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to promote gastric cancer proliferation

through LSD1-Mediated H3K4me2

demethylation
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Abstract

Background: Although the prognosis of gastric cancer patients have a favorable progression, there are some patients
with unusual patterns of locoregional and systemic recurrence. Therefore, a better understanding of early molecular
events of the disease is needed. Current evidences demonstrate that long noncoding RNAs (IncRNAs) may be an
important class of functional regulators involved in human gastric cancers development. Our previous studies suggest
that HOTAIR contributes to gastric cancer development, and the overexpression of HOTAIR predicts a poor prognosis. In
this study, we investigated the characteristic of the LncRNA FEZF1-AST in gastric cancer.

Methods: QRT-PCR was used to detect the expression of FEZF1-AST in gastric cancer tissues and cells. MTT assays,
clonogenic survival assays and nude mouse xenograft model were used to examine the tumorigenesis function of
FEZF1-AST in vitro and in vivo. Bioinformatics analysis were used to select downstream target genes of FEZF1-AST.
Cell cycle analysis, ChIP, RIP,RNA Pulldown assays were examined to dissect molecular mechanisms.

Results: In this study, we reported that FEZFT1-AST, a 2564 bp RNA, was overexpressed in gastric cancer, and
upregulated FEZF1-AST expression indicated larger tumor size and higher clinical stage; additional higher expression of
FEZF1-AST predicted poor prognosis. Further experiments revealed that knockdown FEZF1-AST significantly inhibited
gastric cancer cells proliferation by inducing G1 arrest and apoptosis, whereas endogenous expression FEZF1-AST
promoted cell growth. Additionally, RIP assay and RNA-pulldown assay evidenced that FEZF1-AST could epigenetically
repress the expression of P21 via binding with LSD1, the first discovered demethylase. ChiP assays demonstrated that
LSD1 could directly bind to the promoter of P21, inducing H3K4me2 demethylation.

Conclusion: In summary, these data demonstrated that FEZF1-AST could act as an “oncogene” for gastric cancer partly
through suppressing P21 expression; FEZF1-AST may be served as a candidate prognostic biomarker and target for new
therapies of gastric cancer patients.

Keywords: FEZF1-AST, LSD1, H3K4me2, P21, Gastric cancer

* Correspondence: lyw0171@outlook.com; wangcailian65@hotmail.com;
nyefygz@163.com

Yan-wen Liu was the first author

“Department of Biochemistry and Molecular Biology, Nanjing Medical
University, Nanjing, Jiangsu, People’s Republic of China

'Department of Oncology, Zhongda Hospital, Medical School, Southeast
University, Nanjing, Jiangsu, People’s Republic of China

°Department of Gastroenterology Second Affiliated Hospital of Nanjing
Medical University, Nanjing, Jiangsu, People’s Republic of China

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(httpy//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-017-0588-9&domain=pdf
mailto:lyw0171@outlook.com
mailto:wangcailian65@hotmail.com
mailto:nyefygz@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Liu et al. Molecular Cancer (2017) 16:39

Background

Gastric cancer is the third leading cause of cancer-
related deaths worldwide, and the poor prognosis of
patients is largely due to the high frequency of tumor
recurrence or metastasis within 24 months after surgical
resection [1, 2]. To improve gastric cancer early diagno-
sis and targeted therapy, a better understanding of early
molecular events of the disease is warranted. Cell prolif-
eration is a pivotal characteristic of malignancy and a
hallmark cancer capability [3]. Dysregulation of all cycle
is a vital reason for tumor cell proliferation. Moreover,
the cell cycle regulation has come to be a promising
therapeutic target, which suggests that discovery of
novel proliferation related genes could lead to improve
treatment of cancer [4, 5].

Recent integrative genomic studies have revealed that
98% of the human genome transcripts are non-coding
RNA (ncRNA) with limited or no protein-coding cap-
acity [6-8]. Long non-coding RNAs (IncRNAs), greater
than 200 nt are important new members of the ncRNA
family [9]. Researchers have demonstrated that the aber-
rant IncRNAs expression involve in diverse human dis-
eases, in particular cancers [10-12]. Such one is HOTAIR,
lots of studies have shown that HOTAIR is overexpressed
in colorectal cancer, pancreatic cancer, breast cancer, gas-
tric cancer and gastrointestinal stromal tumors and is
positively correlated with a poor clinical outcome [13-16].
Furthermore, IncRNA regulate drug resistance, for in-
stance, H19 epigenetically inducted MDR1-associated
drug resistance in human hepatocellular carcinoma
cells [17]. Recently, a study showed that nearly 76% of
the GENCODE annotated IncRNAs was differentially
expressed between gastric cancer and normal gastric
tissue [18]; for example, HOTAIR and HOXA-AS2
were overexpressed in gastric cancer and indicated
poor prognosis; however, a large number of IncRNAs
have been uncharacterized [19-22].

Recently, mounting evidences showed that some
IncRNAs epigenetically regulate gene expression by DNA
methylation and histone modifications, which contain
methylation, acetylation, phosphorylation et al. [23]. His-
tone methylation is Histone H3/H4 on lysine different
sites methylation or demethylation, which is regulated by
histone methylases or demethylases. HOTAIR and ANRIL
etc. could recruit and bind with the Polycomb complex
PRC2 (EZH2, SUZ12 and EED), which enhances histone
H3lysine-27 trimethylation, affecting chromatin compres-
sion tightness in suppressing gene expression [15, 24].
Lysine-specific demethylase 1(LSD1) is the first discovered
demethylase, which demethylates mono— and di-
methylated residues of lysine-4 on histone H3 (H3K4mel,
H3K4me2 orH3K9mel) and results in transcriptional re-
pression [25, 26]. In addition, LSD1 also activates transcrip-
tion through demethylation of H3K9me2 [27]. LSD1 is
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pivotal for mammalian tumorigenicity and progression in
many type of cancers, moreover, LSD1 overexpression pre-
dict poor prognosis and aggressive tumor biology [28—31].
Many studies had shown LSD1 epigenetically regulate cell
cycle related gene expression to affect G1/S phase arrest,
contributing to cell proliferation [32-34].

FEZFI-AS1 is an IncRNA producing a 2564 bp
transcript, located in chromosome 7. In this study, we
demonstrated that FEZFI-ASI was overexpressed in the
tumor tissues than the paracancerous tissues; further-
more, overexpression of FEZFI-ASI was observed in
larger tumors, advanced gastric cancer and predicted
poor DFS. Additional experiments revealed that FEZFI-
AS1 knockdown significantly repressed proliferation
both in vitro and vivo, and inhibited cells cycle progres-
sion by causing G1/S arrest. In addition, FEZF1-AS1 also
recruited and bound to LSD1 to epigenetically repress
downstream gene p21, thereby promoting proliferation
in advanced stages of gastric cancer. By these efforts, we
aim to propose a model for FEZFI-ASI-mediated cell
proliferation in gastric cancer.

Methods

Tissue samples

In this study, matched tumor tissues and adjacent non-
tumor tissues were obtained from 82 gastric cancer
patients at the Department of Surgical Oncology Jiangsu
Province People’s Hospital, Nanjing Medical University
from March 2011 to December 2011. Two pathologists
evaluated all specimens according to the World Health
Organization (WHO) guidelines and the pTNM Union
for International Cancer Control (UICC) pathological
staging criteria. No local or systemic treatments were
administered to these patients before surgery. The
tissues were immediately frozen in liquid nitrogen and
stored at —-80 °C until use. Informed consent was
obtained from all patients. The Human Research Ethics
Committee of Jiangsu Province People’s Hospital approved
the study.

Total RNA extraction Quantitative real-time polymerase
chain reaction

Total RNA was extracted from the cultured cells and
frozen tissues using TRIzol reagent (Invitrogen, Karlsruhe,
Germany) following the manufacturer’s protocol. Quanti-
tative real-time polymerase chain reaction (PCR) was
performed to detect FEZFI-ASI and P21 using the
PrimeScript RT Reagent Kit and SYBR Premix Ex Taq
(TaKaRa, Dalian, China) according to the manufacturer’s
instructions. The results were normalized to the ex-
pression of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The specific primers used are presented in
Additional file 1: Table S1. The qPCR results were analyzed
and expressed relative to the CT (threshold cycle) values
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and then converted to fold changes.2.0-fold change was
considered significant.

Plasmid generation

The FEZF1-AS1 sequence was synthesized and sub-
cloned into the pCDNA3.1 (Invitrogen, Shanghai, China)
vector. Ectopic expression of FEZF1-ASI was achieved
via pCDNA-FEZF1-AS1 transfection, with an empty
pCDNA3.1 vector used as a control. We also synthesised
shRNA sequence targeted FEZFI-ASI. Si-FEZF1-AS1
sequence removed five bases of the 3 ‘end were converted
to sh-FEZF1-AS1. After annealing of the complementary
shRNA oligonucleotides, we cloned the annealed oligonu-
cleotides into pENTR vector (sh-FEZFI-ASI) (Additional
file 1: Table S1). The expression levels of FEZF1-ASI were
detected by qPCR.

Cell culture

The MGC-803 lines were cultured in RPMI 1640 medium
containing 10% fetal bovine serum and incubated at 37 °C,
5% CO,, and saturated humidity. The SGC-7901 cells
were cultured in DMEM medium containing 10% fetal
bovine serum and incubated at 37 °C, 5% CO2, and satu-
rated humidity. The AGS lines were cultured in F 12
medium containing 10% fetal bovine serum and incubated
at 37 °C, 5% CO,, and saturated humidity. Cell growth was
observed under an inverted microscope. Cells in the loga-
rithmic growth phase were harvested for the experiments.

Cell transfection

Plasmid vectors (pPCDNA3.1-FEZF1-AS1 and pCDNA3.1)
for transfection were prepared using DNA Midiprep or
Midiprep kits (Qiagen, Hilden, Germany) and transfected
into MGC-803cells. The si-FEZF1-AS1, sh-FEZF1-ASl1,
si-LSD1 or si-NC was transfected into AGS and SGC-
7901 cells (Additional file 1: Table S1).

Cell cycle and apoptosis analysis

AGS and SGC-7901cells transiently transfected with
si-FEZF1-AS1 or si-NC and MGC-803 transfected with
pcDNA-FEZF1-AS1 or pcDNA-3.1, cells were analyzed
by flow cytometry (FACScan; BD Biosciences) using
CellQuest software (BD Biosciences).

MTT assay and clone formation

MTT assay and clone formation were used for evaluated
cell viability and proliferation. Cell proliferation was
documented following the manufacturer’s protocol every
24 h. For the colony formation assay, cells were seeded
in a fresh six-well plate and maintained in media
containing 10% FBS, replacing the medium every 4 days.
After 14 days, methanol and stained with 0.1% crystal
violet (Sigma-Aldrich) fixed cells and count clones.
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Tumor formation assay in a nude mouse model

The male athymic BALB/c nude mice aged 5 weeks
were maintained under specific pathogen-free condi-
tions and manipulated according to protocols ap-
proved by the Shanghai Medical Experimental Animal
Care Commission. A volume of 0.1 ml of suspended
cells with sh-FEZF1-AS1 and pENTR vector (EV) was
respectively subcutaneously injected into the posterior
flank of each mouse. At 15 days post-injection, mice were
euthanized and the primary tumors were excised, paraffin-
embedded, formal infixed and performed H&E staining,
immunostaining analysis for Ki-67 protein expression.

Western blotting analysis and antibodies

Cell lysates were prepared using RIPA protein extrac-
tion reagent (Beyotime, Beijing, China) supplemented
with a protease inhibitor cocktail (Roche, CA, USA)
and phenylmethylsulfonyl fluoride (Roche). GAPDH
was used as a control. Antibodies (1:1000) against cyclin
D1, CDK2, CDK4, CDK6 and P21lwere purchased from
Abcam.

Subcellular fractionation location

The separation of nuclear and cytosolic fractions was
performed using the PARIS Kit (Life Technologies)
according to the manufacturer’s instructions.

Chromatin immunoprecipitation (ChIP)

We performed chromatin immunoprecipitation (ChIP)
using the EZ ChIP™Chromatin Immunoprecipitation Kit
for cell line samples (Millipore, Bedford, MA). Briefly,
we sonicated the crosslinked chromatin DNA into 200-
to 500-bp fragments. The chromatin was then immuno-
precipitated using an anti-demethyl-histone H3 antibody
and LSD1 (1:1000). Normal mouse IgG was used as the
negative control. The primer sequences are listed in
Additional file 1: Table S1. The antibodies for the ChIP
assays of LSD1, H3K4 and H3K9 were obtained from
Millipore. Quantification of the immunoprecipitated
DNA was performed using qPCR with SYBR Green Mix
(Takara). The ChIP data were calculated as a percentage
relative to the input DNA using the equation 2[Input
Ct- Target Ct] x 0.1 x 100.

RNA immunoprecipitation(RIP)

We performed RNA immunoprecipitation (RIP) experi-
ments using the Magna RIP"RNA-Binding Protein
Immunoprecipitation Kit (Millipore, USA) according to
the manufacturer’s instructions. The antibodies for the
RIP assays of LSD1 were obtained from Abcam. The
co-precipitated RNAs were detected by reverse-
transcription PCR. The total RNAs were the input
controls.
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RNA pulldown assay

Biotin-labeled RNAs were transcribed in vitro with the
Biotin RNA Labeling Mix (Roche Diagnostics) and T7
RNA polymerase (Roche Diagnostics), treated with
RNase-free DNase I (Roche), and purified with an
RNeasy Mini Kit (Qiagen, Valencia, CA). Next, 1 mg
whole-cell lysates from SGC7901 cells was incubated
with 3 pg of purified biotinylated transcripts for 1 h at
25 °C. Complexes were isolated with streptavidin agarose
beads (Invitrogen). The beads were washed briefly three
times and boiled in sodium dodecyl sulfate (SDS) buffer,
and the retrieved protein was detected using the standard
western blot technique.

Bioinformatics methods

Gene set enrichment analysis (GSEA) software was
downloaded from Broad Institute (http://www.broadin-
stitute.org/gsea/index.jsp). Gene profiling data down-
stream FEZFI-ASI were obtained from Gene Expression
Omnibus (GEO) site (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE53137). Significantly enriched gene
sets were identified, which produced a nominal P-value
0.05. UCSC Genome Browser (http://genome.ucsc.edu/cgi-
bin/hgGateway) was used to analyze promoter regions.

Statistical analysis

The SPSS 17.0 statistical analysis software was used for
the statistical analysis of the experimental data. The
significance of differences between groups was estimated
by Student’s t-test. The levels of FEZFI-ASI in the
gastric cancer patients were compared using the Mann—
Whitney U test. The disease-free survival probability
was analyzed using Kaplan-Meier methods and evalu-
ated using the log-rank test. A p value less than 0.05
were considered significant.

Results

FEZF1-AS1 expression levels in human gastric cancer
tissue

To explore the function of LncRNAs in gastric cancer,
firstly, we profiled the expression levels of LncRNAs in
human gastric cancer tissues and normal tissue by using
raw microarray data downloaded from GEO (GSE53137)
[35] and mapsoft (http://Incrnamap.mbc.nctu.edu.tw/
php/search.php). The results show that FEZF1-AS1 ex-
pression level is upregulated in gastric cancerous tissues
compared with noncancerous tissues (42.64 Fold, Fig. 1a);
furthermore, FEZFI-AS1 expression is also overex-
pressed in gastric cancer tissues (GSE58828)(23.67 Fold,
Fig. 1b). Next, we used qRT-PCR to detect FEZFI-ASI
expression in 82 paired gastric cancer samples and adja-
cent histologically normal tissues. FEZF1-AS1 expression
was significantly overexpressed in the gastric cancer
(» =0.0001) compared to the adjacent histologically normal
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tissues (Fig. 1c). Furthermore, receiver operating character-
istic (ROC) curves were determined to evaluate the sensi-
tivity and specificity of FEZFI-ASI expression in predicting
gastric cancer tissues from normal tissues. Notably, FEZFI-
ASIdayisplayed predictive, with an area under curve (AUC)
of 0.631 (P=0.049, Fig. 1d). These results implied that
FEZFI-ASImight act as “oncogene” to promote the pro-
gression of gastric cancer and might provide imperative
clinical significance in gastric cancer diagnosis.

FEZF1-AS1 upregulation associated with tumor size, stage
and poor survival of gastric cancer patients

To assess whether FEZFI-ASIexpression was correlated
with clinical pathological parameters and prognosis of
gastric cancer, according to relative FEZFI-ASI expres-
sion in tumor tissues, the 82 gastric patients were
classified into two groups: the high FEZF1-AS1 group (n =
52, fold-change >2); and the low FEZFI-AS1 group (1 = 30,
fold-change < 2) (Fig. 2a). The clinical pathology parameters
of 82 gastric carcinoma patients were shown in Table 1.
Noticeably, high FEZFI-ASI expression in gastric cancer
was significantly correlated with tumor size and advanced
TNM stage (Fig. 2b and c). For disease-free survival
patients with high FEZFI-ASI expression had a signifi-
cantly poorer prognosis than those with low FEZFI-ASI
expression in gastric cancer patients (P <0.05, log-rank test;
Fig. 2d). Furthermore, ROC curves were determined to
evaluate the sensitivity and specificity of the survival predic-
tion based on the FEZFI-ASI expression. FEZFI-ASI
displayed predictive, with an area under curve (AUC) of
0.56 (P=0.019) (Fig. 2e). The AJCC TNM staging system
has been widely accepted as a powerful predictor of treat-
ment response and survival in gastric cancer, thus it is of
interest to test whether the prognostic value of the FEZF1-
ASI is independent of AJCC stage. Multivariable Cox
regression analysis adjusting AJCC stage and other factors
confirmed the association between FEZFI-ASI expression
and shorter survival (hazard ratio (HR), 0.38; 95% confi-
dence interval (CI), 0.195-0.739; P <0.01). Collectively,
these results indicate that FEZFI-AS1 overexpression
play an important role in gastric cancer progression
and may be useful for the prognostic or progression
markers in gastric cancer.

Modulation of FEZF1-AS1expression in gastric cancer cells
To investigate the effect of FEZFI-ASIon the gastric
cancer cells, we firstly examined the endogenous expres-
sion levels of FEZF1-AS1 in various cancer cell lines by
qRT-PCR. As shown in Additional file 2: Figure S1A, of
the five gastric cancer cell lines (SGC- 7901, BGC-823,
MGC-803, AGS and HGC-27), SGC-7901 and AGS
expressed higher levels of FEZFI-ASI than the normal
gastric epithelium cell line (GES-1); however, BGC-823
and MGC-803 expressed deficiency. Therefore, we chose
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SGC-7901 and AGS as loss of function experimental cell
lines and MGC-803 as gain of function experimental cell
line. The results showed that FEZFI-ASI expression was
effectively knocked down in AGS. SGC-7901and MGC-
803cells by si-FEZF1-ASI11# + 2#. si-FEZF1-ASI2# + 3#
and pcDNA-FEZF1-AS1 (Additional file 2: Figure S1B),
which were subsequently used in the further experiments.
The efficiency of the sh- FEZFI-ASI. si-LSD1. si-SP1
and pcDNA-SP1 was shown in Additional file 2: Figure
S1C,D and E.

FEZF1-AS1 promoted gastric cancer cells proliferation in
vitro and vivo

To investigate the effect of FEZF1-ASIon the gastric
cancer cells, MTT assays were performed and the results
revealed that knockdown of FEZFI-ASI decreased AGS
and SGC-7901 cells proliferation compared with the

respective controls, whereas ectopic overexpression
FEZFI1-AS1 promoted cell growth in MGC-803 (Fig. 3a).
Similarly, the results of colony-formation assays revealed
that clonogenic survival was significantly decreased
following downregulation of FEZFI-ASI in SGC-7901
and AGS cells, but markedly increased in FEZFI-ASI
overexpression MGC-803 (Fig. 3b). To further investi-
gate the tumorigenesis function of FEZFI-ASI in vivo,
we used nude mouse xenograft model. Sh- FEZFI-AS1
stably transfected SGC-7901 cells were injected subcuta-
neous of fourteen nude mice respectively. Two weeks
later, the mice were sacrificed and the xenografts were
collected. As expected, the sh- FEZFI1-ASI group exhib-
ited generally smaller tumors and displayed less weight
and volum compared to the pENTR vector group
(Fig. 3c). This difference was further confirmed following
examination of the xenograft by hematoxylin and eosin
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(HE), and the tumors developed from sh-FEZFI-ASI
cells displayed lower Ki-67 staining than control group
(Fig. 3d). Taken together, these results indicated that
FEZFI-AS1 possessed a vital role for FEZFI-ASIin
tumorigenicity and tumor growth of gastric cancer.

FEZF1-AS1 promoted proliferation of gastric cancer cells
by inducing cell-cycle progress and reducing apoptosis in
gastric cancer cells

Dysregulation of cell cycle is a vital reason for tumor cell
proliferation, to further explore whether FEZFI-ASI
promoted proliferation by regulation cell cycle progres-
sion in gastric cancer cell; we examined cell cycle by
using flow cytometric analysis. The results revealed that
SGC-7901 and AGS cells with si-RNAs had an obvious
cell cycle arrest in the G1-S phase and the population of
cells in the S phase was decreased (Fig. 4a and b). How-
ever, ectopic expression FEZFI-ASI induced G1-S
progression and accumulated S phase (Fig. 4c). Further-
more, we examined apoptosis rate by using flow
cytometric analysis. The results showed that the percent-
age of early and later apoptotic cells was significantly
increased in SGC-7901 and AGS cells with si- FEZFI-
AS1 than the si-NC cells (Fig 4d and e). Whereas ectopic

expression FEZF1-AS]1 repressed apoptosis than pcDNA
vector (Fig. 4f). Moreover, western blot analysis showed
that the protein levels of CyclinD1/CDK2/CDK4/CDK6
were significantly decreased in AGS and SGC-7901cell
with si- RNA (Fig 4g and h); the result was conserved in
MGC-803cell (Fig. 4i). These results confirmed that
FEZFI-ASI is involved in cell-cycle regulation.

FEZF1-AS1 downregulated P21 expression driving cell
cycle

To investigate whether FEZFI-AS1 could regulate cell-
cycle, Additional file 3: Figure S2A illustrates plots from
gene set enrichment analysis (GSEA) using gastric
cancer patient gene profiling data (GSE53137) showing
that gene set differences in FEZFI-ASI high vs. low
patients indicated that FEZFI-ASI regulates gene sets
mainly associated with cell cycle progression. Cyclin
dependent kinase inhibitor (CKI) was an important cell
cycle regulator and P21 was one of the most important
downstream target genes of tumor suppressor P53. Next,
to investigate whether these genes could be regulated by
FEZFI-AS1 in gastric cancer cells, we subsequently
detected mRNAs and proteins in AGS and SGC7901
cells with si- FEZFI-ASI and MGC-803 cell with
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Table1 Correlation of the expression of FEZF1-AS1 with
clinicopathologic features in gastric cancer

Characteristics N (%) FEZF1-AST? p-value
High Low

Gender 0.528
Male 51(62.20%) 31 20
Female 31(37.80%) 21 10

Age 0670
<65 27(32.93%) 18 9
>65 55(67.07%) 34 21

Stage 0.023*
I 9(10.97%) 5 4
Il 23(28.05%) 10 13
Il 50(60.98%) 37 13

Tumor size 0.010*
<5 29(35.37%) 13 16
>5 53(64.63%) 39 14

Defferation 0482
Well 37(45.12%) 25 12
Poorly 45(54.88%) 27 18

Lauren type
Intestinal 35(42.68%) 20 15 0312
Diffuse 47(57.32%) 32 15

Fold change(FC) (tumor tissues relative to normal tissues) Fold change is
greater than or equal to 2.0 for high expression, and less than 2.0 for
low expression

*P < 0.05 was considered significant (Mann-Whitney U test between 2
groups,Kruskal-Wallis H(K) test among 3 groups)

pcDNA-FEZF1-AS1. The results showed that p2lexpres-
sion was up-regulated by2.54 fold and 2.07 fold
compared with control cells (P<0.01, Fig. 5a and b).
However, ectopic expression of FEZFI-ASI downregu-
lated P21 expression than pcDNA vector (Fig. 5c).
Furthermore, Weston blot assays showed that protein
levels of p21was significantly increased in SGC-7901and
AGS cell with si-FEZFI-AS1 cells (Fig. 5d and e);

Table 2 Transcription factor of promoter of FEZF1-AS1
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however, erogenous FEZFI-ASI expression decreased
the protein levels of p21 than pcDNA vector (Fig. 5f).
Next, we investigated the role of P21 in FEZF1-AS1 pro-
moted proliferation. Weston blot assays showed that
protein levels of CDK2/CDK4/CDK6 was significantly
decreased in SGC-7901 with si-FEZF1-AS1 cells; however,
co-transfect of si-FEZF1-AS1 and si-P21 partly reversed
CDK2/CDK4/CDK6 expression than si-NC (Additional
file: 4 Figure S3A). These data indicated that P21 was
involved in FEZFI-ASI1-regulated cell cycle, contributing
to gastric cancer cells proliferation.

FEZF1-AS1epigenetically silenced P21 transcription
through LSD1-Mediated H3K4me2 demethylation

To further explore the molecular mechanisms by which
FEZFI-ASI regulated P21 transcription, we used ENCODE
Histone Modification Tracks embedded in UCSC Genome
Browser and found H3K4me2 enrichment peaks in the P21
promoter region (Additional file 3: Figure S2B and 2D).
Considering that mechanisms of IncRNAs largely depend
on specific cell locations, we found FEZF1-AS1 RNA was
mostly located in the nucleus versus the cytoplasm
(Additional file 3: Fig S2C), thus suggesting FEZF1-AS1
may exert transcriptional regulation function. Next, we
conducted RIP assays and RNA-pull down assays to
examine FEZF1-ASI’s binding protein. As shown in
Fig. 6a, the endogenous FEZFI-AS1 was enriched in
the anti-LSD1 RIP fraction in AGS and SGC-7901 cells.
Differential protein LSD1lwas specifically precipitated
by FEZFI1-ASI in RNA-pull-down assay (Fig. 6b).
Lysine-specific demethylase 1 (LSD1), the first Lysine
demethylase identified, which demethylates mono- and
di-methylated residues of lysine-4 on histone H3
(H3K4mel, H3K4me2 orH3K9mel), and LSDIlcould
promote neural stem cell proliferation [36]. To further
explore the molecular mechanisms of FEZFI1-AS1 regu-
lating P21 through LSD1-Mediated demethylation.
Next, we knocked down LSD1 by si-RNA in AGS and
SGC-7901 cells, and demonstrated that mRNA and

ModellD Score Relativescore Start End predictedsitesequence
MA0079.3 11.569 0.926691945898605 751 761 GCTCCTCCCTT
MA0079.3 11472 0.925471574849174 1809 1819 TTCCCTCCCTC
MAO0079.3 11.472 0.925471574849174 1881 1891 TTCCCTCCCTC
MA0079.3 11472 0.925471574849174 1913 1923 TTCCCTCCCTC
MA0079.3 11.445 0.925131883938508 1905 1915 CTCCCTCCCTC
MAQ079.3 11445 0.925131883938508 1909 1919 CTcccreccTc
MA0079.3 9.880 0.905442392264696 1798 1808 GCTCCTCCTTT
MA0079.3 9.783 0.904222021215265 1893 1903 TTCCCTCCTTC
MA0079.3 9.756 0.903882330304599 1877 1887 CTCCCTCCTTC
MA0079.3 9.756 0.903882330304599 1901 1911 CTCCCTCCTTC
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J

protein of P21 was upregulated compared to the con-
trols (Fig. 6¢c and d); moreover, P21was enhanced in
AGS and SGC-7901 cells treated with the LSD1inhibitor
compared to untreated (Fig. 6e). Furthermore, co-transfect
of pcDNA-FEZF1-AS1 and si-LSD1 partly reversed P21

expression than pcDNA vector (Additional file 4: Figure
S3B). These results demonstrated that FEZFI-ASI may
directly bound with SD1 and possiblely regulated expres-
sion of P21 in the transcriptional level. Next, we used
ChIP assays to verificate the mechanism. We analyzed the
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(See figure on previous page.)

Fig. 4 FEZF1-AST promoted proliferation of gastric cancer cells by inducing G1-S and reducing apoptosis in gastric cancer cells. a, b and ¢ The bar chart
represented the percentage of AGS, SGC-7901 and MGC-803 cells in GO/G1, S or G2/M phase, as indicated. d, e and f Flow cytometry was used
to detect the apoptotic rates of cells. LR, early apoptotic cells; UR, terminal apoptotic cells. Values represented the mean =+ SD, from three independent
experiments *P < 0.05, **P <0.01(g, h and i) Western blot analysis of CDK2, CDK4, CDK6 and CyclinD1 in AGS, SGC-7901 and MGC-803 cells
with si-FEZF1-AS1 or pcDNA-FEZF1-AS1. GAPDH protein was used as an internal control

ChIP assays LSD1, dymethylation of histone H3 on lysine-
4(H3K4mel and H3K4me2), markers which are associated
with transcriptional regression on P21 promoter in pres-
ence of si-FEZF1-AS1. The results shown that LSD1 could
directly bind to the promoter region of P21 and mediate
H3K4me2 modification, while knockdown of FEZFI-ASI
led to reduced LSD1 and increased H3K4me2 demethyla-
tion ability (Fig. 6 f); however, H3K4mel was no change.

In conclusion, these data indicated that FEZFI-AS]I re-
cruit the LSD1 to repress P21 transcription via H3K4me2
modification.

Transcription factor SP1was involved in the upregulation
of FEZF1-AS1

Relative expression levels of FEZFI-ASI were overex-
pressed in gastric cancer cells compared to GES-1 cells.
Then we explored the reason of overexpression of
FEZF1-AS1. Abnormal of expression IncRNA are regu-
lated by transcription factors and epigenetic modifica-
tion, then we used the JASPAR software to analysis the
promoter of FEZF1-ASl,which includes transcription
factors SP-1 (Table 2). Next, we detected the expression
of FEZFI-ASI in gastric cancer cells with si-SP1,
pcDNA-SP1 and control, the results shown that relative

expression of FEZF1-ASIwas downregulated in AGS and
SGC-7901cells with si-SP1 (Fig. 7a); however, expression
of FEZF1-ASIwas upregulated in AGS and 293 T cells
with pcDNA-SP1 compared with pcDNA vector (Fig. 7b).
We used ChIP assays to determine that SP1 band to the
endogenous FEZFI-ASI promoter. The results of ChIP
assays showed that SP1 could directly bind to FEZFI-
AS1 promoter regions and induce FEZFI-ASI transcrip-
tion in AGS and SGC-7901 cells (Fig. 7c). Above results
demonstrated overexpression of FEZFI-ASI is mechan-
istically linked to increased gastric cancer cell prolifera-
tion via dependence on SP1. Finally, correlation analysis
revealed that FEZF1-ASlexpression levels were positive
correlation with SP1 and CDK2/CDK4/CDK6/CyclinD1
and inversely correlated with P21 expression levels in
Gastric Cancer tissues (Additional file 5: Figure S4).
These results indicate that FEZFI-ASI overexpression
upregulated CDK2/CDK4/CDK6/CyclinD1expression by
suppression P21 expression.

Discussion

Over the past decades, mounting evidences have empha-
sized the emerging significance of IncRNAs in diverse
human cancer, including gastric cancer [19, 37, 38].
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Fig. 5 FEZF1-AST downregulated P21 expression driving cell cycle. a, b and ¢ QRT-PCR was used to detect mRNAs expression of AGS, SGC-7901 and
MGC-803 cells with si-FEZF1-AST or pcDNA-FEZF1-AS1. Values represented the mean + SD, from three independent experiments *P < 0.05,
**P<0.01.d, e and f Western blot analysis of P21 in AGS, SGC-7901and MGC-803 cells with si-FEZF1-AS1 or pcDNA-FEZF1-AS1. GAPDH
protein was used as an internal control
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Forthrtmore, a small part of the study has shown that expression and functional layout as transcriptional levels.
IncRNA expression profiles is predicting cancer or IncRNAs may better reflect the biologic status of cancer
discriminating between cancer subtypes. In fact, IncRNAs  cells. However, IncRNAs in gastric cancer are still an
have an obvious merit of their relative tissue-specific —emerging field, only a few of IncRNAs have been
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characterized in gastric cancer tumorigenesis and
should be further studied as predictive biomarkers.
One of these IncRNAs is gastric adenocarcinoma pre-
dictive long intergenic noncoding RNA (GAPLINC),
GAPLINC is overexpression and a predictive marker
for metastasis and prognosis in gastric cancer [39]. In
this report, we found that the expression of another
IncRNA, FEZF1-AS1, was significantly upregulated in
gastric cancer tissues, and was correlated with poor
prognosis. Furthermore, we have presented a study for
the prediction of cancer/normal tissues and bio-
markers using FEZF1-AS1 expression, suggesting that
FEZF1-AS1 may be an independent clinical marker in
gastric cancer diagnosis and prognosis.

The dysregulation of IncRNAs joins a wide variety of
pathological processes, but the mechanisms of IncRNAs
expression are not clear and further exploration is
required. Transcription factor and epigenetic regulatory
factors could manipulate the expression of IncRNAs
[40, 41]. Here, through bioinformation analysis, we
found that FEZF1-ASlpromoter contained conserved
SP1-binding site, which is a vital transcription factor in
sustaining the “hall markers” of cancer [42]. Accumulating
data has revealed that SP1 is overexpressed in breast can-
cer and gastric cancer [43, 44]. Our findings evidenced
that SP1 is a key factor in controlling FEZF1-AS1 expres-
sion. These results, along with those recent studies
[45, 46], underline the role of transcription factors in
regulating IncRNA transcription.

Additionally, our data demonstrated that knockdown
FEZF1-ASlexpression contributed to significant inhib-
ition of cell proliferation both in vitro and in vivo,
whereas exogenous expression FEZF1-AS1 led to cell
growth. Downregulation FEZF1-AS1 expression caused
G1 phase arrest and S phase reduction suppressing cell

cycle progression. The G1-S transition in the cell cycle
in mammalian cells is controlled by cyclins, cyclin-
dependent kinases (CDKs) and their inhibitors, and the
deregulation of CKIs is a common feature in tumor cells
[47]. P21, one of the most CKIs, is important check-
points of P53 signaling pathway for G1/S transition by
inhibiting the activity of kinases such as CyclinD/CDK4,
CyclinD/CDK®6 and CyclinE/CDK2 [48, 49], which plays
multiple roles in inhibition cell proliferation in normal
and cancer cells and was almost downregulated in many
types of cancer. Notably, we found that P21 was remark-
ably upregulated upon FEZF1-AS1 knockdown. Our
findings demonstrated that FEZF1-AS1 mediated gastric
cancer cell proliferation promotion, which possibly also
downregulated p21 expression.

A small number of functional IncRNAs have been well
characterized, which can regulate gene expression at
various levels, including chromatin modification, tran-
scription and post-transcriptional processing. IncRNAs
can act as molecular decoys binding and titrating away
proteins or RNAs to indirectly exert biological functions
in multiple kingdoms of life. HOTAIR is one of the most
studied IncRNAs involved in chromatin modification,
which can recruit PRC2 genome-wide to alter H3K27
methylation and gene expression patterns. IncRNA
MALATI1 could bind to SFPQ to release PTBP2 from
the SFPQ/PTBP2 complex and increase SFPQ-detached
PTBP2 promoting CRC cell proliferation and migra-
tion [50]. In addition, IncRNAs can recruit chromatin-
modifying enzymes to target genes by acting as guides,
either in cis (near the site of IncRNA production) [51]
or in trans to distant target genes [52]. In this study,
the results of RNA and RNA-pull-down assays show
that FEZF1-AS1 could bind with LSD1, the first dis-
covered histone demethylase. LSD1 participate in
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development and differentiation regulation of chroma-
tin remodeling and histone demethylation, which
could specifically catalysed the demethylation of
mono- and di-methylated histone H3 lysine 4(H3K4) and
H3 lysine 9 (H3K9) through a redox process. More im-
portantly, overexpression of LSD1 is involved in many
pathological processes of cancer, such as proliferation,
apoptosis and metastasis of various cancer cells [26, 28,
34]. S. Lim et al. reported [34] that knockdown LSD1 sig-
nificantly reduced levels of H3K9me2 at the p21 locus re-
gression cell proliferation through regulation of cell cycle.
Our study demonstrated that knockdown FEZF1-AS1 led
to enhance levels of H3K4me2 at the p21 promoter and a
nearly unchanged H3K4mel levels.
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Conclusions

In this study we had evidenced that FEZF1-AS1 was
overexpressed in gastric cancer tissues; its overexpres-
sion may predict poor prognosis. FEZF1-AS1 promoted
gastric cancer cell proliferation and tumorigenesis in
vivio and vivo by affecting cell cycle progression. In
addition, we described the molecular mechanism by
which FEZF1-AS1 boost gastric cancer cell proliferation
(Fig. 8) :(I) SP1 accelerated FEZF1-ASloverexpressioon
in gastric cancer; (I) FEZF1 -AS1 caused G1-S arrest
contributing to proliferation; (III) FEZF1 -AS1 repressed
p21 transcription by recruiting LSD1 causing H3K4me2
demethylation at the p21 promoter in gastric cancer.
Finally, these data provided new insights into the RNA
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Fig. 8 Summary diagram described that FEZF1-ASTregulates GC cell proliferation: ()SP1 accelerated FEZFT1-ASToverexpressioon in gastric cancer; (Il)
FEZF1 -AST inhibited transcription of P21 to cause G1-S arrest contributing to proliferation; (Ill) FEZF1 -AST recruited and binded to LSD1 demethylation
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regulation network, indicating that IncRNAs could target
chromatin-modifying enzymes regulating gene expres-
sion; LncRNAs have been proposed as potential targets
for prognosis and therapeutic intervention.

Additional files

Additional file 1: Table S1. Primer sequences. (XLSX 8 kb)

Additional file 2: Figure S1. (A) The endogenous expression of FEZF1-
AST of gastric cancer cell lines (SGC-7901, MGC-803, BGC-823, AGS, HGC-27)
and GES-1 cell. (B) QRT-PCR was used to detect FEZFT-AST expression of
AGS, SGC-7901 and MGC-803cells with si-FEZF1-AST or pcDNA-FEZF1-AST.
(C) QRT-PCR was used to detect FEZFT-AST expression of SGC-7901 cells
with sh- FEZF1-AS1. (D) QRT-PCR was used to detect SP1 expression of
AGS, SGC-7901 and 293 T cells with si-SP1 or pcDNA-SP1. All experiments
were performed in triplicate with three technical replicates. (TIF 915 kb)

Additional file 3: Figure S2. (A) The GSEA results showed enrichment
of several genes that may be regulated by FEZFT-AST. FEZF1-AST had
significantly negative correlation with genes involved in cell cycle arrest
in gastric cancer dataset(GSE15459). The barcode plot indicates the
position of the genes in each gene set, and red and blue represent
positive or negative Pearson’s correlation with FEZF1-AST expression,
respectively. (B) The RNA binding proteins with FEZF1-AST by GEO
DataSet analysis. (C) Genome Browser and analyzed H3K4 enrichment
peaks in the P21 promoter region. (D) FEZF1-AST expression levels in cell
nucleus or cytoplasm of AGS, SGC-7901 and MGC-803 cells were detected
by qRT-PCR. U6 was used as a nucleus marker and GAPDH was used as a
cytosol marker. (TIF 7608 kb)

Additional file 4: Figure S3. (A) Proteins expression of CDK2/CDK4/
CDK6 in SGC-7901 cells with si-FEZF1-AST or si-P21 were detected by West-
ern blotting. (B) Proteins expression of P21 in MGC-803 cells with si-LSD1 or
pcDNA-FEZF1-AST were detected by Western blotting. (TIF 757 kb)

Additional file 5: Figure S4. The expressions of P21/SP-1/CDK2/CDK4/
CDK6/CyclinD1 and correlation with expressions of FEZF1-AST in 40 gastric
cancer tissues (A) The expression of SP-1 was positive correlation
with expressions of FEZF1-AS1 in 40 gastric cancer tissues(R’=0.197,
P =0.0042). (B) The expression of P21 was negative correlation with
expressions of FEZF1-AS1 in 40 gastric cancer tissues (R*=0.154, P=00124).
(A) The expressions of CDK2/CDK4/CDK6/CyclinD1 were positive
correlation with expressions of FEZF1-AST in 40 gastric cancer tissues,
respectively (R>=0.111, P =0.0358; R’ =0.184, P = 0.0058; R* = 0.144,
P=0.0159 ; R?=0.122, P=0.269). (TIF 504 kb)

Abbreviations

BSA: Bovine serum albumin; CDK: Cyclin-dependent kinase; CDK2: Cyclin-
dependent kinase 2; CDK4: Cyclin-dependent kinase 4; CDK6: Cyclin-dependent
kinase 6; ChiIP: Chromatin immunoprecipitation; CKI: Cyclin dependent kinase
inhibitor; CT: Cycle threshold; DFS: Disease-free survival; DMEM: Dulbecco's
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