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Abstract

bone tumor growth.

tumor growth.

Background: The CXCL12/CXCR4 axis transactivates HER2 and promotes intraosseous tumor growth. To further
explore the transactivation of HER2 by CXCL12, we investigated the role of small GTP protein G, in Src and
HER2 phosphorylation in lipid raft membrane microdomains and the significance of CXCR4 in prostate cancer

Methods: We used a variety of methods such as lipid raft isolation, invasion assays, an in vivo model of intratibial tumor
growth, bone histomorphometry, and immunohistochemistry to determine the role of CXCR4 signaling in lipid raft
membrane microdomains and effects of targeting of CXCR4 for bone tumor growth.

Results: We determined that (a) CXCL12/CXCR4 transactivation of EGFR and HER2 is confined to lipid raft membrane

microdomains, (b) CXCL12 activation of HER2 and Src is mediated by small GTP proteins in lipid rafts, (c) inhibition of the
CXCL12/CXCR4 axis through plerixafor abrogates the initial establishment of tumor growth without affecting the growth
of established bone tumors, and (d) inhibition of EGFR signaling through gefitinib leads to inhibition of established bone

Conclusions: These data suggest that lipid raft membrane microdomains are key sites for CXCL12/CXCR4 transactivation
of HER2 via small GTP binding protein Gg;; and Src kinase. The initial establishment of prostate cancer is supported by the
endosteal niche, and blocking the CXCL12/CXCR4 axis of this niche along with its downstream signaling severely
compromises initial establishment of tumors in the bone microenvironment, whereas expanding bone tumors are
sensitive only to the members of growth factor receptor inhibition.
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Background

Prostate cancer (PC) is the most commonly diagnosed
solid malignancy in men, with over 192,000 new cases
yearly, and the second leading cause of cancer-related
death in men in the US, with over 27,000 deaths each
year. PC has a specific propensity to metastasize to bone;
in fact, in the majority of cases, bone metastases develop
long before metastatic growth is apparent in soft viscera.
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Bone metastases cause pain, compression fractures, spinal
cord compromise and other complications. Bone metasta-
sized cancer cells induce bone turnover by recruiting bone
resident osteoclasts and osteoblasts, and the resultant bone
turnover enhances tumor growth by creating a vicious cycle
[1]. Cancer cells use similar mechanisms as hematopoietic
stem cells in homing to bone by competing for the occupa-
tion at osteoblastic niches in bone tissue [2], where chemo-
kine signaling plays a key role in attracting cells to the bone
microenvironment [2—4].

The CXCL12/CXCR4 axis has been involved in homing
of breast [5] and prostate [4, 6] cancer cells to bone where
cancer cells have aberrant expression of CXCR4, the re-
ceptor for the CXCL12 chemokine [7-9]. Transcriptional
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regulation of the CXCR4 gene is a key determinant of net
cell surface expression of CXCR4 and its subsequent func-
tion in transformed epithelial cells and cancer cells. We
showed that TMPRSS2-ERG fusions regulate CXCR4 ex-
pression in prostate tumors; thus, androgen induced ERG
expression transcriptionally regulates CXCR4 expression
in PC cells [7, 9]. In addition, several factors and organ
microenvironments have been shown to regulate CXCR4
expression in tumor cells [10-17]. The mammary fat pad
and bone microenvironment have been shown to induce
CXCR4 gene expression in cancer cells [16, 18]. At the
cellular level, osteoblasts, stromal cells and endothelial
cells all express CXCL12 [4, 6, 10, 19] and contribute to
bone metastasis of PC cells [4, 6].

CXCR4 expression increases during progression of PC;
localized prostate carcinoma and bone metastasis tissue
express significantly higher levels than benign prostate
tissue [20, 21]. Among PC patients, higher expression of
CXCR4 was documented in prostate tumor tissues from
African Americans [22], suggesting aggressive pheno-
types often associated with higher CXCR4 expression.
CXCR4 expression is associated with shorter progression
free survival in cancers [23], and in prostate cancers its
expression is significantly associated with metastatic dis-
ease and poor survival [24, 25]. The chemokine CXCL12
is also over-expressed in PC metastatic tissue compared
to normal tissue [20]. The CXCL12/CXCR4 axis has
been shown to play an important role in PC cell prolifer-
ation, migration and invasion [4, 6, 20, 26—-30].

Previously, we showed that activation of the CXCL12/
CXCR4 axis transactivates HER2 [3, 6] and promotes
intraosseous tumor growth [3]. To further explore the
transactivation of HER2 by CXCL12, we investigated the
role of the small GTP protein G, in Src and HER2
phosphorylation in lipid raft membrane microdomains
and the significance of CXCR4 inhibition by plerixafor, a
bone stem cell mobilizer, in prostate cancer bone tumor
growth. Given the important role of CXCL12/CXCR4
signaling in PC bone metastases, our data suggest that
CXCL12/CXCR4 inhibition may impact the development
of bone metastasis.

Methods

Cell culture

Cell lines were cultured in a humidified incubator with
5 % CO, at 37 °C. All media were supplemented with
2 mM glutamine, 100 units/ml penicillin, and 100 pg/ml
streptomycin (Life Technologies Inc., Carlsbad, CA). PC3
cells maintained in RPMI-1640 supplemented with 10 %
fetal bovine serum (FBS), PC-3 M-luc2 cells in EMEM
medium supplemented with 10 % FBS, and C4-2B cells, in
T-Medium supplemented with 10 % FBS. All cell lines
were authenticated with STR analysis (Genomics core at
Michigan State University, East Lansing, MI) and shown
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to have markers respective for each cell line as established
by ATCC and also tested for mycoplasma contamination
prior to use with Venor-GeM mycoplasma detection kit
(Sigma Biochemicals, St. Louis, MO).

Western blot analysis

Cells were washed with PBS, and total cellular proteins
were extracted with buffer containing 62.5 mM Tris—HCI
(pH 6.8), 2 % SDS, 1 mM PMSE, and 1X Protease inhibitor
cocktail (Roche, Indianapolis, IN). Protein content was
quantified with a BCA protein assay (Pierce Biotechnology,
Rockford, IL), and equal amounts of protein were resolved
by 10 % SDSPAGE. Immunoblot was performed with anti-
bodies against pHER2 (Y1248) (Catalog # A00318-100,
GenScript, Piscataway, NJ), total HER2 (Catalog #, SC-284,
Santa Cruz Biotechnology, Dallas, TX) pEGFR (Y1173)
(Catalog # 4407 s, Cell Signaling, Beverly, MA), total EGFR
(Catalog # 4267 s, Cell Signaling, Beverly, MA), Flotillin
(Catalog # 610383, BD Biosciences, San Jose, CA), B-
tubulin (Catalog # SC-5274, Santa Cruz Biotechnology,
Dallas, TX), pSrc (Catalog # 2101 s, Cell Signaling Tech-
nologies, Beverly, MA), total Src (Catalog # 2109 s, Cell
Signaling Technologies, Beverly, MA), G, (Catalog # SC-
7276, Santa Cruz Biotechnology, Dallas, TX), pAkt (5473)
(Catalog # 9271 s, Cell Signaling, Beverly, MA), Akt (Cata-
log # 2938 s, Cell Signaling, Beverly, MA), and GAPDH
(Catalog #SC-25778, Santa Cruz Biotechnology, Santa
Cruz, CA). The band intensities were determined by quan-
titation of pixel intensities using ImageJ software (version
10.2; National Institutes of Health, Bethesda, MD).

Cell fractionation

A successive detergent solubilization method for isolating
lipid rafts was previously described [3] and detergent free
preparation of cell lysate and density gradient centrifuga-
tion was followed as per Macdonald et al. [31].

Invasion assay

For cells to be treated with Dasatinib (Catalog # D3307,
LC Laboratories, Woburn, MA), C4-2B cells were plated
on the upper chamber of Matrigel-coated transwell filters
(2% 10° cells/filter) in growth media, supplemented with
1 % FBS, containing 0.5 pM Dasatinib or vehicle control.
For Pertussis toxin (PTX) (Catalog # 516561, Calbiochem,
La Jolla, CA) studies, cells were pretreated with 200 ng/ml
PTX for 3 h prior to cell invasion studies. For cells to be
treated with Src siRNA, C4-2B cells were transfected with
scrambled or Src siRNA using Lipofectamine 2000
(Invitrogen) 24 h prior to seeding 2 x 10° cells in serum
free medium on Matrigel coated inserts. For both Dasatinib
and siRNA conditions, cells were allowed to invade for 24 h
in the presence or absence of 200 ng/mL CXCL12 added to
the bottom chamber. Cotton swabs were used to remove
non-migrated cells from the upper chamber, and inserts



Conley-LaComb et al. Molecular Cancer (2016) 15:68

were stained with 0.9 % crystal violet. Total number of
migrated cells was counted under 10X magnification
in five fields. Assays were performed in triplicate. *: p <
0.05; **: p <0.005. For protein analysis, cells were treated
with Dasatinib or Src siRNA as performed for the invasion
assays, in the presence or absence of CXCL12. Cell lysate
was collected after 24 h and analyzed by Western blot.

In vivo studies and tumor tissue analyses

PC-3 M-luc2 cells were injected intratibially on Day 0
and saline control or plerixafor treatment was started via
an osmotic pump (Alzet, Cupertino, CA). Plerixafor is
obtained from Genzyme Corporation and administered
in the animal model using an osmotic pump at the rate
of 0.5 pl per hour at 20 mg/ml concentration. After 21
or 23 days, tumor growth was determined by in vivo lucif-
erase imaging. For treating of established tumors, mice
were sacrificed and ex vivo x-ray imaging of tumor-bearing
tibiae was performed at 22 or 24 days post-injection. For
treating established tumors, tumors were imaged at day 17,
and, based on luciferase signals, tumors were randomly di-
vided into two groups: plerixafor vs saline (control); plerixa-
for or saline pumps were then implanted at 18 days post
tumor cell implantation in tibiae. Further luciferase imaging
was performed at day 21 to monitor tumor growth. Mice
were sacrificed and ex vivo x-ray imaging of tumor-bearing
tibiae was performed at 26 days post-injection. C4-2B cells
were infected with lentiviruses expressing luciferase to gen-
erate C4-2B-luc cells and stable cells were selected with
puromycin treatment. For gefitinib study animals imaged at
15 days post tumor cell injection were randomized as con-
trol and treatment groups. Gefitinib (Catalog # G-4408, LC
Laboratories, Woburn, MA) is formulated in 0.5 % Tween
80 and administered through oral gavage at 200 mg/kg
body weight. Animals were imaged at 23, 29 and 40 days
and x-rays, obtained at the 40th day. Luciferase imaging
was performed with either Kodak in vivo imager or Care-
stream in vivo Xtreme imager (Bruker, Bellerica, MA).

Immunohistochemistry

Formalin-fixed, paraffin-embedded serial tissue sections
from control or plerixafor treated bone tumors were
deparaffinized with xylene and rehydrated in graded
ethanol. Endogenous peroxidase activity was blocked by
incubating in 3 % H,O, for 20 min; antigen retrieval was
performed with proteinase K (Sigma-Aldrich, St. Louis,
MO). Slides were then blocked with Blocking Serum
from ABC Vectastain Kit (Vector Labs, Burlingame, CA).
Slides were incubated at 4 °C overnight in a humidified
chamber with antibodies directed against CXCR4 (R&D
Systems, Minneapolis, MN) or Ki67 (BD Biosciences, San
Jose, CA). After washing, sections were incubated with
ABC Vectastain Kit, according to manufacturer’s proto-
col, followed by incubation with 3, 3-diaminobenzidine

Page 3 of 13

tetrahydrochloride (Vector Laboratories, Inc., Burlingame,
CA). Nuclei were counterstained with Mayer’s hematoxylin
(Sigma-Aldrich, St. Louis, MO). Sections were then
dehydrated with graded EtOH, washed with xylene, and
mounted with Permount (Sigma-Aldrich, St. Louis, MO).
Hematoxylin and eosin staining was also performed on
bone tumor sections, and histomorphometric analyses were
performed as previously described [3] to determine tumor
burden, cortical bone area, and trabecular bone area.

Statistical analyses

Data were analyzed using GraphPad Prism software and
Microsoft Excel 2008. All data are presented as mean +
SE. The in vivo luciferase imaging was performed with
two different machines (Kodak invivo imaging (old) and
Bruker in vivo Xtream (new) equipment) in case of
Figs. 4b, c and 5b , c. Therefore, the expression levels of
photons generated by the old machine were normalized
by those by the new machine using their geometric
means as follows. Suppose there are n and m photon ex-
pression levels generated by old and new machines, re-
spectively (i.e, XiXs ..., % Y1) --»¥m). Then the i th
expression level x; for the old machine will be normalized

1
1 n .
by x; = ;- (T Te1vi)”/ (H;’lej) ,wherei=1,2,...,m.
Statistical comparisons were performed using Wilcoxon

rank sum test and a p-value < 0.05 was considered statisti-
cally significant.

Results

CXCL12/CXCR4 axis transactivates EGFR members in lipid
raft membrane microdomains

Previously, we have shown that CXCL12 signaling is
capable of transactivating HER2 in the lipid rafts domains
in PC3 cells [3]. In an effort to determine if this transacti-
vation is confined to lipid raft membrane microdomains
or occurs elsewhere in the cell and if this transactivation
was limited to HER2, we performed experiments with C4-
2B and PC3 cells and investigated CXCL12/CXCR4 in-
duced phosphorylation of HER2 and EGFR. Western blot
analysis demonstrated that treatment with CXCL12 did
not significantly alter phosphorylation of HER2 or EGFR
(Fig. 1a). Furthermore, immunoprecipitation of HER2 and
EGEFR also did not show changes in phosphorylation of ei-
ther HER2 or EGFR upon treatment with CXCL12 in ei-
ther C4-2B or PC3 cells (Fig. 1b). On the contrary, a
successive detergent solubilization method of lipid raft
isolation showed that CXCL12 had indeed induced phos-
phorylation of both HER2 and EGFR in PC3 and C4-2B
cells (Fig. 1c). Our previous studies used detergents to
solubilize cells for lipid raft preparation by sucrose density
gradient centrifugation, and to avoid detergent induced ar-
tifacts in cellular signaling in lipid raft preparation [32],
we avoided detergents for cell lysis and prepared lipid rafts
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presence or absence of CXCL12. Total cell lysates were analyzed for phosphorylated and total HER2 and EGFR. b C4-2B and PC3 cells were cultured in the
presence or absence of CXCL12. Cell lysates were immunoprecipated with anti-HER2 and EGFR antibodies and immunoblotted with total and
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microdomains were isolated using a successive detergent solubilization method; both lipid rafts and cellular membranes and cytosol fractions
were immunoblotted with phosphorylated and native HER2 and EGFR antibodies. d PC3 cells were lysed in a detergent-free lysis buffer and
fractionated by sucrose density gradient centrifugation. Fractions were immunoblotted with lipid raft marker Flotillin-2 and cytosol marker
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using sucrose density gradients. However, upon fraction-
ation, increased levels of pHER2 and pSrc were still found,
in the lipid raft fraction of both control and CXCL12
treated PC3 cells (Fig. 1d). These data demonstrate that
CXCL12/CXCR4 transactivates both HER2 and EGER,
that this transactivation occurs exclusively in lipid raft mi-
crodomains, confirming our previous results, and that de-
tergents in raft preparation do not significantly affect the
growth factor receptor transactivation.

Gg; proteins mediate CXCL12/CXCR4 induced Src and
HER2 phosphorylation

Members of small G-proteins were shown to promote
prostate cancer cell invasion [33-36]. To determine the
requirement of heterotrimeric G,; proteins in CXCL12/
CXCR4 induced HER2 phoshosporylation and cellular

invasion, we treated C4-2B cells with pertussis toxin
(PTX) for 3 h to inhibit Gy proteins (Fig. 2) and this
treatment did not affect the cell viability. Pertussis toxin
treatment leads to inhibition of basal phosphorylation of
both HER2 and Src in lipid raft membrane microdomains
(Fig. 2a). To determine the effect of PTX on CXCL12
dependent HER2 and Src phosphorylation, cells were pre-
treated with PTX followed by CXCL12 activation. PTX
treatment inhibited CXCL12 activated HER2 and Src
phosphorylation in a dose dependent manner in lipid raft
membrane microdomains, without significant changes in
their counterparts from the cellular membranes and cyto-
sol fractions (Fig. 2a).

To further investigate the role of G,; proteins in this
activation, C4-2B cells were transfected with wild type
Gz (WT-Ggp), constitutively active Gt or plasmid
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Fig. 2 CXCL12 activation of HER2 and Src is mediated by G4; GTP proteins in lipid raft membrane microdomains and this activation induces cell
invasion. a C4-2B cells were cultured in the presence or absence of increasing concentrations of pertussis toxin (PTX) for 3 h, followed by treatment with
CXCL12 for 15 min. Cell lysate was collected, and protein expression of phosphorylated and total HER2 and Src was determined by Western blot analysis. Flo-
tillin was utilized as a loading control for the lipid raft fraction; 3-Tubulin was utilized as a control for the membranes and cytosol fractions. Bottom panel
shows the quantitation of phosphorylated HER2 and Src. b C4-28B cells were transfected with wild type Gy (WT-Gai2), constitutively active G; (Q205L), or
plasmid control (pcDNA3.1). Cells were then cultured in the presence or absence of CXCL12 for 15 min, and cell lysate was collected. Protein expression of
phosphorylated and total HER2 and Src as well as G2 were determined by Western blot analysis. ¢ C4-2B cells were transfected with plasmid control or con-
stitutively active G; (Q205L) and cultured in the presence or absence of CXCL12. Lipid raft fractions were collected and immunoblotted with phospho HER2
and Src antibodies. d C4-2B cells were either treated or not, with PTX (200 ng/ml) and a chemoinvasion assay was performed in the presence or absence of
200 ng/ml CXCL12. e C4-2B cells were transfected with pcDNA3.1 or pcDNA3.1 G222 plasmids and a chemoinvasion assay was performed in the
presence or absence of 200 ng/ml CXCL12. Bottom panels show the quantitation of invaded cells. Experiment was performed in triplicates; a representative
field of invading cells are shown (d and e). Number of invading cells was quantitated in three independent experiments and statistical analyses were
performed using ANOVA; significance was calculated using Tukey Posttest analysis using GraphPad Prism software. P value <0.05 is shown as a *
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control (pcDNA3.1) (Fig. 2b). Overexpression of Gy
increased basal levels of pHER2 and pSrc relative to
pcDNA3.1 transfected control; these levels were further
increased by CXCL12 treatment. Mutation of the activating
residue of G, subunit (Q205L) results in the inability of the
G, subunit to dissociate from GTP and is thus constitu-
tively active. G@>*°" transfection resulted in high levels of
pHER?2 and pSrc, which were further increased by CXCL12
treatment (Fig. 2b). Overexpression of G, also activated
HER?2 and Src phosphorylation in lipid raft membrane mi-
crodomains (Fig. 2c). These results show that activation of
G, is sufficient for HER2 and Src phosphorylation, and
that, in cancer cells, activation of small G proteins can acti-
vate downstream pathways including HER2 and Src. To
determine the impact of G,; protein activation of HER2
and Src on cellular invasion, C4-2B cells were treated with
PTX and matrigel invasion assays were performed.
CXCL12 induced cellular invasion of C4-2B cells due to the
activation of Src and HER?2 signaling. Further, PTX pre-
treatment inhibited both basal and CXCL12 invasion due
to the inhibition of trimeric G-protien activation and subse-
quent suppression of Src and HER2 activation (Fig. 2d).
Expression of G2 enhanced basal invasion and CXCL12
treatment further enhanced cellular invasion (Fig. 2e).
Together, these data demonstrate that G protein signaling
mediates HER2 and Src kinase activation, and this activa-
tion may contribute to cellular invasion downstream of the
CXCL12/CXCR4 axis.

Src inhibition decreases CXCL12-mediated invasion

The previous results implicate G proteins in the activation
of Src. To determine the downstream effects of this activa-
tion, the role of Src in CXCL12-mediated invasion was next
investigated. To this end, dasatanib was used to inhibit Src
as a pharmacological approach and Src siRNA was used as
a genetic approach. Dasatanib treatment of C4-2B cells
leads to inhibition of basal and CXCL12 induced matrigel
invasion (Fig. 3a). Western blot analysis confirmed the in-
hibition of Src phosphorylation by dasatinib (Fig. 3a). To
confirm the role of Src in CXCL12-mediatied invasion, Src
expression in C4-2B cells was downregulated using siRNA
24 h prior to plating on Matrigel-coated inserts. As shown
in Fig. 3c, Src siRNA resulted in a decrease in the CXCL12-
mediated invasion. Western blot analysis confirmed the
downregulation of Src by siRNA (Fig. 3d). These results
confirm that, upon transactivation of Src through CXCL12/
CXCR4, Src is capable of mediating downstream effects
such as invasion.

Inhibition of CXCR4 decreases initial establishment of
bone tumors without affecting the expansion of existing
bone tumors

To determine the biological significance of the CXCL12/
CXCR4 axis in bone tumor growth, an intratibial model
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was employed. In this model system, CXCR4 inhibition
was obtained by use of plerixafor. Plerixafor is a hemato-
poetic stem cell mobilizer that has been shown to block
the binding of CXCL12 to CXCR4. To this end, PC-
3 M-luc2 cells were used to test the inhibition of CXCR4
signaling with plerixafor. Western blot analysis showed
that PC-3 M-luc2 cells express higher CXCR4, but similar
levels of EGFR, compared to PC-3 cells (Additional file 1:
Figure S1). PC-3 M-luc2 cells were injected intratibially and
saline control or plerixafor treatment was started via an os-
motic pump on day 0 (Fig. 4a). After 21 or 23 days, in vivo
luciferase imaging was performed. Twenty-two or twenty-
four days post-injection of tumor cells and initiation of
treatment, mice were sacrificed and ex vivo x-ray imaging
was performed on the harvested tibiae. Treatment of the
mice with plerixafor resulted in decreased tumor growth
and decreased bone destruction relative to the saline
control, as shown by luciferase and x-ray imaging
(Fig. 4b-d). Bone histomorphometry performed on bone
tissue sections revealed that plerixafor treatment resulted
in decreased tumor volume and a decrease in bone de-
struction (Fig. 4e, f). Immunohistochemical analysis dem-
onstrated reduced expression of CXCR4 in the
plerixafor treated mice (Fig. 4g). Additionally, treat-
ment with plerixafor resulted in decreased prolifera-
tion, as determined by Ki67 staining (Fig. 4h).
Plerixafor also inhibited tumor growth and tumor in-
duced bone destruction in a C4-2B-luc2 model (Add-
itional file 1: Figure S2). These results demonstrate that
inhibition of CXCR4 at the time of prostate tumor im-
plantation in the bone results in decreased tumor growth,
which is associated with decreased CXCR4 expression, de-
creased tumor induced bone osteolysis, and decreased
proliferation.

To determine if inhibition of CXCR4 would have similar
effects on tumor growth with established tumors, mice
were again injected intratibially with PC-3 M-luc2 cells.
After allowing tumor growth for 18 days, mice were divided
into two groups with relatively equal luciferase signal.
Osmotic pumps were implanted the next day with either
plerixafor or saline. Tumor growth was monitored by
in vivo imaging at 17 and 21 days post-injection of the
cells. Mice were sacrificed 26 days after tumor cell in-
jection, and ex vivo imaging of the tibiae was per-
formed (Fig. 5a). As shown by luciferase imaging as
well as by x-ray scans and histology, treatment with
plerixafor at this stage did not affect tumor growth
relative to the saline control (Fig. 5b-e). Immunohisto-
chemical analysis of bone sections did not reveal a
change in CXCR4 expression upon plerixafor treatment
(Fig. 5f). Additionally, plerixafor treatment did not
affect proliferation, as determined by Ki67 (Fig. 5g).
These results demonstrate that inhibition of CXCR4
subsequent to prostate tumor development in the bone
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does not affect tumor growth. Taken together with the
results of Fig. 4, it is likely that CXCL12/CXCR4 signal-
ing plays a key role in the initial establishment of pros-
tate tumors in the bone; however, the importance of
CXCL12/CXCR4 appears to be taken over by other
signaling mechanisms during the enlargement phase of
bone tumors.

EGFR and HER2 inhibition blocked the expansion of bone
tumor

Our data suggest that CXCR4 induces growth factor
receptor activation through EGFR and HER2 phosphor-
ylation (Fig. 1) and subsequent expression of proteases
and cellular invasion [3]. Growth factor ligands activate
EGER by direct binding, whereas HER2 is inactive in dir-
ect ligand binding but heterodimerization with ligand
bound EGFR potently amplify its signaling [37]. Gefitinib
is a broad EGFR family member inhibitor which has been
shown to inhibit EGFR signaling and HER2 signaling
through heterodimerization with EGFR [38]. Since CXCR4
transactivates EGFR and HER?2, we tested whether growth
factor receptor signaling contributes to bone tumor growth.
Mice having established bone tumors were randomized and
treated with either gefitinib or Tween 20 (formulation used
for dissolving gefitinib). Tumor growth was monitored at
23, 29 and 40 days by in vivo imaging and bioptic x-rays
were performed at the 40th day of post tumor cell implant-
ation (Fig. 6a). Gefitinib treatment inhibited bone tumor

growth starting from as early as 8 days after treatment and
persisted till the 25th day. X-rays showed less osteolysis in
gefinitib treated animals (Fig. 6b). This data suggest that
EGFR and HER2 signaling is actively involved in bone
tumor growth in the PC-3 M-luc2 bone tumor model.

Discussion

The CXCL12/CXCR4 axis has been shown to be involved
in metastasis of several types of cancers, including prostate
cancers. In support of CXCL12/CXCR4 function in tumor
metastasis, herein, we show that: i) CXCL12/CXCR4 trans-
activates members of growth factor receptors, EGFR and
HER2 and that this transactivation is largely confined to
lipid raft membrane microdomains in PC cells; ii) Gy
protein activation is required for downstream signaling
involving HER2 and Src, and constitutively active Gy
proteins can activate HER2 and Src signaling, independent
of CXCR4 activation; iii) Src activation mediates CXCL12/
CXCR4 induced cell invasion; iv) plerixafor is effective in
inhibition of tumor growth, when given at the time of
tumor implantation, but not effective against established
tumors, suggesting the CXCL12/CXCR4 axis is crucial for
initial interaction with bone microenvironment and that
this interaction dictates subsequent growth of bone
tumors; and v) the pan EGFR family member inhibitor
gefitinib inhibited growth of established bone tumors,
suggesting that growth factor signaling is critical for
the expansion/enlargement of bone metastases.
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Fig. 4 Treatment with plerixafor results in decreased intratibial tumor growth when administered concurrently with tumor cell injection. a Diagram of
experiment timeline. On Day 0, PC-3 M-luc2 cells were injected intratibially and saline control or plerixafor treatment was started via an osmotic pump.

b After 21 or 23 days, in vivo luciferase imaging was performed. Images shown are taken at either 21 or 23 days. ¢ Tumor growth at 21 or
23 days post injection of cells was determined by in vivo luciferase imaging (n = 6). * Represents p < 0.05. d Ex vivo x-ray imaging of media
injected (left) and tumor bearing (right) tibiae was performed at 22 and 24 days post-injection. e H&E was performed on tissue sections from
PC-3 M-luc2 intratibial tumors treated with saline control or plerixafor. Representative images were taken at 5X and digitally merged. f H&E staining was
used for bone histomorphometric analysis to determine the ratio of cortical bone (left), trabecular bone (middle), and tumor cells (right) in each tissue
section. g Tissue sections from PC-3 M-luc? intratibial tumors were immunostained with anti-CXCR4 antibody. Images were taken at 20X and 40X (insert).
h Proliferation of PC-3 M-luc2 tumors was analyzed by Ki67 staining; an average number of Ki67+ cells from five 20X fields was determined
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Fig. 5 Treatment with plerixafor does not alter intratibial tumor growth when administered subsequent to tumor formation. a Diagram of
experiment timeline. On Day 0, PC-3 M-luc2 cells were injected intratibially. After allowing tumors to grow for 18 days, saline control or plerixafor
treatment was started via an osmotic pump. b After 21, days post-injection of tumor cells, in vivo luciferase imaging was performed. ¢ Tumor
growth at 21 days post injection of cells was determined by in vivo luciferase imaging (n=10). NS represents no significant difference between
groups. d Ex vivo x-ray imaging of media injected (left) and tumor bearing (right) tibiae was performed at 26 days post-injection. e H&E was
performed on tissue sections from PC-3 M-luc2 intratibial tumors treated with saline control or plerixafor. Representative images were taken at 5X
and digitally merged. f Tissue sections from PC-3 M-luc2 intratibial tumors were immunostained with anti-CXCR4 antibody. g Proliferation of
PC-3 M-luc2 tumors was analyzed by Ki67 staining; the average number of Ki67+ cells from five 20X fields was calculated
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Lipid rafts are specialized entities in plasma membrane,
enriched with tightly packed saturated lipids and choles-
terol which gives liquid ordered states. These raft microdo-
mains are known to segregate different constituents on the
membrane thereby facilitating signal transduction. Previous
studies show that CXCR4 signaling localizes to lipid raft
membrane microdomains and that disruption of lipid rafts
leads to inhibition of basal and CXCL12 signaling [3, 6].
The association of CXCR4 with lipid rafts in hematopoietic

stem cells was shown to promote bone marrow reten-
tion and regulate homing as well as mobilization of
hematopoietic stem cells [39]. Previous studies used
detergents to isolate lipid rafts based on the fact that
these rafts were insoluble in non-ionic detergents, but
the use of detergents was implicated in artificial coalescence
of signaling proteins. To address this issue we used deter-
gent-free cell lysate preparations for lipid raft isolation
using the sucrose density buoyant centrifugation
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Fig. 6 Gefitinib treatment inhibits intra-tibial tumor growth when
administered subsequent to tumor formation. a Diagram showing
the experimental scheme, where PC-3 M-luc2 cells were implanted
at day 0. Luciferase imaging was performed at days 15, 23, 29 and
40. Gefetinib (200 mg/kg body weight) or placebo containing 0.5 %
Tween 20 administration through gavage started at day 15. X-rays
were taken at day 40. b In vivo luciferase images were taken at

40 days for both groups, followed by a representative x-ray picture
of a set of animals in both groups. € Quantitation of in vivo luciferase
data from N=6 animals in both control and Gefinitib treated animals,
starting from 15 days till the end of the experiment on the 40th day.
Wilcoxon rank sum test were performed between control and experi-
mental groups, where * represents p < 0.05

method and show that the lipid raft marker flotillin co-
sediments with CXCR4 and phosphorylated HER2 and
Src kinases (Fig. 1d). Previous studies also show that
EGER family members localize to lipid raft preparations
in detergent-free conditions [33, 35]. These observa-
tions suggest that CXCR4 and its signaling partners
localize to lipid rafts and initiate signaling events lead-
ing to cell invasion.

G-proteins are key regulators of G-protein coupled
receptor (GPCR) signaling and were shown to promote
oncogenic signaling. Previous studies show that activated
forms of G12 and G13 promote PC cell invasion, and
G, proteins were also shown to promote cell migration.
Our data show that PTX abrogated both HER2 and Src
phosphorylation and cellular invasion, suggesting that
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Gy proteins are indispensable for CXCR4 induced cellu-
lar invasion. Moreover, we show that constitutively acti-
vated G, protiens are sufficient to mediate HER2 and
Src phosphorylation and this phosphorylation may con-
tribute to cellular invasion of PC cells, suggesting that
CXCR4 activated G; proteins are sufficient for PC cell
invasion. Recent studies support the role of G; proteins
in Src induced formation of invadosomes, which are
cellular protrusions exhibited in migrating/invading cells,
where a transient activation of Cdc42 is implicated down-
stream of GPCR activation [40]; thus, we cannot rule out
the role of Cdc42 downstream of CXCR4 activated Src ac-
tivation in PC cells.

CXCL12/CXCR4 signaling regulates hematopoietic stem
cell (HSC) movement in and out of bone marrow. HSCs
home to the CXCL12 rich endosteal niche in bone marrow,
where upon entering the bone, they anchor to the niche
through CXCR4 activation of a4f1 integrins with vascular
cell adhesion molecule 1 (VCAM]1) expressed in the niche.
These chemokine (CXCL12/CXCR4) and cell adhesion
molecule (VCAM1/a4f1) interactions restrain the HSCs in
the bone marrow niche. Plerixafor is a stem cell mobilizer,
where it competitively inhibits CXCL12 binding to CXCR4,
thereby disrupting the HSC interaction with bone marrow
niches, leading to exit of cells from bone marrow. Here we
show that inhibition of CXCR4 with plerixafor is effective
against bone tumor growth when given initially during
tumor implantation. Similar results were previously
documented for neutralization of CXCR4 with anti-CXCR4
antibodies in an intracardiac model of metastases where
anti-CXCR4 antibodies reduced total metastatic burden, in-
cluding that of long bone [29]. Recent studies suggest that
initial arrival of tumor cells in the bone microenvironment
leads to competition of tumor cells with HSCs for occupa-
tion at osteoblastic niches [2]. Since both HSCs and PC cells
use the CXCL12/CXCR4 axis for occupying the osteoblastic
niche, plerixafor inhibited CXCL12/CXCR4 interactions,
leading to reduced tumor growth when given at the time of
tumor implantation. Reduction in tumor growth was also ac-
companied by reduced tumor induced bone destruction.
This suggests that plerixafor not only mediated egress of
HSCs from bone but also inhibited initial interaction of
tumor cells with the osteoblastic niche, leading to inhibition
of tumor growth. In support of our observation, while this
manuscript was in preparation, Gravina et al. showed that
plerixafor inhibited intratibial tumor growth when adminis-
tered right after tumor cell implantation [41]. As the putative
PC stem cells use the CXCR4 pathway for metastasis and
chemotherapies often are effective in eliminating these cell
populations [42], plerixafor mediated inhibition of CXCR4
may inhibit bone metastasis by these cell populations.

Plerixafor administration to established tumors did not
significantly impact tumor growth, suggesting that, at high
tumor burden, plerixafor mediated egress of tumor cells
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from bone, as suggested by previous studies [2], is over-
come by the growth signals in tumors. CXCL12/CXCR4
transactivates members of growth factor receptor in PC
cells [3, 6], and expression of HER2 in PC patients corre-
lates with tumor cell proliferation [43] and activates an-
drogen receptor signaling in advanced disease [44]. To
address the potential role of growth factor receptor activa-
tion contributing to the bone tumor growth, we treated
established bone tumors with gefitinib and found our data
(Fig. 6) support the notion that inhibition of growth factor
receptor mediated signals with gefitinib led to reduction
in tumor burden and tumor induced osteolysis in bone tu-
mors. It remains to be determined that combination of
the two therapies have an added effect over individual
therapies, but based on the mechanism of target inhibition
combination therapy may provide a more efficacious in-
hibition of bone tumor growth.

Taken together, CXCL12/CXCR4 signaling has a dual
impact in bone metastasis: newly arrived cancer cells in
bone use CXCL12/CXCR4 and integrin interactions to
localize to the endosteal niche, and established bone tu-
mors use CXCL12/CXCR4 transactivated growth factor
receptor signaling for expansion of bone tumors.

Conclusions

CXCL12/CXCR4 transactivation of members of growth
factor receptors exclusively occurs in lipid raft membrane
microdomains. G,; protein activation is required for
downstream signaling involving EGFR, HER2 and Src in
lipid raft membrane microdomains. Plerixafor, a competi-
tive CXCR4 inhibitor and a stem cell mobilizer, is effective
in inhibiting initial establishment of tumor cells into the
bone microenvironment, whereas the same drug is inef-
fective in containing the expansion of pre-existing bone
metastasis. Interestingly, in our model system, the growth
factor receptor inhibitor gefitinib is highly effective against
expanding bone tumors. Based on our preclinical observa-
tions, plerixafor may be a candidate drug for the patient
populations which are high risk for developing metastasis,
with low metastasis burden, and who are prone to relapse,
whereas gefitinib may be a candidate for patients with
metastatic disease with rising PSA. Further experiments
are in progress to determine the efficacy of different drug
regimens (sequence of gefitinib and plerixafor) with or
without chemotherapy combination for treating estab-
lished bone tumors.

Additional file

Additional file 1: Figure S1. CXCR4 and EGFR expressed in PC-3 M-luc2
cells. Western blot analysis of EGFR and CXCR4 shows that PC-3 M-luc2 cells
have higher CXCR4 expression compared to PC3 and C4-2B. No
significant change in EGFR expression was observed in these cells.
Figure S2. Plerixafor treatment inhibited intratibial tumor growth in
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(C4-2B-uc cells. A) Diagram of experimental timeline. On Day 0, C4-2B-luc cells
were injected intratibially and saline control or Plerixafor treatment was started
via an osmotic pump. B) After 12, 19, 26 and 33 dyas, in vivo luciferase imaging
was performed. Images shown are taken at 33 days. Ex vivo x-ray imaging of
media injected (left) and tumor bearing (right) tibiae was performed at 23 days
post-injection C) Tumor growth at 12, 19, 26 and 33 days post injection of cells
was determined by in vivo luciferase imaging. (PPTX 659 kb)
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