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Mingjia Tan', Jie Xu', Javed Siddiqui®, Felix Feng'” and Yi Sun"**"

Abstract

triggered by Pten loss.

vitro ubiquitylation assays.

Background: SAG (Sensitive to Apoptosis Gene), also known as RBX2, ROC2 or RNF7, is a RING component of CRL
(Cullin-RING ligase), required for its activity. Our recent study showed that SAG/RBX2 co-operated with Kras to
promote lung tumorigenesis, but antagonized Kras to inhibit skin tumorigenesis, suggesting a tissue/context
dependent function of Sag. However, it is totally unknown whether and how Sag would play in prostate tumorigenesis,

Methods: Sag and Pten double conditional knockout mice were generated and prostate specific deletion of Sag and
Pten was achieved by PB4-Cre, and their effect on prostate tumorigenesis was evaluated by H&E staining. The methods
of immunohistochemistry (IHC) staining and Western blotting were utilized to examine expression of various proteins in
prostate cancer tissues or cell lines. The effect of SAG knockdown in proliferation, survival and migration was evaluated
in two prostate cancer cell lines. The poly-ubiquitylation of PHLPP1 and DEPTOR was evaluated by both in vivo and in

Results: SAG is overexpressed progressively from early-to-late stage of human prostate cancer with the highest
expression seen in metastatic lesion. Sag deletion inhibits prostate tumorigenesis triggered by Pten loss in a mouse
model as a result of suppressed proliferation. SAG knockdown in human prostate cancer cells inhibits a) proliferation in
monolayer and soft agar, b) clonogenic survival, and c) migration. SAG is an E3 ligase that promotes ubiquitylation and
degradation of PHLPP1 and DEPTOR, leading to activation of the PI3K/AKT/mTOR axis, whereas SAG knockdown caused
their accumulation. Importantly, growth suppression triggered by SAG knockdown was partially rescued by simultaneous
knockdown of PHLPP1 or DEPTOR, suggesting their causal role. Accumulation of Phlpp1 and Deptor with corresponding
inactivation of Akt/mTOR was also detected in Sag-null prostate cancer tissues.

Conclusions: Sag is an oncogenic cooperator of Pten-loss for prostate tumorigenesis. Targeting SAG E3 ligase may,
therefore, have therapeutic value for the treatment of prostate cancer associated with Pten loss.
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Background

Prostate cancer is one of the most common malignancies
and the second leading cause of cancer death in males [1].
It develops through successive stages including intra-
epithelial neoplasia (PIN), carcinoma in situ, invasive
adenocarcinoma, and metastatic diseases [2]. The disease
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is complex in its development and response to therapy,
and it cannot be predicted when or whether an indolent
prostate tumor will be become clinically aggressive. Fur-
thermore, the limitations in current treatment methods
warrant an intense focus on this type of cancer. Finally,
the development of effective targeted therapies will re-
quire a better understanding of the signaling cascades
responsible for the initiation and progression of prostate
cancer.

SCF (SKP1, Cullinl and F-box protein) E3 ligase, also
known as CRL1 (Cullin RING ligase), the founding
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member of CRLs, promotes the ubiquitylation and deg-
radation of various key regulatory proteins, thus control-
ling several important biological processes including cell
cycle progression, signal transduction, transcription, DNA
replication, tumorigenesis and angiogenesis [3-7]. The
SCF consists of four components: an adaptor protein
Skpl, a scaffold protein cullin, an F-box protein, and a
RING protein [3, 4]. Whereas the human genome encodes
69 F-box proteins [8, 9] that confers substrate specificity,
there are only two RING family members of RING pro-
teins in human or mouse, RBX1/ROC1, and SAG/RBX2/
ROC2/RNF7 [6, 10-12]. It is established that RBX1/ROC1
prefers to bind to cullin family members, CUL 1-3 and
Cul4A/B, and SAG/RBX2 prefers to bind to CUL5, as well
as CUL1 [13-17]. While biochemically, RBX1 and SAG
are interchangeable for E3 ligase activity [18, 19]; our KO
study revealed that biologically, they are NOT functionally
redundant during mouse embryonic development. Rbx1
KO in a wt Sag background causes embryonic death at
E7.5 with p27 accumulation [20]; where Sag KO in a wt
Rbx1 background also causes embryonic death, but at
E10.5-11.5 with NF1 accumulation [17], suggesting that
the two proteins have unique sets of substrates for degrad-
ation in vivo. Sag endothelial deletion also causes embry-
onic lethality at a later stage around E15.5 with defective
vasculogenesis and endothelial cells proliferation [7]. In
human tissues, SAG overexpression was detected in car-
cinomas of lung, colon, stomach, cervix and liver, with
poor survival of lung cancer patients [21-25]. Further-
more, Sag transgenic expression regulated skin tumori-
genesis induced by DMBA-TPA [26], and UVB-radiation
[27], whereas Sag deletion in mouse embryonic fibroblasts
suppressed Kras®*?P—induced immortalization and trans-
formation [28]. More interestingly, Sag played a tissue-
and context-dependent oncogenic or tumor suppressive
role in Kras“*P-driven mouse tumorigenesis. While Sag
deletion in the lung significantly reduced lung tumorigen-
esis [25], it accelerated skin tumorigenesis when deleted in
the skin [29]. However, it is unknown whether Sag plays a
role in prostate tumorigenesis, and, if so, what is the
underlying mechanism.

The Pten, a non-redundant gene encoding a phosphat-
ase, is frequently deleted or mutated in human cancer
[30]. Loss of PTEN in human cancer cell lines and mouse
models results in constitutive activation of the PI3K/AKT
pathway, leading to enhanced cell growth and survival
[31]. Pten homozygous deletion in mice causes early
embryonic death, and Pten heterozygous mice exhibit
hyperplastic-dysplastic changes in multiple organs, includ-
ing PIN in mouse prostate without progression to adeno-
carcinoma [32]. Conditional homozygous deletion of Pten
in mouse prostate significantly shortens the latency of
PINs and promotes their progression to metastatic cancer
characteristic of human prostate cancer [33].
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Several phosphatases negatively regulate the PI3K/AKT
pathway. Two isoforms of PHLPP, PHLPP1 and PHLPP2,
have been shown to directly dephosphorylate AKT [34].
PHLPP1 and PHLPP2 are reported to be lost in 30% and
50% of prostate cancer, respectively, highlighting their
clinical importance [34]. PHLPP1 protein is ubiquitylated
by SCEFT™P E3 ubiquitin ligase for subsequent degrad-
ation by proteasome [35].

DEPTOR was identified as a naturally occurring inhibi-
tor of both mTORC1 and mTORC?2 [36]. In cell culture
settings, DEPTOR mainly acts as a tumor suppressor,
since its loss activates mTORC1 and mTORC2 to pro-
mote growth and survival of cancer cells [36]. Recently,
we, along with other two groups, found that DEPTOR is
yet another substrate of SCFP""“P E3 ligase [37-39].

In this study, we used the Sag conditional KO mouse
model in combination with the Pten loss in prostate to
determine the in vivo role of Sag in prostate tumorigen-
esis. We found that the Sag deletion suppressed the pro-
gression of prostate cancer induced by Pten-loss with
mechanism involving accumulation of Phlppl and Deptor
to inhibit PI3K/AKT/mTOR signaling pathway. Con-
sistently, SAG knockdown suppressed the growth and
survival of human prostate cancer cells due to accumu-
lation of PHLPP1 and DEPTOR, two new substrates of
SAG E3 ligase, which can be partially rescued by simul-
taneous knockdown of PHLPP1 or DEPTOR. Thus, Sag
appears to act as an oncogenic gene cooperating with
Pten-loss to promote prostate tumorigenesis by activat-
ing the PI3K/AKT/mTOR signaling pathway.

Methods

Reagents

We purchased antibodies against p21 (mouse mAb) and
p27 (mouse mAD) from BD Transduction Labs (Gibbstown,
NJ), antibodies against DEPTOR, AKT, pS6, 4EBP1, p4EBP1
cleaved Casp3 and pAKT polyclonal antibodies from Cell
Signaling Technology (Danvers, MA), S6 (mouse mAb) and
NRF2 from Santa Cruz Biotechnology (Santa Cruz, CA),
PHLPP1 polyclonal antibody from Bethyl Laboratories
(Montgomery, TX) and B-Actin (mouse mAb) from Sigma
(St. Louis, MO), Ki67 from BD Biosciences (Gibbstown,
NJ), Dab1l and BrdU (rat mAb) from Abcam (Cambridge,
MA), FLNA from Abnova (Walnut, CA). DEPTOR
siRNA, PHLPP1 siRNA and control siRNA were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA). In Situ
Cell Death Detection Kit was purchased from Roche
(Indianapolis, IN). ATPlite kit was obtained from Perkin
Elmer (Boston, MA).

Cell cultures

Human prostatic carcinoma cell lines, Dul45 and PC3
were purchased from the American Type Culture Col-
lection (ATCC, Manassas, VA) and cultured in standard
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RPMI 1640 medium containing 10% fetal bovine serum
(Invitrogen, Carlsbad, CA), at 37 °C under a humidified
atmosphere of 95% air and 5% CO.,.

Mouse studies

The Sag™” conditional KO mouse model was generated
with exon 1 flanked with loxP sites [28]. Pb4-Cre and
Pten™” (strain B6.12954-Pten™ ™ ¥/]) mice were purchased
from Jackson laboratories. All procedures were approved by
the University of Michigan Committee on Use and Care of
Animals. Animal care was provided in accordance with the
principles and procedures outlined in the National Research
Council Guide for the Care and Use of Laboratory Animals.

PCR-based genotyping

Genomic DNA was isolated from mouse tail tips and was
genotyped using the primer set of PSag-KO-F: 5-TTCTG
GCCAGGTGTGGTGATATC-3; and PSag-KO-G: 5’-CTT
AGCCTT GGTTGTGTAGAC-3 to detect floxed allele
(140 bp) and wild type allele (105 bp) of Sag. The primer
set for Pten is oIMR9554: 5-CAAGCACTCTGCGAACT
GAG-3’' and oIMR9555: 5-AAGTTTTTGAAGGCAAG
ATGC-3’ to detect floxed allele (328 bp) and wild type
allele (156 bp). The primer set for PB4-Cre is PB4-Cre-
C001: 5-ACCAGCCAGCTATCAACTCG-3, PB4-Cre-
C002: 5-TTACATTGGTCCAGCCACC-3; PB4-Cre-C003:
5-CTAGGCCACAGA ATTGAAAGATCT-3 and PB4-
Cre-C004: 5-GTAGGTGGAAATTCTAGCATCATCC-3’
to detect Cre (260 bp) and wild type allele (400 bp),
respectively.

Immunoblotting analysis

Human prostate cancer cells or mouse prostate tissues
were harvested, lysed in a Triton X-100 lysis buffer
(20 mM Tris/HCI pH 8.0, 150 mM NaCl, 1% Triton X-
100, 5 mM EDTA and 5 mM EGTA) supplemented with
protease inhibitor cocktail (Roche). Lysates were incu-
bated on ice for 30 min, centrifuged (13,000 r.p.m, 15 min,
4 °C) and supernatants were subjected to SDS-PAGE. Gels
were transferred to nitrocellulose membranes. Membranes
were blocked with 5% milk in TBST (50 mM Tris/HCI,
pH 7.4, 150 mM NaCl, 0.1% Tween 20) and incubated
with primary antibodies of interest in 5% milk in TBST
overnight at 4 °C, and then with horseradish peroxidase-
conjugated secondary antibodies for 1 h at RT. Samples
were visualized with enhanced chemiluminescence and
X-ray film. SAG monoclonal antibody was raised against
the RING domain (AA44-113) [23].

Histology and Immunohistochemistry staining

Prostate tissues were fixed in 10% formalin and embedded
in paraffin. Five-um-thick sections were cut for H&E
staining and examined under a microscope. Prostate
hyperplasia is characterized by proliferation of luminal
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cells without cytological atypia, but containing small
foci with two or three layers of cells. The PIN lesions
were graded using the nomenclature and criteria devel-
oped by Park JH, et al [40]. In brief, high-grade PIN is
characterized by an intraglandular proliferation of crowd-
ing cells with atypia, and cribriform formation or the de-
velopment of multi-layered solid glandular structures.
Invasive adenocarcinoma is characterized by proliferation
of atypical cells that break the basal membrane and invade
through the prostatic stroma. Immunohistochemistry was
performed using the ABC Vectastain kit (Vector Labora-
tories, Burlingame, CA) with antibodies against SAG
monoclonal antibody, Ki67 (1:1000), BrdU (1:1000), AR
(1:500), DEPTOR (1:500), cleaved caspase3 (1:200), pAkt
(1:500), Pten (1:500), p4EBP1(1:1000) and pS6 (1:500) and
PHLPP1 (1:500). The sections were developed with DAB
and counterstained with haematoxylin.

siRNA knockdown

The lenti-virus-based siRNA knockdown of SAG (Lt-SAG,
5-GAGGACUGUGUUGU GGUCU-3)), along with scram-
bled siRNA control (Lt-Con, 5-AUUGUAUGCGAUC
GCAGAC-3) was performed as described [7]. For double
silencing, cells were infected with Lt-Sag or Lt-Con for 48
to 72 hrs in 60-mm dishes. Cells were then split into 60-
mm dishes and transiently transfected with si-Con or Si-
PHLPP1 (siRNA pools from Santa Cruz Biotechnology,
Santa Cruz, CA) or Si-DEPTOR (5-GCCATGACAATCG-
GAAATCTA-3) using Lipofectamine 2000 (Life Technol-
ogy, Carlsbad, CA). Forty-eight hours later, cells were
harvested for proliferation, clonogenic, migration and soft
agar assay.

Migration assay

Human prostate tumor cells infected with Lt-Con or Lt-
SAG were subjected to Boyden chamber migration assay
(BD Biosciences, Gibbstown, NJ) according to manufac-
turer’s instruction.

ATPlite-based cell proliferation assay

Cells were seeded in 96-well plates in triplicates and cell
proliferation was measured with an ATPlite kit (Perkin
Elmer, Boston, MA) [41].

Clonogenic and soft agar assays

Cells after lenti-virus-based shRNA silencing or siRNA
oligonucleotide transfection were seeded in 60 mm
dishes in triplicate followed by incubation at 37 °C for 9
to 14 days. The colonies formed were stained and counted
under microscope. Soft agar assay was performed as
described [42].



Tan et al. Molecular Cancer (2016) 15:81

TUNEL assay

Prostate tissues were fixed in 10% formalin and embedded
in paraffin. Five-um-thick sections were cut for assessing
for apoptosis by TUNEL assay using the In Situ Cell
Death Detection Kit (Roche, Indianapolis, IN), according
to the manufacturer’s recommendations.

The In vitro ubiquitination assay

Cullin1-SAG E3 complex was precipitated from 293 cells
overexpressing both proteins with FLAG tags. HA-tagged
PHLPP1 or HA-tagged PHLPP1(4A) was pulled down by
HA-conjugated beads after transfection into 293 cells and
eluted with 1x HA peptide (Roche, Indianapolis, IN).
FLAG-tagged DEPTOR or FLAG-Tagged DEPTOR(3A)
also was pulled down by FLAG beads and eluted with 3x
FLAG peptide (Sigma, St. Louis, MO), followed by incuba-
tion with Cullin-SAG E3 complex in the presence of E1
and E2 in a ubiquitin reaction buffer. Polyubiquitylated
PHLPP1 or DEPTOR was resolved by SDS-PAGE and
detected using antibody against PHLPP1 or DEPTOR,
respectively.

The in vivo ubiquitylation assay

The 293 cells were cotransfected with HA-PHLPP1, Cul-
lin, SAG and His-Ub or FLAG-DEPTOR, Cullins, SAG
and His-Ub. Thirty-six hours post transfection, cells were
lysed in 6 M guanidinium denaturing solution, as de-
scribed previously [43]. Poly-ubiquitylated proteins was
purified by Ni-bead pull-down and detected by IB using
PHLPP1 or DEPTOR antibody, respectively.

Statistical analysis

Statistical analysis was performed using two-tailed stu-
dent’s ¢-test. All statistical analyses were carried out using
the GraphPad Prism software version 5.01 (GraphPad, San
Diego, CA). Data were expressed as mean + standard error
of the mean (SEM) of at least 3 independent experiments.
A P value < 0.05 was considered statistically significant.

Results

SAG is overexpressed in human prostate cancer tissues,
whereas Sag prostate knockout inhibits tumorigenesis
induced by Pten loss due to reduced proliferation

Our recent study showed that both RBX1 and SAG/RBX2
are overexpressed in human non-small cell lung carcin-
omas [23, 44]. While overexpression of SAG, but not of
RBX1, is associated with poor survival of lung cancer pa-
tients, SAG expression is required to lung tumorigenesis
triggered by Kras mutation [25]. To determine potential
role of Sag in other human cancers, we measured SAG
levels in prostate tissue microarray consisting of normal
(n=24) versus tumor samples (n=58) and found that
SAG expression was progressively increased from normal
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to benign, then to malignant lesions with the highest
expression seen in metastatic tumors (Fig. 1a & b).

To determine whether SAG overexpression is causally
related to, or merely the consequence of prostate tumori-
genesis, we crossed Sag™" mice with Pb4-Cre;Pten™"
mice, a well-established prostate cancer model in which
Pten™" is deleted specifically in prostate epithelial cells by
Pb4 driven Cre-recombinase to induce epithelial hyper-
plasia, adenomas and adenocarcinomas [33]. Two rounds
of crossing gave rise to the compound mice with the
following two genotypes: 1) Pb4-Cre;Pten"Sag"'*
(Pten”“";Sag""*) and 2) Pb4-Cre;Pten";Sag™" (Pten”“";
Sag”“"). We first measured the expression of Sag and
Pten in prostate tissues from paired mice at age of
6 months by immuno-histochemical staining (Fig. 1c & d)
and western blotting (Fig. 1e), and confirmed a significant
reduction of both Pten and Sag levels in Pten”"'";Sag"""
prostates. We then euthanized paired mice at age of 3, 6,
and 9 months, followed by examination for prostate
lesions. At age of 6 month, both Pten”“’";Sag*'* and
Pten”“"";Sag”“"" mice developed various lesions, ran-
ging from hyperplasia, low grade intraepithelial neo-
plasia (LGPIN), high grade intraepithelial neoplasia
(HGPIN), as well as adenocarcinoma. Quantitative
analysis of prostate tissues, however, revealed that Sag
deletion significantly reduced prostate tumor burden,
as evidenced by significant reduction of incidence of
HGPIN and adenocarcinoma, with a majority of cases
being hyperplasia and LGPIN (Fig. 1f&g). Consistently,
the weight ratio of prostate vs. whole body was sig-
nificantly lower in Pten”“';;Sag”“”" than in Pten”“";
Sag*'* mice for all three groups of mice at ages of 3
(0.58% vs. 1.18%), 6 (0.89% vs. 2.19%) and 9 (1.62% vs.
3.82%) months (Fig. 1h). It is worth noting that Sag
deletion alone has no effect on normal development
of prostate tissues, since no prostate lesions were ob-
served at all groups of mice at ages of 3, 6, and
9 months (data not shown). Collectively, these results
strongly suggest that Sag inactivation may not affect
tumor initiation, but could remarkably inhibit the disease
progression from hyperplasia to adenocarcinomas. Thus,
Sag appears required for the progression of prostate
tumorigenesis, triggered by Pten loss.

To define the nature by which Sag deficiency sup-
pressed the development of prostate cancer, we deter-
mined the effect of Sag on proliferation and apoptosis
by immuno-staining the prostate tissues from 6 month-
old mice with genotypes of Pten”"";Sag"“"" vs. Pten”“";
Sag*'* with proliferation markers Ki67 and BrdU, and
apoptosis markers caspase-3 and TUNEL. Remarkably,
Sag deletion significantly reduced the overall prolifera-
tion, as stained by Ki67 (Fig. 1i&j) as well as the rate
of proliferation, as evidenced by reduced BrdU label-
ling (Additional file 1: Figure S1A&B), but had no
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Fig. 1 SAG is crucial for progression of prostate cancer in human and mice. (@ & b) Expression of SAG is assessed in a human prostate cancer TMA.
SAG staining indexes in cohorts of normal prostate epithelial cells (n =24) and prostate tumors (n = 58) are shown as stacked columns. (c & d) PB4-Cre
inactivates Pten and Sag in prostate epithelium cells. Prostate tissues from mice at age of 6 months with indicated genotypes were fixed in 10%
formalin, embedded, sectioned and stained with Pten and Sag Abs. (e) Western blotting for Pten and Sag in prostate tissues (four independent
samples with two genotypes). (f) Haematoxylin and eosin (h & e) staining of the prostate tissues from mice at age of 6 months with indicated
genotypes. Scale bar represents 100 um. (g) Pie graphs show prostate tumor progressions in Pten”“”"Sag™* and Pten”";Sag"™"" mice at
age of 6 months (n=10). HGPIN, high-grade PIN; LGPIN, low-grade PIN. The quantitative results of tumor progression are from two randomly
selected slides of each mouse in a total 10 pairs of the entire animal cohort. (h) Mice with indicated genotypes were sacrificed at ages of 3,
6, and 9 months, respectively. The weight of prostate vs. whole body were weighed, the % weight was calculated and plotted (n =6). * p < 0.05.
(i &j) Prostate tissues with indicated genotypes were stained for Ki67 with representative images shown (i). Positive cells were counted from at least 3
randomly selected microscopic fields with % positivity calculated (j). * p < 0.05. Scale bar: 100 pm

effect on apoptosis (Additional file 1: Figure S1IC-F). 9 months (data not shown). Thus, Sag inactivation
Reduced proliferation was also observed in the pros- likely suppressed prostate tumorigenesis by inhibiting
tate tissues in Pten”“'"Sag"“"" mice at age of 3 or cell proliferation.



Tan et al. Molecular Cancer (2016) 15:81

SAG knockdown inhibits the growth, survival and migration
of human prostate cancer cells via inducing accumulation of
PHLPP1 and DEPTOR to inactivate PI3K/AKT/mTOR pathway
Having established that Sag is required for prostate
tumorigenesis in Pten loss mouse model in vivo, we next
used in vitro cell culture models to further investigate
the role of SAG in the growth and survival of human
prostate cancer cells. We used two human prostate can-
cer cell lines DU145 and PC3. Indeed, SAG knockdown
via lentivirus-based siRNA silencing caused significant
reduction in A) monolayer growth; B) clonogenic sur-
vival; and C) anchorage-independent growth in soft-agar
(Fig. 2a-c, and Additional file 1: Figure S2A-C). Further-
more, SAG knockdown also significantly inhibited mi-
gration of human prostate cancer cells (Fig. 2D and
Additional file 1: Figure S2D). Therefore, Sag is required
for the growth and survival of prostate cancer cells as
well as for the maintenance of the tumor cell phenotype.

To explore the potential mechanisms by which SAG
knockdown suppresses the growth of prostate cancer cells.
We determined potential accumulation of naturally occur-
ring inhibitors of the PI3K/AKT/mTOR axis, known to be
the substrates of SCF E3 ligase [6]. SAG knockdown
caused accumulation of PHLPP1 (Fig. 2e and Additional
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file 1: Figure S2E), a protein phosphatase which directly
dephosphorylates and inactivates AKT [45], also a known
physiological substrate of SCEF™™" [35]. We also found
that SAG knockdown caused accumulation of DEPTOR,
an mTOR inhibitor [36] and a physiological substrate of
SCFPT™CP [37-39] as well, with consequent inactivation of
mTOR signals, as reflected by reduced phosphorylation of
S6 and 4EBP1 (Fig. 2e and Additional file 1: Figure S2E).
Interestingly, the accumulation of CRL substrates induced
by SAG knockdown was rather selective, since other two
SCF/CRLI substrates p21 and p27 (Fig. 2e and Additional
file 1: Figure S2E), two CRL5 substrates FLNA and
DABI, and one CRL3 substrate NRF2 (Additional file 1:
Figure S3) were not accumulated in these two lines of
prostate cancer cells upon SAG depletion. Collectively,
our results suggested that SAG knockdown triggers ac-
cumulation of PHLPP1 and DEPTOR to inactivate the
AKT/mTOR axis, leading to observed suppression of
growth and survival in prostate cancer cells.

SAG forms a complex with PHLPP1 or DEPTOR, shortens
their protein half-life by promoting their ubiquitylation
Although it is previously demonstrated that both PHLPP1
and DEPTOR are substrates of SCFP™"“P E3[35, 37-39],
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Fig. 2 SAG Knockdown suppresses growth, survival and migration of human prostate cancer cells via inactivation of the PI3K/AKT/mTOR axis.
DU145 human prostate cancer cells were infected with Lenti-SAG (Lt-SAG), along with Lenti-GFP (Lt-Con) as a control for 72 hrs. Cell proliferation
was measured by ATP-lite assay (a), clonogenic survival (b), soft agar assay (c), and Boyden chamber migration assay (d), as well as western blotting
assay using indicated Abs (e). Shown are mean + SEM from three independent experiments (a-d). * p; ** p < 0.01. Scale bar represents 50 um
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direct involvement of SAG, which is one of two RING
components of SCF [6], has not been previously shown.
We, therefore, determined whether SAG forms a complex
with either PHLPP1 or DEPTOR. Co-transfection of
epitope-tagged SAG with PHLPP1 or DEPTOR, respect-
ively, followed by immunoprecipitation (IP) and western
blotting revealed that SAG forms a complex with PHLPP1
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(Fig. 3a) and DEPTOR (Fig. 3b) under overexpressed
condition. We further determined whether SAG forms
a complex with PHLPP1 or DEPTOR under physiological
unstressed condition. Indeed, we found that endogenous
SAG forms a complex with both PHLPP1 and DEPTOR,
along with BPTrCP, Cull and Cul5 (Fig. 3c). Consistently,
in a reciprocal IP experiment, endogenous PHLPP1 or
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DEPTOR also pulled down endogenous SAG (Fig. 3d and
e), indicating that SAG is a component of SCF E3 ligase
for targeted degradation of either PHLPP1 or DEPTOR.
We next determined whether SAG shortened the protein
half-life of PHLPP1 or DEPTOR. As shown in Figure 3f,
the protein half-life of ectopically expressed PHLPP1 is
greater than 8 hrs (lane 1-4), which was shortened to ~3 hr
upon SAG co-transfection (lane 5-8). Likewise, the protein
half-life of ectopically expressed DEPTOR also was short-
ened by SAG cotransfection (Fig. 3g). On the other hand,
siRNA knockdown of SAG extended protein half-life of en-
dogenous PHLPP1 (Fig 3h) or DEPTOR (Fig. 3i) in DU145
cells as well as in PC3 cells (Additional file 1: Figure S4A).
Furthermore, we found that MLN4924, a small molecule
inhibitor of NEDDS8 activating enzyme, which indirectly in-
hibits CRL E3 ubiquitin ligase by blocking cullin neddyla-
tion [15, 46], effectively extended the protein half-life of
PHLPP1 and DEPTOR in DU145 (Additional file 1:
Figure S4B) and PC3 cells (Additional file 1: Figure S4C).

Finally, we determined whether manipulation of SAG
levels would alter the polyubiquitylation of PHLPP1 or
DEPTOR. Indeed, our in vivo ubiquitylation assay showed
that overexpression of SAG/CUL1 or SAG/CUL5 pro-
moted poly-ubiquitylation of exogenously expressed
PHLPP1 (Fig. 4a) or DEPTOR (Fig. 4c). This effect is ra-
ther specificity, since SAG-CUL? failed to promote such
poly-ubiquitylation (Fig. 4a&c). Consistently, in an in vitro
ubiquitylation assay, addition of purified PHLPP1 or
DEPTOR into a reaction mixture containing E1, E2,
and SAG-CUL1 E3, co-purified by beads-conjugated
immunoprecipitation, induced polyubiquitylation of
PHLPP1 (Fig. 4b) or DEPTOR (Fig. 4d), In contrast,
SAG-CULIl-induced polyubiquitylation was significantly
reduced when the B-TrCP binding motif on PHLPP1 or
DEPTOR was mutated (Fig. 4b&d). Taken together, our
results demonstrated that PHLPP1 and DEPTOR are in-
deed substrates of SAG-SCFP™"™P E3 ubiquitin ligase and
SAG inactivation leads to accumulation of PHLPP1 and
DEPTOR, as a result of reduced ubiquitylation and
degradation.

Growth suppression by SAG knockdown is partially
rescued by knockdown of PHLPP1 or DEPTOR

We next determined the functional significance of accu-
mulation of PHLPP1 or DEPTOR in mediating growth
suppression phenotype induced by SAG knockdown. In-
deed, simultaneous knockdown of PHLPP1 or DEPTOR
with SAG in DU145 cells (Fig. 5a) partially reversed the
growth suppression in monolayer proliferation (Fig. 5b),
clonogenic survival (Fig. 5c) anchorage independent
growth in soft agar (Fig. 5d), and cell migration (Fig. 5e).
Thus, accumulation of PHLPP1 or DEPTOR upon
SAG knockdown plays at least in part a causal role in
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suppression of tumor cell growth and reverse of tumor
cell phenotypes.

Sag deletion attenuates the PI3BK/AKT/mTOR signaling in
mouse prostate tissues

Finally, we returned to our mouse prostate cancer model
and determined whether Sag deletion will indeed block
the activation of the PI3K/AKT/mTOR signal triggered
by Pten loss. By immunohistochemical (IHC) staining and
western blotting of prostate tissues from 6 month old
mice, we first confirmed that Sag deletion indeed caused
accumulation of both Phlppl and Deptor (Fig. 6a&c).
Consequently, we found a significant reduction of pAkt,
pS6 and p4Ebpl in the prostate tissues from the Pten” <
Sag"“"" mice as compared to that from control Pten” <"
Sag™"* mice (Fig. 6b&c). As a negative control, no change
in AR staining was observed between two groups
(Additional file 1: Figure S5). Thus, suppression of pros-
tate tumorigenesis triggered by Pten loss could be attribut-
able to the accumulation of Phlppl and Deptor, as a result
of Sag deletion.

Discussion

Abnormal activation of the PTEN/AKT/mTOR pathway
is the most frequent event in prostate cancer [47] and it
is, therefore, important to identify the cofactors modulat-
ing prostate cancer progression in the context of altered
PTEN/AKT/mTOR signaling. In this study, we demon-
strated that selective depletion of Sag E3 ligase from the
mouse prostate epithelial cells is sufficient to delay the
progression of prostate tumorigenesis triggered by Pten
loss. This is achieved through accumulation of PHLPP1 to
inactivate AKT and of DEPTOR to inhibit mTOR activity,
resulting from reduced ubiquitylation and degradation
upon Sag depletion.

Overexpression of a given gene in human cancers does
not predict whether its overexpression is causally related
to or just the consequence of tumorigenesis. In case of
SAG, which is overexpressed progressively in prostate
cancer from the early-to-later stages, there has never
been mechanistically pursued as to whether SAG is re-
quired for prostate cancer initiation and progression, or
for the maintenance of prostate cancer cell phenotypes
or simply as the consequence of prostate tumorigenesis.
Here, we addressed this important issue using a mouse
prostate tumorigenesis model, triggered by Pten loss,
which recapitulates the entire process of human prostate
tumorigenesis with sequential formation of lesions such
as hyperplasia/LGPIN, HGPIN and eventually adenocar-
cinoma in a manner dependent on the length of Pten in-
activation [33]. By the use of a compound mouse model
with Pten and Sag conditional knockout alleles (Pter/™”;
Sag"™") in which Pten and Sag deletion occur concomitantly
upon Cre expression driven by specific Pb4 promoter in
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prostate epithelial cells, we showed that Sag inactiva-
tion remarkably inhibits prostate tumorigenesis, in-
duced by Pten loss, as evidenced by delayed disease
progression (Fig. 1f & g), and reduced proliferation of can-
cer cells (Figs. 1i & j and Additional file 1: Figure SIA&B).

The suppressive effect of Sag deletion is most likely attrib-
utable to inactivation of PI3K/AKT/mTOR pathway via
accumulation of PHLPPI1, a Ser/Thr protein phosphate,
that directly dephosphorylates pAkt, and of Deptor, that
directly inhibits the mTOR activity (Fig. 6).
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Fig. 5 Knockdown of PHLPP1 or DEPTOR partially rescues growth suppression triggered by SAG deletion. DU145 cells were first infected with Lt-SAG
to knockdown SAG along with the control (Lt-Con), followed by transfection with PHLPP1 or DEPTOR siRNA oligonucleotides. A portion of cells were
harvested for immunoblotting a; the other portions for monolayer growth for 4 days, followed by ATP-lite proliferation assay b; clonogenic assay for
survival ¢; soft agar assay for anchorage-independent growth d, or Boyden chamber migration assay e. Shown are mean + SEM from three
independent experiments b-e. * P < 0.05; ** P < 0.01

To gain mechanistic insight into SAG action, we used
the loss-of-function approach in two human prostate
cancer cell lines and found that SiRNA-based SAG
knockdown caused in general accumulation of PHLPP1
and DEPTOR with consequential inactivation of pAKT
and mTORC1 activity (Figs. 2e and Additional file 1:
Figure S2E). The effect on PHLPP1 and DEPTOR is ra-
ther specific, since no changes were found upon SAG
knockdown in the levels of p21 and p27, two other
SAG/CRLI substrates [25, 27]; NRF2, a CRL1/SCEP™*?

substrate [48, 49], as well as a CRL3 substrate [50]; and
two CRL5 substrates, DAB1 [51] and FLNA [52]. Thus, it
appears that SAG inactivation selectively accumulates its
substrates to suppress prostate tumorigenesis. This notion
was further supported by our rescued experiment in which
simultaneous knockdown of either PHLPP1 or DEPTOR
largely abrogated the growth suppression triggered by SAG
knockdown in DU145 prostate cancer cells (Fig. 5).

We further provide direct evidence that PHLPP1 and
DEPTOR are indeed the substrates of SAG E3 ubiquitin
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ligase, as evidenced by (a) formation of SAG-PHLPP1 or
SAG-DEPTOR complex under physiological conditions,
likely mediated by p-TrCP-Cullinl/5, since SAG directly
binds to Cull/5 (Fig. 3c) [39], and B-TrCP binds to
PHLPP1 [35] or DEPTOR [39]; (b) SAG overexpression
shortens protein half-lives of PHLPP1 or DEPTOR, whereas

SAG knockdown extends them (Fig. 3f-i); (c) SAG pro-
motes polyubiquitination of PHLPP1 or DEPTOR as
shown by both in vivo or in vitro ubiquitylation assays,
and (d) pharmaceutical inactivation of SAG E3 by
MLN4924 extends the protein half-lives of PHLPP1
and DEPTOR (Additional file 1: Figure S4B&C). Thus,
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PHLPP1 and DEPTOR are added to a growing list of
SAG substrates.

It is worth noting that SAG is the RING ligase core of
CRLs, and not directly involved in substrate recruitment.
Substrate recognition will solely rely on F-box proteins
in CRL1 and SOCS-box containing proteins in CRL5
[14, 15, 53]. In the case of SAG-CULLI, ubiquitylation of
PHLPP1 or DEPTOR appears to be mediated by f-TrCP,
since mutation at the B-TrCP binding motif abrogated
their poly-ubiquitylation (Fig. 4b&d). However, it is not
clear which SOCS protein is involved in the case of SAG-
CULS5. Involvement of SAG-CULS5 is evidently, given that
the fact that SAG binds to endogenous CUL5 (Fig. 3c)
and SAG-CUL5 could promote polyubiquitylation of
both PHLPP1 and DEPTOR (Fig. 4a&c). Future study is
directed to identify and characterize the involving SOCS-
containing protein in SAG-CUL5-mediated polyubiquity-
lation of PHLPP1 and DEPTOR. It is also worth noting
that the effect of SAG knockdown (Fig. 5) appears not to
be compensated by RBX1 in prostate cancer cells. Our
previous gene knockout studies have shown that the effect
of SAG and RBX1 is functionally non-redundant during
mouse embryogenesis, since total KO of either Sag [17] or
Rbx1 [20] caused embryonic lethality. Our most recent
study [54] revealed that SAG and RBX1 form catalytic
complex with different E2 enzymes to promote poly-
ubiquitylation of respective substrates via K11 or K48-
linkage, respectively, which further supports their func-
tional non-redundancy.

Conclusions

Our study supports the following model. During prostate
tumorigenesis, SAG is induced in response to various
stresses, such as hypoxia [55], ROS [11], and oncogene ac-
tivation [25, 43]. Increased SAG facilitates prostate
tumorigenesis by promoting ubiquitylation and degrad-
ation of Phlpp1 to increase p-Akt, or of Deptor to activate
mTor activity, further enhancing the PI3k/Akt/mTor sig-
naling, activated by Pten loss. On the other hand, Sag
deletion antagonizes the PI3k/Akt/mTor signaling by
causing accumulation of Phlppl and Deptor, leading to in-
hibition of prostate tumorigenesis (Fig. 6d). Our study,
therefore, provides experimental evidence from both in
vivo animal and in vitro cell culture models, suggesting
that SAG E3 ligase is an attractive target against prostate
cancer derived from Pten loss.

Finally, given that Sag is pro-oncogenic in the lung [25]
and tumor-suppressive in the skin [29] during KrasS'*P-
induced tumorigenesis, and pro-oncogenic in the prostate
during tumorigenesis induced by Pten loss (this study),
Sag appears to be a conditional pro-oncogenic or tumor
suppressive co-operating gene in tissue- and context-
dependent manner.
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Additional file

Additional file 1: Figure S1. Sag deletion reduced prostate epithelium
cell proliferation without affecting apoptosis: (A&B) Prostate tissues with
indicated genotypes were labeled by BrdU and representative images
were shown. Positive cells were counted from at least 3 randomly
selected microscopic fields. * P<0.05. Scale bar: 100 um. (C-F) Prostate
lesions were stained for cleaved caspase3 (C) and TUNEL (E) with
representative images shown. Cells with positive staining of cleaved
caspase3 (D) and TUNEL (F) were counted from at least 3 randomly
selective microscopic fields. Figure S2. SAG Knockdown suppresses
growth, survival and migration of human prostate cancer cells via
inactivation of the PI3K/AKT/mTOR axis. PC3 cells were infected with
Lenti-SAG or Lenti-GFP for 72 hrs. Cell proliferation was measured by
ATP-lite assay (n=3) (A), clonogenic survival (n=3) (B), soft agar assay
(n=3) (C), and Boyden chamber migration assay (n=3) (D), as well as west-
ern blotting assay using indicated Abs (E). Figure S3. SAG Knockdown
has no effect on the levels of FLNA, DABT and NRF2. Du145 and PC3 cells
were infected with Lenti-SAG or Lenti-GFP for 72 hrs. Cells were sub-
jected to IB with indicated antibodies. Figure S4. SAG knockdown or
MLN4924 treatment extended the protein half-lives of PHLPP1 and DEP-
TOR. PC3 cells were infected with Lt-SAG, along with Lt-Cont for 72 hrs.
Cells were then treated with CHX for indicated time periods and sub-
jected to IB analysis (A). DU145 (B) or PC3 (C) cells were treated with CHX
for indicated time periods in the absence or presence of MLN4924. Cells
were subjected to IB. Densitometry quantification was performed (right
panels for A and bottom panels for B&C). Figure S5. Sag deletion has
no effect on AR expression. Prostate tissues were stained with anti-AR Ab.
Shown are representative areas of stained tissues (top panel), and the
staining quantification (bottom panel). (PPTX 3263 kb)

Abbreviation

BrdU: 5-Bromo-2-Deoxyuridine; CHX: Cycloheximide; CRLs: Cullin-RING
ubiquitin Ligases; DEPTOR: DEP domain containing mTOR interacting protein;
IB: Immunoblotting; IHC: Immuno-histochemistry; IP: Immunoprecipitation;
mTOR: mammalian target of rapamycin; PHLPP1: PH domain and Leucine
rich repeat Protein Phosphatases; PI3K: Phosphoinositide 3-kinase;

PIN: prostate intraepithelial neoplasia; PTEN: Phosphatase and Tensin
homolog; ROS: Reactive Oxygen Species; SAG: Sensitive to Apoptosis Gene;
SCF: Skp1, Cullins, F-box proteins; siRNA: Small interfering RNA;

TUNEL: Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Label-
ing.; B-TrCP: B-transducin repeat-containing protein
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