. 4 (See legend on next page.)
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static responses from the cytotoxic ones and identify
several drug classes that exhibit broad viability readout
effects but induce only limited or no cell killing re-
sponses. Third, the cytostatic responses seen by many
drugs were reversible, and by studying the cells in
real-time, we detected that some of the static re-
sponses were overcome even in the presence of the
drugs. Fourth, by measuring the cytotoxic responses in
drug combination studies, synergistic cytotoxic re-
sponses and even synthetic lethalities were detected
that were not observed with the cell viability readout.

In our combination studies, we explored the simultan-
eous exposure of compounds because we lacked the
scientific evidence suggesting that one agent should be
added before the other, and without that information,
exploratory testing of many combinations in different
addition orders became unmanageable in size and
cost. However, as a proof of approach, we did perform
combinatorial order of addition testing of dactolisib
and trametinib in DU4475 and MDA-MB-231 to see if
the antagonistic effects of this combination could be
reverted by an appropriate sequential addition of the

(See figure on previous page.)
Fig. 4 Viability inhibition does not correlate with cell death. a Comparison of DSS heat map, cell viability (CellTiter-Glo) vs. cell death (CellTox
Green) assays. Cell death was induced only in specific cell lines. Specific cell death is highlighted for different classes of drugs using colored
boxes. b Examples of selective cytotoxic responses among different cell lines. Each box represents specific effect of different drug classes. mTOR
and AKT inhibitors specifically induced cell death only in CAL-148
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Fig. 5 Potential predictive biomarkers for cytotoxic effect of mitotic drugs. a Evaluation of recurrent genetic alteration in the studied 16 TNBC cell
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Gautam et al. Molecular Cancer  (2016) 15:34 Page 9 of 16



compound. In these experiments, the combination
remained antagonistic in both cell lines regardless of
whether simultaneous or sequential addition was ap-
plied (Additional file 11: Figure S8).
Similar to what others have shown [15, 22] we de-

tected a great heterogeneity in drug responses among
the TNBC cell lines, re-emphasizing the heterogeneous
nature of this breast cancer subtype. As has also been
shown by others as well as by us in other cell systems
[19], the overall drug response profiles are not easily
linked to genetic or transcriptional profiles, arguing that
functional drug response profiling is currently the most
powerful way to identify individualized vulnerabilities

that can be used to target the disease. Alternatively, a
more refined analysis of TNBC transcriptomics may be
needed for effective linking to broad drug sensitivities.
In vitro anti-cancer chemosensitivity testing has trad-

itionally been focused on growth inhibition measurements
with the assumption that reducing or stopping cancer cell
growth will translate into an anti-cancer activity of the
agent in vivo. We hypothesized that by also following the
drug-induced cytotoxicity, one can discover a deeper and
different range of drug responses, which may also lead to
more translationally-predictive results. Overall, our results
with the cytotoxicity measurement strongly argue that
high throughput chemosensitivity profiling of cancer cells

a c

b

Fig. 6 An mTOR inhibitor antagonizes the effect of diverse classes of drugs in CAL-51. Scatter plot of DSS scored for combinatory effect of
different compounds along with everolimus (10 nM) (Y-axis) on CAL-51 cell line compared to the single agent effects (X-axis). Plot a represents
the DSS computed using cell death assay and plot b represents cell viability assay. Data points with DSS difference more than 10 are highlighted
with different colors representing different classes of drugs as listed in the color legend. c Compounds whose effect is inhibited when combined
with everolimus, as highlighted in panels (a) and (b)
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Fig. 7 (See legend on next page.)
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need to go beyond the current standard viability measure-
ment. There are various types of viability measurement re-
agents commonly employed in multiwell-based assays but
most of them monitor the metabolic activity of the cells,
measuring the amount of energy molecules like ATP,
NADH, NADPH or the redox activity in the cells. Here,
we show that using two different commonly used viability
readouts, one measuring cellular ATP and one measuring
reducing potential of the cells give highly correlated re-
sults. In other chemosensitivity profiling studies, it has
often been implied that the loss in apparent cell viability
should also strongly correlate to cytotoxicity. However,
our data clearly show that this is often not the case. Only
some of the compounds that appeared effective when
assessed using cell viability readouts, were able to potently
induce cell death. The easily adaptable multiplexed cell
viability and cell death readout we applied allowed us to
identify several drugs and drug classes that inhibited via-
bility across the 19 breast cancer cell lines but failed to in-
duce broad cell death responses. These included PI3K/
mTOR inhibitors, CDK inhibitors, HSP90 inhibitors, anti-
metabolites and antimitotic drugs. Importantly, we also
showed that these cytostatic responses were fully revers-
ible. Cells started growing as soon as inhibitory com-
pounds were removed. Furthermore, in some cases (such
as with rapamycin analogs and some CDK inhibitors), cell
growth inhibition was bypassed over time even in the
presence of the compounds, presumably an effect of cellu-
lar reprogramming in response to the drug as has been
described in other model systems [23, 24]. Among the
compounds that caused a very preferential cytostatic ef-
fect, there was still heterogeneity in cytotoxic responses
within the cell line panel. In most cases, there were
subsets of the cell lines that exhibited strong cytotoxic
responses, such as CAL-85-1, MDA-MB-231, CAL-51,
Hs-578-T, to antimitotic taxanes and we hypothesize that
these selective cytotoxic responding cell lines represent
the TNBC subgroups that are more likely to respond to
each specific type of therapy.
PI3K/AKT/mTOR signals have gained attention as

potential therapeutic targets for several cancer types
[25–27]. Our results suggest that PI3K/mTOR inhibi-
tors are able to induce viability inhibition in most of
the cells lines, but fail to induce selective cell death.
Given that mTOR inhibition is expected to slow down

or halt cellular metabolism and thereby cell growth, our
finding is not surprising per se, but it emphasizes that
using a cell viability/metabolic readout most likely is
not relevant when assessing the effects of PI3K, AKT
and mTOR inhibitors in vitro or ex vivo. Judging from
the cell death readout, all the cell lines except CAL-148
were unresponsive or only had weak responses towards
the inhibitors that target the PI3K/AKT/mTOR pathway.
Furthermore, mTOR inhibitors, presumably through their
antimetabolic activity, antagonize the activity of diverse
classes of compounds, including many conventional anti-
mitotic and cytotoxic drugs. Numerous clinical trials for
PI3K and mTOR inhibitors along with conventional
chemotherapy are ongoing, but our results argue that
combining mTOR inhibitors with traditional chemother-
apy such as doxorubicin, etoposide, gemcitabine should
be considered with caution as combinations might turn
out to be counterproductive. However, as our study was
carried out using cell cultures, it may not fully reflect the
responses in the considerably more complex biological set-
tings when treating a cancer patient.
We found that mitotic and proteasome inhibitors had

a heterogeneous cytotoxic effect on TNBC cell lines.
This led us to try to find biomarkers that could be linked
to the cytotoxic effects of the mitotic and proteasome
inhibitors. We compared the basal protein and phospho-
protein levels in cell lines that were either sensitive or
insensitive to the mitotic and proteasome inhibitors.
Despite of the small overlap between our cell line collec-
tion and Daemen et al. [15] study, we were able to iden-
tify some candidates that could potentially be further
explored for predictive biomarkers.
The mitotic inhibitor-responsive cell lines expressed a

higher level of the survival regulator PKCα [28]; of
FGFR1 that has been linked to TNBC cell growth [25,
26]; of the cell cycle and apoptosis regulator c-Jun [27];
and of caveolin-1, low level of which has been linked to
poor clinical outcome in TNBC [28]. The mitotic
inhibitor-sensitive cell lines also expressed low levels of
NOTCH3, which has been linked to induction of apop-
tosis in HER2-negative breast cancer cell lines [29, 30];
of the small GTPase protein Rab25, which has been
linked to aggressiveness of epithelial cancers [31]; of Bcl-
2 and Stat3 high expression of which have been linked
to the development of chemoresistance [32–34] and of

(See figure on previous page.)
Fig. 7 Assessing both cell viability and cell death is necessary to evaluate drug combination effect. Seven different concentrations of two
different drugs were combined in 8 × 8 matrix format, in which blue matrix shows % inhibition in viability whereas red matrix shows % cell death
(toxicity), and adjacent 7 × 7 matrix represents the combined effects of the drugs (Bliss synergy score), in which pink indicates synergy and green
antagonism. a In MDA-MB-231 and DU4475 combination of dactolisib and trametinib showed additive effect in enhancing viability inactivation
whereas dactolisib antagonized the cytotoxicity of trametinib in both cell lines. b In DU4475 combination of trametinib with iniparib and
ponatinib enhanced both viability inactivation and cell death effect but it is more pronounced in cytotoxicity readout than in the
viability readout
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the well-known driver of chemoresistance, HER2 [35,
36].
Proteasome inhibitors have been found efficient

against hematologic malignancies but less successful
against solid tumors [37]. We discovered that the prote-
asome inhibitor-sensitive cell lines exhibited high level
of PAI1, a well established prognostic biomarker for the
selection of chemotherapy [38]; MKP-1 [39]; AKT and
p38. Low levels of NOTCH3; the cell cycle regulator
Cyclin D1 that has been linked to chemoresistance in
multiple cancers [40, 41] and PTEN were observed in
proteasome inhibitor-sensitive cell lines. Proteasome in-
hibition has been shown to activate phosphorylation of
p38, MKP-1, and AKT that further activate resistance to
proteasome inhibitors [42, 43]. Similarly, suppression of
PTEN has been linked to chemoresistance [44]. Our
findings suggest that some subgroups TNBC might be
responsive to treatment with proteasome inhibitors.
In vitro/ex vivo drug sensitivity testing is a re-emerging

area of research, thanks to improved possibilities to follow
phenotypic drug responses and the possibility to link the
responses to deep molecular profiling. However, there are
limitations to such high throughput testing. Due to
experimental logistics and scale it is still challenging to
comprehensively address the complex pharmacology and
metabolism of the compounds in vivo, extended time
dependent effects of the drugs, as well as order of addition
combination testing. Therefore, false negative results are al-
ways possible in these types of screening approaches. For
example, some of the compounds in our collection repre-
sented prodrugs that are metabolized into active substances
in the liver in vivo and are largely inactive in vitro. This
group of compounds included most alkylating agents but
these were still included in our collection because they are
approved for human use. We also also attempted to use the
active metabolites of several of these compounds in our
screens but they were too unstable to be suitable for screen-
ing use. On the other hand, some other prodrugs, such as
nucleoside analogs, are metabolized in the target cells and
were therefore highly relevant to include in the in vitro test-
ing. Furthermore, compounds with diverse mechanisms of
action are likely to reach their cellular effects at different
time points, a challenge when performing high throughput
testing of broad arrays of agents where a single endpoint
measurement becomes the most feasible assay readout. In
our testing, we chose the 72 h endpoint for the experi-
ments, as we found it sufficient to observe the activity of
the majority of the compounds in our collection. Extending
the incubation to up to 168 h did not significantly affect the
overall results (Additional file 12: Figure S6), and hence the
shorter time point was preferred because of assay logistics
and robustness.
Here we studied cell lines, but novel technologies have

emerged in recent years that may allow for systematically

taking this approach on primary patient cells ex vivo,
ultimately making it more directly translational. One ex-
ample is the culture of 3-dimensional organoids closely re-
capitulating disease conditions [45]. Organoid culture
methods have already been established for human mam-
mary tissue and primary breast cancer cells [46, 47]. In an
alternative approach, primary cells can be cultured on
fibroblast feeder cells in the presence of a Rho kinase in-
hibitor resulting in immortalized, conditionally repro-
grammed progenitor-like cells. This approach allows for
2- or 3-dimensional culture of patient-derived cells that
maintain the heterogeneity of the initial tissue environ-
ment [48, 49]. Finally, the prospect of generating these
types of cultures from either circulating tumor cells or bi-
opsies opens the possibility to explore ex vivo drug re-
sponse testing without major surgical intervention [50,
51], although the success rate and time to establish cul-
tures for comprehensive testing are still bottlenecks.

Conclusions
In summary, our data strongly argue for including add-
itional cell health parameters in drug sensitivity testing
readouts for cell lines and primary cancer cells. By adding
a simple cell death detection that is easily multiplexed
with standard cell viability readouts one can detect a new
level of heterogeneity of cellular responses. We expect
that the combination of cell viability and cell death read-
outs will provide a more predictive measurement than cell
viability alone. Our data provide further insights into the
observations, where several targeted investigational drug
classes, which have proven difficult to translate into effect-
ive and approved therapies, often show reversible cyto-
static and antimetabolic effects rather than cancer cell-
specific cytotoxicity in the in vitro model systems.

Methods
Cell lines
Human breast cancer cell lines used in this study were
BT-474, BT-549, CAL-120, CAL-148, CAL-51, CAL-85-1,
DU-4475, HCC-1143, HCC-1599, HCC-1937, HDQ-P1,
Hs-578-T, MDA-MB-231, MDA-MD-436, MDA-MB-453,
MDA-MB-468, MFM-223, MCF10A and SK-BR-3. The
cell lines were obtained from DSMZ or ATCC collec-
tions and maintained at 37 °C with 5 % CO2 in a
humidified incubator, according to provider’s instruc-
tions (Additional file 1: Table S1). The cell lines were
grown in larger volume to make assay ready cells,
tested for mycoplasma using PCR based test kit and
frozen in several ampules. Each experiment was per-
formed from unique assay ready cells (same passage).
RPMI, DMEM and McCoy media were purchased
from Lonza, Life Technologies and SigmaAldrich
respectively.
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Drug Sensitivity and Resistance Testing
The DSRT platform used by Pemovska et al. [19] for
screening leukemia cells was adapted for breast cancer
cell lines. The chemicals used in this study are listed in
Additional file 2: Table S2. The compounds were plated
in 5 different concentrations in 10-fold dilutions cover-
ing a 10,000-fold concentration range centered around a
compound-specific relevant cellular activity concentra-
tion (e.g. 1–10,000 nM for a compound with an ontarget
cellular half-maximal effect of about 100 nM) on black
clear bottom 384-well plates (Corning #3712) using an
Echo 550 Liquid Handler (Labcyte). As negative and
positive controls 0.1 % dimethyl sulfoxide (DMSO) and
100 μM benzethonium chloride were used, respectively.
The pre-drugged plates were stored in pressurized Storage
Pods (Roylan Developments Ltd.) filled with inert nitrogen
gas. All subsequent liquid handling was performed using a
MultiDrop Combi dispenser (Thermo Scientific). The pre-
dispensed chemicals were dissolved in 5 μl of culture
medium per well, with or without CellTox Green (1:2,000
final volume) depending on the experiment, for 1 h on an
orbital shaker, and 20 μl cell suspension per well was
seeded in the drugged plates, resulting in the final cell
densities as listed in Additional file 1: Table S1. After 72 h
incubation, cell viability and cytotoxicity were measured.
When multiplexed, cell death was first assessed by meas-
uring fluorescence (485/520 nm excitation/emission
filters) signal from CellTox Green. Twenty-five μl of
CellTiter-Glo (Promega) reagent was subsequently added
per well, and luminescence was recorded using a PheraS-
tar plate reader (BMG Labtech) after 10 min incubation at
room temperature. When CellTiter-Blue was used as via-
bility measurement, 2.5 μl of the reagent was added, incu-
bated in 37 °C for 2 h and fluorescence (560/590 nm
excitation/emission filters) signal was recorded. All the
percent inhibition, EC50 and DSS values from each viabil-
ity and cytotoxicity measurements are listed in Additional
file 13: Table S6. Cell confluency was monitored and cal-
culated using IncuCyte live cell microscopes (Essen
Bioscience).

Drug effect reversibility test
Cells were treated with compounds at concentrations 10X
their growth inhibition IC50 for 72 h in duplicate, after
which the compounds were washed away from one set,
and replenished on the other set. The cells were cultured
for 6 more days. Confluence of cells was monitored and
recorded using an IncuCyte live cell microscope.

Data analysis
The raw fluorescence intensity/luminescence data was an-
alyzed using the Dotmatics Studies software. Each plate
was first normalized against the positive and negative con-
trols and the Z’-factors were then used to control the

quality of each plate. Data was plotted as percent inhib-
ition of viability and/or percent toxicity versus drug con-
centration yielding dose response curves. The values for
EC50, slope and maximum asymptote were calculated for
each drug (raw data are listed in Additional file 13: Table
S6). The dose response data was further used to calculate
the quantitative drug sensitivity scores (DSS) for each
compound, as described previously [19, 20]. For distin-
guishing TNBC-selective responses from the broadly toxic
effects, we calculated the differential score (selective DSS)
by using the average DSS of a panel of 150 cell lines
(consisting of seven different tissue types) as control for
viability readouts and the average of DSS of 30 cell lines
(three tissue types) for cytotoxicity readouts (Additional
file 4: Table S4).

Scoring and clustering of DSRT data
Unsupervised hierarchical clustering of the drug sensi-
tivity profiles was performed with the Cluster 3.0 appli-
cation (http://bonsai.hgc.jp/~mdehoon/software/cluster/
) using complete-linkage clustering and Spearman rank
and Euclidean distance measures of the drug and cell
line profiles, respectively. Heat maps and dendrograms
were visualized using Java TreeView (http://jtreeview.-
sourceforge.net/).

Synergy assessment
The Bliss independence model [52, 53] was used to
define the pairwise drug combination effects in concen-
tration combination matrices. The Bliss score was nor-
malized in a way that values less than zero represent
antagonism and values larger than zero represent syner-
gism. The combination matrix plots were created with
the Bliss score for each interaction of the two drugs in
different concentrations. To validate our finding using
another synergy model, we implemented recently devel-
oped Zero Interaction Potency (ZIP) model to score the
drug combination effects (so-called delta score), which
combines the advantages of both the Loewe and Bliss
models in this type of combination testing setups [54].
Delta score analysis confirmed the findings from the
Bliss score analysis (Additional file 14: Figure S7).

Bioinformatic analyses
The processed values from Reverse Phase Protein Array
(RPPA) intensity data for 70 (phospho) proteins with
fully validated antibodies [15] were assessed using the t-
test to explore whether there was a significant difference
between the groups of responders and non-responders.
The groups of cell lines were defined based on the
average cytotoxic drug response (DSS) to mitotic or
proteasome inhibitors. Proteins with significant differ-
ence between groups (p ≤ 0.05) are shown in Fig. 6b
and Additional file 7: Figure S3. The mutation data
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for the cell lines used in this study were obtained
from the COSMIC Cell Line Project database (http://
cancer.sanger.ac.uk/cell_lines).

Additional files

Additional file 1: Table S1. Information on cell lines used in the study.
(XLSX 55 kb)

Additional file 2: Table S2. List of compounds screened against cell
lines in the study. (XLSX 47 kb)

Additional file 3: Table S3. Average DSS calculated for the compounds
screened using different viability and toxicity measure. (XLSX 53 kb)
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