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Abstract

Background: Increasing evidence suggests long non-coding RNAs (lncRNAs) are frequently aberrantly expressed in
cancers, however, few related lncRNA signatures have been established for prediction of cancer prognosis. We
aimed at developing alncRNA signature to improve prognosis prediction of gastric cancer (GC).

Methods: Using a lncRNA-mining approach, we performed lncRNA expression profiling in large GC cohorts from Gene
Expression Ominus (GEO), including GSE62254 data set (N = 300) and GSE15459 data set (N = 192). We established a set
of 24-lncRNAs that were significantly associated with the disease free survival (DFS) in the test series.

Results: Based on this 24-lncRNA signature, the test series patients could be classified into high-risk or low-risk
subgroup with significantly different DFS (HR = 1.19, 95 % CI = 1.13–1.25, P < 0.0001). The prognostic value of
this 24-lncRNA signature was confirmed in the internal validation series and another external validation series,
respectively. Further analysis revealed that the prognostic value of this signature was independent of lymph
node ratio (LNR) and postoperative chemotherapy. Gene set enrichment analysis (GSEA) indicated that high
risk score group was associated with several cancer recurrence and metastasis associated pathways.

Conclusions: The identification of the prognostic lncRNAs indicates the potential roles of lncRNAs in GC
biogenesis. Our results may provide an efficient classification tool for clinical prognosis evaluation of GC.
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Background
Being the fourth most common malignancy, GC has been
the second leading cause of cancer deaths worldwide [1].
An estimated 951,600 GC cases occurred and 723,100
patients died from GC in 2012 [1, 2]. Adequate surgical
resection is the only curative therapeutic option for GC
[3, 4]. The current strategy to GC management, which has
significantly improved overall survival (OS) [4], includes
endoscopic detection followed by gastrectomy and

chemotherapy or chemo-radiotherapy in neoadjuvant or
adjuvant regiments [5]. However, treatment outcome still
remains undesirable. The current Union International
Committee on Cancer (UICC) or the American Joint
Committee on Cancer (AJCC) TNM stage system has
shown valuable but insufficient prediction for prognosis
and estimation for subsets of GC patients [6–8]. An in-
creasing amount of evidence demonstrates that the dis-
covery and application of molecular biomarkers will
promote the prognostic evaluation and identification of
potential high-risky GC patients [5, 9, 10].
Currently, with the advancements in transcriptome

profiling, the roles of dysregulated functional long non-
coding RNAs (lncRNAs) in human cancers have re-
ceived considerable attention [11–13]. LncRNAs are
mRNA-like transcripts ranging in length from 200 nu-
cleotides (nt) to ~ 100 kilobases (kb) that lack significant

* Correspondence: jiehong97@shsmu.edu.cn; wangzh1972@126.com;
jingyuanfang@sjtu.edu.cn; haoyanchen@shsmu.edu.cn
†Equal contributors
1Division of Gastroenterology and Hepatology, Key Laboratory of
Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory
for Oncogenes and Related Genes, Renji Hospital, School of Medicine,
Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145
Middle Shandong Road, Shanghai 200001, China
2Department of gastrointestinal surgery, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhu et al. Molecular Cancer  (2016) 15:60 
DOI 10.1186/s12943-016-0544-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-016-0544-0&domain=pdf
mailto:jiehong97@shsmu.edu.cn
mailto:wangzh1972@126.com
mailto:jingyuanfang@sjtu.edu.cn
mailto:haoyanchen@shsmu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


protein-coding abilities [14, 15]. Increasing evidence
suggests that the aberrant expressions of lncRNAs have
been associated with human cancers [16–18], and some
of them have been implicated in diagnosis and prognos-
tication [19, 20]. Although several prognostic biomarkers
for GC have been undergoing or tested in clinical trials
such as Fibroblast Growth Factor Receptor (FGFR) [21],
Human Epidermal Growth Factor Receptor 2 (HER2)
[22], Epidermal Growth Factor Receptor (EGFR) [23],
Hepatocyte Growth Factor Receptor (HGFR) [24], etc,
many more potential and valuable molecular biomarkers
are urgent to be discovered and identified to improve
the clinical outcome of patients with GC. Increasing
studies have shown that lncRNAs could be one of the
best candidates as potential prognostic biomarkers in
GC [25–27]. Therefore, searching a lncRNA signature
might be concrete predictive and prognostic value in the
management of GC.
However, lncRNA profiles in most human cancers

remain largely unknown, mainly due to the lack of such
arrays. Previous studies have demonstrated that lncRNA
profiling could be achieved by mining previously pub-
lished gene expression microarray data because a large
amount of lncRNA-specific probes were fortuitously rep-
resented on the commonly used microarray platforms
[28, 29]. In the present study, we applied this method to
conduct gene expressions of lncRNAs profiling on a
cohort of 300 patients from GSE62254 as well as an-
other independent data set from GEO database. By
using the sample-splitting method, random survival
forests-variable hunting (RSF-VH) algorithm and Cox
regression analysis, we identified a prognostic, 24-lncRNA
signature from the GSE62254 test series patients, and vali-
dated it in the GSE62254 validation series and another
independent GEO cohort (GSE15459).

Methods
GC datasets preparation
Microarray data from GSE62254 and GSE15459 data
sets were directly downloaded from Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). These data-
sets corresponded to all available public datasets fulfilling
the following criteria: available gene expression data
obtained using the same chip platform (Affymetrix
Human Genome U133 Plus 2.0 chips) with raw data
CEL files, and patient outcome data available. After
initial quality check, two panels of GC gene expres-
sion data sets were included in our study: GSE62254
and GSE15459. The GC samples in GSE62254 were
randomly split into a test series (n = 180) and an in-
ternal validation series (n = 120). Additionally, the GC
samples in GSE15459 were analyzed as an external
validation series.

Microarray data processing and lncRNA profile mining
The raw CEL files were downloaded from GEO data-
base and background adjusted using Robust Multichip
Average (RMA) [30] which has been shown to be a
solid measure tool for lncRNA profiling data [31]. The
approach of lncRNA profile mining mainly referred to
Xiaoqin Zhang et al [32]. Briefly, we mapped the Affyme-
trix HG-U133 Plus 2.0 probe set IDs to the NetAffx
Annotation Files. Based on the Refseq transcript ID and/
or Ensembl gene ID in NetAffx annotations, we only
retained non-coding protein genes and further filtered
them by eliminating pseudogenes including microRNAs,
rRNAs and other short RNAs such as snoRNAs, snRNAs
and tRNAs. Finally, 2448 annotated lncRNA transcripts
with corresponding Affymetrix probe IDs were generated.

GSEA
GSEA was performed by the JAVA program (http://soft-
ware.broadinstitute.org/gsea/index.jsp) using MSigDB
C2 CP: Canonical pathways gene set collection. The
GSEA, visualized in Cytoscape (version 2.8.0) was used
to determine whether the members of a given gene set
were generally associated with risk score, and was there-
fore conducted on all mRNA genes on the HG-U133
Plus 2.0 ranked by enrichment score from most positive
and most negative. 1000 random sample permutations
were carried out, and the significance threshold set at
FDR < 0.01. If a gene set had a positive enrichment
score, the majority of its members had higher expres-
sion accompanied with higher risk score, and the set
was termed “enriched”.

Bioinformatics analysis
All statistical analyses were conducted using R software
[33] and Bioconductor [34]. The association between the
lncRNA expression and patient’s DFS or OS was assessed
by univariable Cox regression analysis along with a permu-
tation test using BRB-Array Tools [35]. The permutation
p-values for significant genes were computed based on
10,000 random permutations and genes were considered
statistically significant if their permutation p values were
less than 0.01. And genes that passed the filter criteria
were considered for further analysis by applying the
random survival forest-variable hunting (RSF-VH) algo-
rithm [36]. Among the parameters involving in this
algorithm, the number of nsplit was set as nsplit = 10
following Ishwaran and colleagues [37] in the variable
selection function within the Random Survival Forest
package during the selection. To construct a predictive
model, the candidate genes were fitted in a univariable
Cox regression model in the test series as previously
applied [38]. A risk score formula was then established
by including each of these selected genes, weighted by
their estimated regression coefficients in the univariable
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Cox regression analysis [38]. With this risk score for-
mula, patients in each set were classified into high-risk
or low-risk group by using the corresponding median
risk score as the cutoff point. Survival differences be-
tween the high-risk and low-risk groups in each set
were assessed by the Kaplan-Meier estimate, and com-
pared using the log-rank test. To test whether the risk
score was independent of LNR and postoperative
chemotherapy, multivariable Cox regression and data
stratification analysis were performed. We performed
ROC analysis to compare the sensitivity and specificity
of the survival prediction based on the lncRNA risk score,
AJCC stage, LNR and postoperative chemotherapy. To
generate ROC curves, patients were classified as surviving
either longer or shorter than the median DFS, excluding
patients who were alive for durations less than the median
DFS at last follow-up [39]. In the log-rank test, Cox re-
gression analysis and ROC analysis, the significance was
defined as P values being less than 0.05.

Results
GC data sets preparation
GC data sets and corresponding clinical data were down-
loaded from the publicly available GEO database. The
following two cohorts of GC gene expression data were
included in this study: GSE62254 [5] and GSE15459 [40].
After removal of the samples without survival status, a
total of 492 GC patients analyzed in the present study (see
Additional file 1). These included 300 GC patients from
GSE62254 (180 patients from the test series and 120
patients from the validation series). And 192 GC patients
from GSE15459 were included after 8 patients were
removed due to absence of clinical outcome information.

Identification of prognostic lncRNA genes from the test
series
The 300 GC samples were randomly assigned to a test
series (n = 180) or a validation series (120). The test
series was used for the detection of prognostic lncRNA
genes. By subjecting the lncRNA expression data of the
test series to univariable Cox regression proportional
hazards regression analysis using Biometric Research
Branch-Array (BRB-Array) Tools, we identified a set of
63 genes whose parameter P-value were less than 0.01.
Those 63 genes were further analyzed by random sur-
vival forest-variable hunting (RSF-VH) algorithm [36].
This algorithm is a high-dimensional order statistic
measuring the predictiveness of a variable in a survival
tree that exploits maximal subtrees for effective variable
selection under such scenarios [36]. With this method,
24 genes were screened out as the predictors (genes).
Table 1 showed a list of genes with their obtained spe-
cific values including permutation P values, hazard ratios
and coefficients which of these were derived from the

univariable Cox proportional hazards regression analysis.
Moreover, the variable importance values were also
figured out following the variable selection function
within the Random Survival Forest package. Variable im-
portance measures the increase (or decrease) in the pre-
diction error for the random forests model when a
variable is randomly “noise up”. That is if the prediction
error of the model became worse when the effect of a
variable in the model on the prediction was intentionally
destroyed, this means that the variable is important in
the model [41, 42]. Among these genes, positive coef-
ficients indicated that the higher expression levels of
14 genes (AF035291, AI028608, AK026189, H04858,
BC037827, BC038210, AI916498, AA463827, AA041523,
BE621082, AK056852, AW206234, AL703532, AI095542)
were associated with shorter survival. The negative coeffi-
cients for the remaining ten genes (AI080288, BC021187,
BF238392, BC005107, BC039674, AI056187, T79746,
H11436, BF511694, BC035722) indicated that their higher
levels of expression were associated with longer survival.

The 24-lncRNA signature and the patients’ survival in the
test series
A risk-score formula was created based on the expres-
sion of these 24 lncRNAs for DFS prediction, as fol-
lows: Risk score = (2.11846*expression level of AF035291)
+ (1.92247*expression level of AI028608) + (1.53266*ex
pression level of AK026189) + (1.3926* expression level of
H04858) + (1.27718* expression level of BC037827)
+ (1.20171* expression level of BC038210) + (1.04591*
expression level of AI916498) + (1.0294* expression level
of AA463827) + (0.92436* expression level of AA041523)
+ (0.81047* expression level of BE621082) + (0.65369* ex-
pression level of AK056852) + (0.54056* expression level
of AW206234) + (0.2811* expression level of AL703532)
+ (0.24825* expression level of AI095542) + (-1.86125*
expression level of AI080288) + (-2.24862* expression level
of BC021187) + (-2.61423* expression level of BF238392)
+ (-2.65478* expression level of BC005107) + (-2.69258*
expression level of BC039674) + (-2.79863* expression level
of AI056187) + (-2.85076* expression level of T79746)
+ (-2.89127* expression level of H11436) + (-3.19733* ex-
pression level of BF511694) + (-3.40924* expression level of
BC035722). We then calculated the 24-lncRNA signature
risk score for each patient in the test series, and ranked
them according to their risk scores. As such, patients were
divided into a high-risk group (n = 90) or a low-risk group
(n = 90) using the median risk score of the test series as the
cutoff point. Patients in the high-risk group had signifi-
cantly shorter median DFS than those in the low-risk
group (log-rank test P < 0.0001) (Fig. 1a). The association
of the 24-lncRNA risk score with DFS was also significant
when it was evaluated as a continuous variable in the
multivariable Cox regression model (Fig. 2a).
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Validation of the 24-lncRNA signature for survival prediction
in the validation series and the entire GSE62254 data set
To confirm our findings, we validated our 24-lncRNA
signature in the internal validation series. By using the
same risk formula, we classified patients into high-risk
(n = 60) or low-risk group (n = 60) using the median
score of the internal validation series as the cutoff point.
In the consistence with the findings described above, pa-
tients in the high-risk group had significantly shorter
median DFS than those in the low-risk group (log-rank
test P = 0.0126) (Fig. 1b). Risk score-based classification
of the entire GSE62254 cohort (i.e. combined test and
validation series) also yielded similar results (log-rank

test P < 0.0001) (Fig. 1c). In the multivariable Cox re-
gression model that the 24-lncRNA risk score was evalu-
ated as a continuous variable, similar correlation could
be observed (Fig. 2b-c).
The distribution of the lncRNA risk score, the sur-

vival status of the GC patients and the lncRNA ex-
pression signature were also obtained. As shown in
the Fig. 3, in the GSE62254 test series patients, we
found that patients with high-risk scores tended to
express high level of risky lncRNAs (AF035291, AI028608,
AK026189,H04858,BC037827, BC038210, AI916498,
AA463827, AA041523, BE621082, AK056852, AW206234,
AL703532, AI095542) in their tumors, whereas patients

Table 1 LncRNAs significantly associated with the disease free survival in the test series patients (N = 180)

Probe Gene symbol Permutation
P valuea,b

Hazard ratioa Coefficienta VI Associated diseases Description

233512_at AF035291 0.0017 8.325 2.11846 0.012 NR hypothetical LOC100287216

1568854_at AI028608 0.0084 6.839 1.92247 −0.002 NR non-protein coding RNA 240

229280_s_at AK026189 6.00E-04 4.633 1.53266 0.006 Melanoma and basal
cell carcinoma

promotes metastasis and recurrence of
melanoma

1559412_at H04858 8.00E-04 4.030 1.3926 0.002 Acute megakaryoblastic
leukemia

Maintenance of leukemic growth

1559965_at BC037827 0.0018 3.587 1.27718 0.053 NR hypothetical LOC100192378

1557338_x_at BC038210 0.0108 3.326 1.20171 0.017 NR NR

230589_at AI916498 0.0034 2.844 1.04591 −0.006 Gastric cancer Sensitivity of iodine-125 particle irradiation
and regulation of NF-KB signaling pathway

239466_at AA463827 0.0013 2.799 1.0294 0.026 NR hypothetical LOC344595

230251_at AA041523 0.0014 2.521 0.92436 0.038 Non-small cell lung
cancer

Associated with loss function of LKB1
gene

225029_at BE621082 0.0016 2.249 0.81047 0.007 Systemic lupus
erythematosus

A novel susceptibility locus on Xp11.21

1564139_at AK056852 0.0016 1.923 0.65369 0.004 NR hypothetical LOC144571

229014_at AW206234 0.0021 1.718 0.54056 0.002 NR hypothetical LOC441094

1558828_s_at AL703532 0.0032 1.325 0.2811 0.005 Heart failure associated
diseases

Regulation of cardiac cell differentiation
and homeostasis

235759_at AI095542 0.0034 1.282 0.24825 −0.004 NR NR

213972_at AI080288 0.0036 0.155 −1.86125 −0.007 NR NR

1554880_at BC021187 0.0024 0.106 −2.24862 −0.002 Gastric cancer Protective roles for gastric cancer

235824_at BF238392 0.0019 0.073 −2.61423 0.012 NR NR

232191_at BC005107 0.0076 0.070 −2.65478 0.002 NR chromosome 21 open reading
frame 105

1563296_at BC039674 0.0022 0.068 −2.69258 0.000 NR NR

239617_at AI056187 9.00E-04 0.061 −2.79863 −0.001 Gastric cancer spans the promoter and untranslated
regions\of the ghrelin gene

243975_at T79746 0.0031 0.058 −2.85076 0.003 NR NR

1558666_at H11436 3.00E-04 0.055 −2.89127 −0.007 NR NR

237471_at BF511694 0.0034 0.041 −3.19733 0.003 NR hypothetical LOC154822

1562683_a_at BC035722 0.0023 0.033 −3.40924 0.001 NR hypothetical LOC285547

Abbreviations: VI Variable Importance, NR Not Reported
aDerived from the univariable Cox proportional hazards regression analysis in the 180 test series patients
bObtained from permutation test repeated 10,000 times
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with low-risk scores tended to express high level of
protective lncRNAs (AI080288, BC021187, BF238392,
BC005107, BC039674, AI056187, T79746, H11436,
BF511694, BC035722).

Further validation of the 24-lncRNA signature in another
independent data set
We further validated our 24-lncRNA signature in an-
other independent GC data set obtained from GEO,
GSE15459. The clinical characteristics of this cohort
were also listed (see Additional file 1). Although the
patient outcome was represented with OS, this data
set confirmed the ability of our model in predicting
survival. As shown in Fig. 1d, the 24-lncRNA model
could effectively predict the OS in patients from
GSE15459 (log-rank test P = 0.0084). In the multivari-
able Cox regression model, the lncRNA risk score
was significantly associated with OS as a continuous
variable in the GSE15459 cohort (Fig. 2d).

Prognostic value of the 24-lncRNA signature is independent
of LNR
LNR is the ratio of the numbers of metastatic lymph
modes to those of the dissected lymph nodes. Increasing
evidence indicated that LNR is a novel and simple
marker which can easily stratify the prognoses of
advanced GC [43–45]. And several studies have demon-
strated that LNR = 16.7 % was the optimal cutoff level as
an effective prognostic indictor in advanced GC [46, 47].
Fortunately, LNR could be calculated out in GSE62254
data set for 300 patients. Thus, we tested whether the
prognostic value of the 24-lncRNA signature was inde-
pendent of LNR. For this, we first conducted multivari-
able Cox regression analysis and stratification analysis.
In the multivariable Cox regression analysis on these 300
patients that contained 24-lncRNA risk score, LNR, age
and gender as covariates, we found that the 24-lncRNA
risk score (HR = 1.17, 95 % CI = 1.12–1.23, P <0.0001) and
LNR (HR = 12.63, 95 % CI = 4.90–32.60, P < 0.0001) were
both independent prognostic factors (Table 2). Data

a

c

b

d

Fig. 1 Kaplan-Meier estimates of the disease free survival (DFS) or overall survival (OS) of GEO patients using the 24-lncRNA signature. The
Kaplan-Meier plots were used to visualize the DFS probabilities for the low-risk versus high-risk group of patients based on the median
risk score from corresponding GEO datasets patents. a Kaplan-Meier curves for GSE62254 test series patients (N = 180); (b) Kaplan-Meier
curves for GSE62254 validation series patients (N = 120); (c) Kaplan-Meier curves for the entire GSE62254 series patients (combined test
and validation series patients, N = 300). d Kaplan-Meier curves for GSE15459 patients (N = 192). The tick marks on the Kaplan-Meier curves
represent the censored subjects. The differences between the two curves were determined by the two-side log-rank test
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stratification analysis was then performed which
stratified these patients into LNR ≥ 16.7 % subgroup
and LNR < 16.7 % subgroup. The stratification ana-
lysis showed that the 24-lnsRNA signature could
identify patients with different prognoses despite of
the same LNR stratum (Fig. 4a). For instance, among
the patients LNR ≥ 16.7 % (n = 139), the 24-lncRNA
risk score could further subdivide them into those
likely to have longer versus shorter survival (log-rank
test P <0.0001) (Fig. 4b). Similarly, among those
LNR < 16.7 % (n = 161), the 24-lncRNA risk score
could also subdivide patients into two subgroups
with significantly disparate survival (log-rank test P <
0.0001) (Fig. 4c).

Prognostic value of the 24-lncRNA signature is independ-
ent of postoperative chemotherapy
We also tested whether the prognostic value of the
24-lncRNA signature was independent of postopera-
tive chemotherapy. To achieve this, we first conducted
multivariable Cox regression analysis and stratification
analysis. By inspection, of the 300 GSE62254 samples
analyzed, 299 patients had available data on their post-
operative chemotherapy information. Unfortunately,
of the 192 patients from GSE15459, no patients had
available information on their postoperative chemo-
therapy. In the multivariable Cox regression analysis
on these 299 patients that contained 24-lncRNA risk
score, postoperative chemotherapy, age and gender as

Fig. 2 Comparison of the score with prognostic clinical covariates. Multivariable Cox regression proportional hazards regression analyses
incorporating the risk score and known prognostic clinical factors, including age at diagnosis, TNM stage (I, II, III, IV) and gender; risk
score and age as continuous variables, TNM stage and gender as categorical variables. Solid tetragonums represent the HR of death and
open-ended horizontal lines represent the 95 % confidence intervals (CIs). All P values were calculated using Cox proportional hazards
analysis. a Multivariable analysis was performed using Cox proportional hazards regression analysis in patients of GSE62254 test series. b
Multivariable analysis was performed using Cox proportional hazards regression analysis in patients of GSE62254 validation series. c
Multivariable analysis was performed using Cox proportional hazards regression analysis in patients of entireGSE62254 series. d
Multivariable analysis was performed using Cox proportional hazards regression analysis in patients of GSE15459 series. All of these were
adjusted for the same categorical or continuous variables. Missing: HR (95 % CI) could not be calculated out
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covariates, we found that the 24-lncRNA risk score (HR =
1.17, 95 % CI = 1.13–1.22, P < 0.0001) and postoperative
chemotherapy (HR = 0.38, 95 % CI = 0.19–0.76, P =
0.0060) were both independent prognostic factors
(Table 2). Data stratification analysis was then performed
which stratified these patients into with postoperative
chemotherapy subgroup or without postoperative chemo-
therapy subgroup. The stratification analysis showed that

the 24-lncRNA signature could identify patients with
different prognoses despite of the same postoperative
chemotherapy stratum (Fig. 5a). For instance, among the
patients with postoperative chemotherapy (n = 80), the
24-lncRNA risk score could further subdivide them
into those likely to have longer versus shorter survival
(log-rank test P = 0.0007) (Fig. 5b). Similarly, among
those without postoperative chemotherapy (n = 219),

a

b

c

Fig. 3 LncRNA risk score analysis of GSE62254 test series. The distribution of 24-lncRNA risk score, patients’ survival status and lncRNA expression
signature were analyzed in the GSE62254 test series patients (N = 180). a lncRNA signature risk score distribution; (b) patients’ survival status and
time; (c) heatmap of the lncRNA expression profiles. Rows represent lncRNAs, and columns represent patients. The black dotted line represents
the median lncRNA risk score cutoff dividing patients into low-risk and high-risk groups
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the 24-lncRNA risk score could still subdivide pa-
tients into two subgroups with significantly disparate
survival (log-rank test P < 0.0001) (Fig. 5c).

Prognostic value of the 24-lncRNA signature is independ-
ent of TNM stage
According to TNM stage system for GC, patients in
GSE62254 series were divided into four subgroups (I, II,
III and IV). The stratification analysis suggested that the
24-lncRNA signature could identify patients with different
prognoses in each TNM stage subgroup (Fig. 6a-d) despite
that the P value was not significant in stage I (log-rank test
P = 0.2900). This might be because the sample size was
too small (only 30 patients, Fig. 6a) to draw any reliable
conclusions. Interestingly, when low TNM stage (I & II)
and high TNM stage (III & IV) were combined, respect-
ively, the 24-lncRNA signature could also identify patients
with different prognoses in each subgroup and the P value
was significant (see Additional file 2).
Additionally, we performed ROC analysis to com-

pare the sensitivity and specificity of survival predic-
tion among the 24-lncRNA risk score model, AJCC
stage, LNR and postoperative chemotherapy. The area
under receiver operating characteristic (AUROC) was
assessed and compared among the four prognostic factors.
As shown in Fig. 7, there was no significant difference be-
tween the AUROC of 24-lncRNA risk score when com-
pared with AJCC stage (0.82 versus 0.76, 95 % CI = 0.76–

0.88, P = 0.1861). However, the AUCROC of the 24-
lncRNA signature risk score combined with AJCC stage
was significantly greater than AJCC stage alone (0.85
versus 0.76, 95 % CI = 0.69–0.83, P = 0.0002). Additionally,
the 24-lncRNA signature risk score was significantly
superior than that of LNR (0.82 versus 0.71, 95 % CI =
0.62–0.79, P = 0.0297) and postoperative chemotherapy
(0.82 versus 0.63, 95 % CI = 0.55–0.70, P < 0.0001). Al-
though the predictive ability of the 24-lncRNA signa-
ture was equivalent to AJCC stage, these results also
indicated that the 24-lncRNA signature combined with
AJCC stage may have a stronger power for DFS predic-
tion in the ROC analysis. Also, the 24-lncRNA signa-
ture may have a better predictive ability than both LNR
and postoperative chemotherapy alone.

Identification of 24-lncRNA signature correlated biological
pathways and processes
We performed GSEA to identify correlated biological
process and signaling pathways using the 24-lncRNA
signature on the basis of risk score for classification.
Significant gene sets (FDR < 0.001, P < 0.05) were visu-
alized as interaction networks with Cytoscape (Fig. 8a,
see Additional file 3). The high risk score was accom-
panied with up-regulation of several cancer-related
networks including recurrence, metastasis and cancer
stemness associated pathways. For instance, Polo-like kin-
ase 1 (PLK1) and E2F-mediated associated pathways were
implicated in cancer recurrence and metastasis [48–50].
We proposed that the 24-lncRNA signature might be in-
volved in these networks. Since cancer recurrence and
metastasis could strongly affect patients’ DFS, we com-
pared the risk score of patients with recurrence and with-
out recurrence (non-recurrence) in GSE62254 series when
this information was available. Patients with recurrence
tended to have higher risk score than patients without
recurrence (Fig. 8b, P < 0.0001).

Discussion
Currently, the discovery of thousands of lncRNAs has
broken the conventional thinking that the gene regula-
tion in biology was mostly involved in protein-coding
genes [51, 52]. Evidence from growing publications
have demonstrated that functional lncRNAs expression
patterns were associated with human cancers [11–14].
These lncRNAs were implicated in various tumorigen-
esis processes including proliferation [53], invasion [54]
and apoptosis [55] by acting as tumor oncogenes or sup-
pressors. The aberrant expressions of specific lncRNAs in
cancer can mark the spectrum of disease progression and
may serve as independent biomarkers for diagnosis and
prognosis [29, 32]. More recently, lncRNAs have been
associated with biology of GC. However, the prognostic
values of lncRNAs in GC have not been clarified clearly.

Table 2 Multivariable Cox regression analysis of the 24-lncRNA risk
score, LNR and postoperative chemotherapy in GSE62254 series

Variables HR 95 % CI of HR P value

24-lncRNA risk score (N = 300) 1.16 1.10 –1.21 <0.0001

LNR 4.33 1.34 –13.93 0.014

Age 1.03 1.00 –1.05 0.032

Gender 1.10 0.65 –1.84 0.732

TNM stage I 1.00(referent)

TNM stage II 1.08 0.23 –5.08 0.919

TNM stage III 2.09 0.47 –9.24 0.330

TNM stage IV 3.89 0.82 –18.44 0.087

24-lncRNA risk score (N = 299) 1.14 1.09 –1.19 < 0.0001

Postoperative chemotherapy 0.36 0.18 –0.73 0.004

Age 1.01 0.99 –1.03 0.324

Gender 1.04 0.62 –1.75 0.897

TNM stage I 1.00(referent)

TNM stage II 1.47 0.31 –6.85 0.626

TNM stage III 4.00 0.93 –17.15 0.062

TNM stage IV 8.50 2.00 –36.20 0.004

In Cox regression analysis, risk score, LNR and age were evaluated as
continuous variables, and postoperative chemotherapy and gender were
evaluated as category variables
Abbreviations: LNR lymph node ratio, HR hazard ratio
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To identify the prognostic lncRNA genes, we profiled
lncRNA by mining the existing microarray gene expres-
sion data on a variety of commonly used commercial ar-
rays. Of those, the Affymetrix Human Genome U133
array series is one of the most commonly used commer-
cial microarrays in human cancer profiling [56]. As a
public gene expression data repository, GEO has con-
tained lots of gene expression data that could be used
for further analysis. Based on this mining method, we
additionally applied another method to select prognostic
lncRNA genes. Predictors (genes) were selected by
applying the random survival forest-variable hunting
(RSF-VH) algorithm [36]. The random forests method is
classified into a tree-based method which has an advan-
tage in detecting interactions. This algorithm exploits
maximal subtrees for effective variable selection, and the
trees in a survival forest are grown randomly using a
two-step randomization process [36]. Moreover, it has
been developed for processing data with several variables
larger than the number of samples. There is no denying
that many published studies applied univariable and
multivariable analyses on microarray data for screening
where potential genes interacting with other genes may
be dropped from the analyses. Actually, in this regard,
the RSF-VH algorithm would be more powerful.

Functional characteristics of the 24 prognostic lncRNAs
We finally identified a set of 24 lncRNAs that showed
differential expressions among the GC patients included
in the data sets. Such differentiations signified their po-
tential roles in GC. Although some of these deregulated
lncRNAs have been reported to express in cancer or
other disorders, they have not been investigated in GC.
For example, the expression of AK026189 (CASC 15)
was found to be associated with neurobalstoma and was
increased during melanoma progression [57–59]. And it
was regarded as an independent predictor of disease
recurrence in a cohort of 141 patients with AJCC stage
III lymph node metastasis [58]. In our study, AK026189
was highly expressed in GC and was found to be corre-
lated with shortened survival. Another candidate, H04858
(MIR99AHG, MONC) was also abundantly expressed in

a

b

c

Fig. 4 Kaplan-Meier estimates of the disease free survival (DFS) of GEO
patients using the 24-lncRNA signature, stratified by lymph node ratio
(LNR). Entire GSE62254 set (N = 300) were first stratified by LNR (LNR≥
16.7 % or LNR < 16.7 %). Kaplan-Meier plots were then used to visualize
the survival probabilities for the high-risk versus low-risk group of
patients determined on the basis of the median risk score from the
entire GSE62254 set patients within each LNR stratum. a Kaplan-Meier
curves for the entire GSE62254 set patients (N = 300); (b) Kaplan-Meier
curves for patients LNR ≥16.7 % (N = 139); (c) Kaplan-Meier curves for
patients LNR < 16.7 % (N = 161). The tick marks on the Kaplan-Meier
curves represent the censored subjects. The differences between the
two curves were determined by the two-sided log-rank test
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GC samples. A study has revealed that H04858 was highly
expressed in acute megakaryoblastic leukemia cell lines
serving as a regulator of hematopoiesis and oncogene in
the development of myeloid leukemia [60]. Thus, we infer
that H04858 may act as an oncogene in GC tumorigenesis
and further investigations are great needed as well.
Moreover, lncRNA AI916498 (TRAF3IP2-AS1) was

found differentially expressed in midbrain dopamine
cells of human cocaine abusers and its transcript showed
a surprisingly strong nuclear localization in dopamine
cells [61]. Bannon et al [61] suggested that AI916498
might act as a mediator of a disruption of NF-KB signal-
ing seen in cocaine abuse. More interestingly, AI916498
was down-regulated in the human gastric cell lines after
received iodine-125 particle irradiation [62]. This indi-
cated that AI916498 may play a critical role in the iodine-
125 seed treatment of GC and be a potential target for
developing anti-gastric cancer drugs in the future. Also,
AA041523 (LINC00473, C6orf176) was first discovered as
a regulator of cAMP-mediated gene expression and may
serve as a biomarker or a drug target in context of diseases
with deregulated cAMP signaling [63]. And further inves-
tigation demonstrated that AA041523 mediated deciduali-
zation of human endometrial stromal cells and the
expression of AA041523 was regulated by cAMP-PKA
pathway through IL-11-mediated STAT3 phosphorylation
[64]. Recently, the elevated expression of AA041523 was
highly associated with loss function of the tumor sup-
pressor LKB1 gene, one of the most common muta-
tional events in lung cancer [65]. Further analysis
suggested that AA041523 could act as a biomarker or a
therapeutic target for lung cancer with impaired LKB1 sig-
naling [65]. Additionally, AA041523 was found down-
regulated in Helicobacter pylori-infected cells which might
contribute to the pathological responses and development
of Helicobacter pylori related disease [66]. In our study,
AA041523 was also highly expressed in GC and involved
with shorten survival. Thus, we suggest that AA041523
may play a critical role in GC tumorigenesis. More

a

b

c

Fig. 5 Kaplan-Meier estimates of the disease free survival (DFS) of GEO
patients using the 24-lncRNA signature, stratified by postoperative
chemotherapy. Entire GSE62254 set (N= 299) were first stratified by
postoperative chemotherapy (with or without postoperative
chemotherapy). Kaplan-Meier plots were then used to visualize
the survival probabilities for the high-risk versus low-risk group
of patients determined on the basis of the median risk score
from the GSE62254 set patients within each postoperative
chemotherapy stratum. a Kaplan-Meier curves for the entire
GSE62254 set patients (N = 299); (b) Kaplan-Meier curves for
patients with postoperative chemotherapy (N = 80); (c) Kaplan-Meier
curves for patients without postoperative chemotherapy (N = 219). The
tick marks on the Kaplan-Meier curves represent the censored subjects.
The differences between the two curves were determined by the
two-sided log-rank test
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importantly, BC021187 (DKFZP434K028) got a lower ex-
pression level in GC tissues and the low expression was
correlated with larger tumor size [67]. In the present study,
the higher level of BC021187was associated with longer
survival, suggesting a protective role in GC biogenesis. And
further investigations are needed to confirm that.
Among the 24 lncRNAs, except for those mentioned

above, some lncRNAs were either poorly investigated
or have not been reported. For instance, BE621082
(LINC0142) was identified as a novel susceptibility
locus on Xp11.21 associated with systemic lupus erythe-
matosus (SLE) [68]. Moreover, as a super enhancer,
AL703532 (CARMN) was regarded as a regulator of car-
diac cell differentiation and hemeostasis [69]. Additionally,
as a gene on the opposite strand of the ghrelin gene,
AI056187 (GHRLOS) spanned the promoter and untrans-
lated regions of the ghrelin gene [70] and lowly expressed
in the normal gastric tissues [70]. In our study, AI056187
was highly expressed in GC and significantly correlated
with longer survival which indicated a protective role in
GC biogenesis. As for the rest of the lncRNAs, such as
AF035291, AI028608, BC037827, BC038210, AA463827,
AK056852, AW206234 and AI095542 were associated
with shorten survival in our study, whereas AI080288,

BF238392, BC005107, BC039674, T79746, H11436,
BF511694, BC035722 were associated with prolonged
survival. Although the roles of these genes in GC or other
diseases biogenesis are presently unclear, our findings
suggest that they deserve further investigations.

The 24-lncRNA signature is a significant determinant of
survival in GC
By applying the 24-lncRNA signature to the GSE62254
test series patients, a clear separation was observed in
survival curves between patients with high- and low-risk
signatures. Patients with a high-risk 24-lncRNA signa-
ture in their tumor specimens tended to have shortened
survival, whereas patients with a low-risk 24-lncRNA
signature tended to have prolonged survival. The associ-
ation between the lncRNA signature and survival was
significant no matter whether the former was evaluated
as a continuous variable or category variable (divided by
the median cutoff ). The usefulness of this lncRNA signa-
ture could be internally validated in the non-overlapping
GSE62254 patients (the validation series) and another
independent cohort of GSE15459 that profiled through
the same platform of GSE62254, indicating good repro-
ducibility of this 24-lncRNA signature in GC. Taken

a

c

b

d

Fig. 6 Kaplan-Meier estimates of the disease free survival (DFS) of GEO patients using the 24-lncRNA signature, stratified by TNM stage (I, II, III &
IV). Kaplan-Meier plots were then used to visualize the survival probabilities for the high-risk versus low-risk group of patients determined on the
basis of the median risk score from the entire GSE62254 set patients within each TNM stage. a Kaplan-Meier curves for patients with TNM stage I
(N = 30); (b) Kaplan-Meier curves for patients with TNM stage II (N = 97); (c) Kaplan-Meier curves for patients with TNM stage III (N = 96); (d)
Kaplan-Meier curves for patients with TNM stage IV (N = 77). The tick marks on the Kaplan-Meier curves represent the censored subjects. The dif-
ferences between the two curves were determined by the two-sided log-rank test
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together, our results suggest that the 24-lncRNA signature
may be a significant determinant of survival in GC, rather
than an accidental feature of the transcription noise.

The 24-lncRNA signature is an independent prognostic
factors in GC
Further analysis uncovered that the prognostic value of
the 24-lncRNA signature was independent of one of the
main prognostic factors in GC, LNR. LNR was defined
as the ratio of the number of metastatic lymph nodes to
the number of removed lymph nodes [47]. Recently,
LNR has gained increasing attention in researches be-
cause of its lymph node status in AJCC TNM stage sys-
tem [71, 72]. In Japan, LNR has been repeatedly
reported to be of prognostic relevance in advanced GC
in the multivariate analysis [73]. Two studies have indi-
cated that LNR = 16.7 % was optimal cutoff level as an
effective prognostic indictor in advanced GC [46, 47].
Patients with LNR ≥ 16.7 %got a shortened survival than
those of LNR <16.7 % [46, 47]. Therefore, it is important
to evaluate whether the prognostic value observed on
our 24-lncRNA signature is independent of this known

strong prognostic factor or not. By performing multivari-
able Cox regression analysis and LNR stratification ana-
lysis, we identified LNR-independent prognostic values
of the 24-lncRNA signature in GC patients of the entire
GSE62254 data set.
Moreover, the prognostic value of the 24-lncRNA

signature was also independent of the postoperative
chemotherapy. Currently, surgery followed by chemo-
radiotherapy is the standard protocol in the United
States, whereas perioperative or postoperative chemo-
therapy is recommended in the Europe and Asia. In-
creasing meta-analyses published have demonstrated
that postoperative chemotherapy could prolong the
survival [74, 75]. In the present study, our results
indicated that patients with different prognoses could
be divided into high- or low- risk group by the 24-
lncRNA signature despite of the same postoperative
chemotherapy stratum. And this further strongly
demonstrated that the 24-lncRNA signature could act
as an independent prognostic factor for GC. Finally, it was
fascinating to find that the 24-lncRNA signature was al-
most independent of each TNM stage of AJCC and had a
similar survival predictive ability as AJCC stage. Moreover,
24-lncRNA signature combined with AJCC stage had a
stronger power for DFS prediction in the ROC analysis.
At last, the 24-lncRNA signature may have a better
predictive ability than both LNR and postoperative
chemotherapy alone. Thus, the ability of our 24-
lncRNA signature in identifying subgroups of GC pa-
tients with identical AJCC stage implies that the
lncRNA signature may be used to refining the current
prognostic model and facilitating further stratification
of patients in the future clinical trials.

The implication of the study
The function of lncRNAs were more likely to correlate
with their transcript abundance as they do not encode
proteins [76]. Actually, lncRNAs have been demon-
strated to have higher specificity than protein-coding
mRNAs [77, 78]. Our findings may have clinical impli-
cations in the development of a novel, independent
prognostic factor of GC. Additionally, given the expres-
sion of lncRNAs could be handled with transgene
approaches such as the lncRNA interference (RNAi)-
mediated gene silencing technology, for instance,
knock-down of the classical lncRNA HOTAIR using
specific siRNAs was indicated to be associated with the
metastatic potential of breast cancer cells [54]. Al-
though some of the 24 lncRNAs have not investigated
or reported in GC or other diseases, we also have rea-
son to believe that these lncRNAs may contribute to
GC biogenesis. Of course, amount of analyses are
greatly needed in the future investigations.

Fig. 7 Receiver operating characteristic(ROC) analysis of the
sensitivity and specificity of the disease free survival (DFS)
prediction by the 24-lncRNA risk score, AJCC stage, lymph node
ratio (LNR) and postoperative chemotherapy in GSE62254 set
patients with known chemotherapy information (N = 202).
P values were from the comparisons of the area under the ROC
(AUROC) of 24-lncRNA risk score versus those of AJCC stage, 24-lncRNA
risk score combined with AJCC stage, LNR and postoperative
chemotherapy, respectively. As can be seen, the 24-lncRNA risk
score combined with AJCC stage showed a better prediction of
DFS than AJCC stage (P = 0.0002). The predictive ability of risk score
was equivalent to AJCC stage alone (P = 0.1861), but better than both
LNR (P = 0.0297) and postoperative chemotherapy (P < 0.0001)
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The limitations of the study
The limitations should be acknowledged for our study.
First, since the two GEO data sets involved in this study
were profiled through Affymetrix Human Genome U133
Plus 2.0 chips which represents part but not all of the
possible lncRNA presents, the lncRNAs candidates
indentified here may not represent the complete lncRNA
populations underlying GC biological behavior. Second,

the DFS was regarded as the primary endpoint in the
test and internal validation data set (GSE62254). Unfor-
tunately, we could only use OS as the endpoint in exter-
nal validation data set (GSE15459) because this data set
did not contain the information about DFS. Despite this
drawback, however, the significant and consistent correl-
ation of the 24-lncRNA signature with OS in external
validation data set indicates that it is a potential useful

a

b

Fig. 8 a Gene set enrichment analysis delineates biological pathways and processes correlated with risk score. Cytoscape was used for
visualization of the GESA results. Nodes represent enriched gene sets that are grouped and annotated by their similarity according to related
gene sets. Enrichment results were mapped as a network of gene sets (nodes). Node size is proportional to the total number of genes within
each gene set. Proportion of shared genes between gene sets is represented as the thickness of the green line between nodes. b Box plot of risk
score of patients with or without recurrence in entire GSE62254 series excluding patients without available information (N = 283, P < 0.0001).T-test
was used to determine the significance of the comparisons
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prognostic marker for GC. Finally, we have no experi-
mental data and lack information on the mechanism
behind the signature lncRNAs, and experimental studies
on these lncRNAs are greatly needed to provide import-
ant information to further our understanding of their
functional rolesin GC.

Conclusions
This study presents a powerful lncRNA signature by prob-
ing and integrating currently available microarray data.
This innovative lncRNA signature showed independence
of two main prognostic factors, LNR and postoperative
chemotherapy. Also this lncRNA signature may contrib-
ute to personalize prediction of GC prognosis and acted
as potential biomarkers for GC prognostication. The
GSEA analysis suggested that this signature might involve
with several cancer recurrence and metastasis associated
pathways which supported the DFS predictive ability of
the signature. The lncRNA profiling approach described
here can also be applied in other cancers and will serve as
a useful method for the systematic identification of
lncRNA biomarkers in clinical practice. Future investiga-
tions will concentrate on the validation of our findings in
planned clinical trials and the functional explanation of
these lncRNAs.
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