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Abstract

Background: The role of cancer-associated fibroblasts (CAFs) during tumour progression is obscured by the inherently
complex, heterotypic nature of fibroblast cells and behaviours in various subtypes of malignancies. Therefore, we sought
to identify distinct fibroblast subpopulations at the single-cell level.

Methods: Using single-cell quantitative PCR as a powerful tool to study heterogeneity and rare cell events, in a
high-throughput manner a panel of gene targets are run simultaneously on transcripts isolated from single cells
obtained by fluorescence-activated cell sort. Assessment of cells with stem-like characteristics was attained by
anchorage-independent, anoikis-resistant culture.

Results: Single-cell analysis of fibroblasts and their tumour-activated counterparts demonstrated molecularly distinct
cell types defined by differential expression of characteristic mesenchymal and fibroblast activation markers. Identified
subpopulations presented overlapping gene expression patterns indicating transitional molecular states during
fibroblast differentiation. Using single-cell resolution data we generated a molecular differentiation model which
enabled the classification of patient-derived fibroblasts, validating our modelling approach. Remarkably, a subset
of fibroblasts displayed expression of pluripotency markers, which was enriched for in non-adherent conditions.
Yet the ability to form single-cell derived spheres was generally reduced in CAFs and upon fibroblast activation
through TGFB1 ligand and cancer cell-secreted factors. Hence, our data imply the existence of putative stem/progenitor
cells as a physiological feature of undifferentiated fibroblasts.

Conclusions: Within this comprehensive study we have identified distinct and intersecting molecular profiles defining
fibroblast activation states and propose that underlying cellular heterogeneity, fibroblasts are hierarchically organized.
Understanding the molecular make-up of cellular organization and differentiation routes will facilitate the discovery of

more specific markers for stromal subtypes and targets for anti-stromal therapies.
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Background

With the need of more personalized medicine, targeting
the tumour microenvironment/stroma has become an
increasingly relevant and emerging concept. A permis-
sive or tumour-promoting stroma coevolves with cancer
cells during tumourigenesis [1] and in breast cancer,
cancer-associated fibroblasts (CAFs) are the most promi-
nent stromal cell type. CAFs thus present an attractive
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treatment option. Yet, the heterogenic nature and func-
tional complexity of CAFs, although well-known, has
been greatly understudied.

Physiologically, fibroblasts are mesenchymal cells and
as the main cellular component of connective tissues
maintain tissue homeostasis. Fibroblasts deposit and re-
model extracellular matrix (ECM) and facilitate wound
healing upon injury-induced activation. Transforming
growth factor-beta (TGEp) is the most potent inducer of
fibroblast transformation into ‘activated’ fibroblasts with
elevated smooth muscle actin-alpha (SMA«) levels
(encoded by ACTA2). This myodifferentiation gives rise

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-017-0642-7&domain=pdf
http://orcid.org/0000-0001-8119-086X
mailto:Susann.Busch@gu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Busch et al. Molecular Cancer (2017) 16:73

to a contractile and secretory cell, a phenotype which
has been associated with CAFs [2, 3]. However, although
genetically stable, CAFs display a vast cellular heterogeneity
and thus far no unique marker or common predominant
pathway has been identified. Classically CAFs are assigned
with pro-tumorigenic qualities. Recent advances however
have revealed tumour-inhibitory features [4] along with
cancer subtype-specific characteristics [5]. This suggests
that tumour-residing fibroblasts manifest not only
phenotypic but also functional plasticity and therefore
necessitating a more extensive understanding of the
origin and biology of CAFs.

This study aims to dissect cellular composition consti-
tuting fibroblast heterogeneity on single-cell level enab-
ling identification and characterization of molecular
subsets of breast cancer-associated fibroblast subpopula-
tions with reference to normal tissue-resident fibro-
blasts. Single-cell resolution data provided us with in-
depth information for adequate modelling of fibroblast
subsets. As a result, generation of a molecular fibroblast
differentiation model enabled us to categorize patient-
derived fibroblasts regarding its activation state. We
therefore report herein proof-of-principle how to iden-
tify and characterize individual tumour stroma subtypes.
We further provide first evidence of fibroblast stem or
progenitor cells signifying a cellular hierarchy.

We have previously hypothesized that the existence of
functional and phenotypic diverse fibroblast subpopula-
tions may reflect either [a] different stages during fibro-
blast activation which may either be transitory or
represent irreversible cell types, [b] different cells of
origin (such as tissue-resident fibroblasts, recruitment
of circulating mesenchymal stem cells or fibrocytes), [c]
distinct modes of activation (eg. cancer subtype, che-
mokine profile or physical tension), [d] a stochastic/
hierarchical organization, or likely [e] a combination of
thereof [6]. In line with this and the presented study,
we propose that the observed heterogeneity of CAFs is
a consequence of transitional molecular states with
overlapping marker expression during fibroblast activa-
tion with an underlying hierarchical program.

Methods

Cell culture and fibroblast isolation

Control fibroblasts and expCAFs cells are a kind gift of
Dr Akira Orimo. The generation of these cell lines have
been described previously [7]. Fibroblast cell lines were
cultured in DMEM with 10% foetal bovine serum (FBS)
in a humid chamber with 5% CO, at 37 °C. Primary
CAFs were isolated from surgically resected invasive
breast carcinomas on the day of surgery. Normal-
matched control tissue was taken approximately 2 cm
distant from tumour area. Tumour and normal tissue
were mechanically dissected and subjected to explant
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outgrowth and cultured in DMEM supplemented with
20% FBS and 1% non-essential amino acids in a humid
chamber at 37 °C with 5% CO, and at a physiological
level of 5% O,. Outgrown cells were trypsinized and fil-
tered through a 100um cell strainer to obtain single-cell
suspension for further propagation. Throughout cell cul-
ture patient-derived fibroblast cells sequentially outnum-
bered tumour cells which are sensitive to sequential
passaging and epithelial cell clusters disappeared after
passage three. Enriched fibroblast cells were cultured up
to ten passages. Fibroblastic nature was assessed by
microscopic assessment of characteristic spindle-like cell
morphology (Additional file 1A). For clinical information
of all utilized tumours refer to Additional file 1B.

Single-cell gene expression profiling

Procedure has been described previously [8]. Briefly,
single cells were obtained by fluorescence-activated cell
sorting (FACS Aria II, BD Biosciences) into a 96-well
plate excluding non-viable (7AAD+) cells and subjected
to direct cell lysis in 5ul containing lug/ul BSA in
DNase/RNase-free water, followed by immediate freezing
on dry ice. RNA was reversed transcribed and sort effi-
ciency was monitored by measuring GAPDH. Obtained
c¢DNA was preamplified using a pool of gene-specific
primers. Samples were prepared for high-throughput
real-time quantitative PCR using Fluidigm platform to
assess gene expression levels of selected genes. Obtained
single-cell qPCR data was pre-processed and subjected
to multivariate analysis using GenEx (Multid Analyses,
Version 5) as has been described [9]. No normalization
to reference gene was performed, instead gene expres-
sion data are presented per cell. For principle compo-
nent analysis (PCA) data were autoscaled per gene and
for unsupervised clustering (heatmaps) data were mean-
centred by gene using log2-transformed data unless
otherwise specified. To compensate for variations in abso-
lute RNA expression levels, data in Fig. 2b were auto-
scaled by cell which corresponds to a global normalization
and standardizes expression values to a common scale.
Distribution of ACTA2 gene expression levels were com-
puted in Graphpad Prism (Version 5.01).

Anoikis resistance and sphere formation assay

Adherent fibroblast cells were trypsinized, washed with
PBS and syringed with 25-gauge needle to obtain a
single-cell suspension. Triplicates of 5000 cells were
seeded in 2 ml phenolred-free DMEM/F12 supple-
mented with 2% B27 serum (Gibco) into non-adherent,
poly(2-HEMA)-coated 6-well plates. Number of spheres
larger than 50um was assessed after 5 to 6 days. Cells
were treated with either 10 ng/ml recombinant human
TGEP1 (rhTGEP1), 10uM SB431542 (TGFBR1 inhibi-
tor), 10uM LY2109761 (TGBFR1/TGFBR2 inhibitor),
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LY2157299 (TGFBR1 inhibitor) or 72 h cell-conditioned
media of ERa-positive breast cancer cell line MCF7 or
ERa-negative breast cancer cell line MDA-MB-231 for
48 h prior to sphere formation assay. Data are shown in
mean+/-SEM and two-way analysis of variance (ANOVA)
with replicates was performed for statistical analysis using
Graphpad Prism (Version 5.01). For anoikis-resistance,
single-cell suspension setup was scaled up 20x to obtain
sufficient number of viable cells after 24 h culture for
subsequent RNA analysis.

Label-retention assay

For PKH26 staining of sphere-forming cells, adherent
fibroblast cells were trypsinized, washed with serum-free
media, suspended in Diluent C and labelled with 1uM
PKH26 dye for 3 min according to manufacturer’s in-
struction (Sigma-Aldrich). Stained cells were washed
three times, syringed to obtain single cells and counted
to seed 500 cells for sphere formation under non-
adherent conditions as described in section above.

Standard quantitative RT-PCR

Following 24 h anoikis resistance cells were collected,
directly lysed and subjected to RNA isolation (Qiagen).
RNA was transcribed using Grandscript Reverse Tran-
scriptase (TATAA) and 20 ng of resulting cDNA was
used for real-time quantitative PCR (Applied Biosystems
7900) using Sybrgreen (Bioline) and 0.4uM of the same
target-specific primers used for single-cell gene expres-
sion profiling.

Results

To delineate cellular heterogeneity of fibroblasts we de-
ployed a microfluidics platform (Fluidigm) for multiplex
gene expression analysis of individual cells. This ap-
proach allows analysis of simultaneous gene expression
and resolves cellular diversity at the single-cell level. We
designed single-cell assays to study gene expression
typically associated with mesenchymal cells and fibro-
blast activation alongside genes involved in pluripotency,
breast cancer-specific stemness (BCSC), epithelial-to-
mesenchymal transition, cell cycle and proliferation (see
list of target genes in Fig. 1a). Single-cell assays and sub-
sequent quantitative PCR procedure have previously
been described by our group [8]. Briefly, we collected
single cells using fluorescence-activated cell sorting ex-
cluding non-viable cells. Sort efficiency was monitored
by measuring cells positive for GAPDH expression to
verify >80% positivity. Samples were pre-amplified and
subjected to high-throughput single-cell qPCR analysis
using the Fluidigm platform. Workflow for processing of
obtained single-cell data has been reported [9] and was
applied accordingly. Only GAPDH-positive samples were
included for downstream data analysis. For our study we
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employed an experimental CAF cell line model (expCAFs)
[7] and patient-derived material for descriptive and func-
tional analysis of normal fibroblasts and their breast
cancer-activated counterparts (see schematic depiction of
study design in Fig. 1b).

Molecular markers characterizing fibroblast activation
Comparing frequencies of cells expressing relevant gene-
specific targets demonstrates that fibroblast cells were
positive for typical fibroblast markers (such as VIM,
CD44) and mostly negative for epithelial markers
(CDHI, EPCAM) (Fig. 1c). Characteristic fibroblast acti-
vation gene targets such as ACTA2, COL1A1 and TNC
were significantly upregulated in CAFs together with
typical cancer-induced chemokines most prominently
CXCL12, which has been reported for this cell line [7].
Concomitantly CAVI was downregulated in CAFs along-
side other mesenchymal markers such as CD44 and
VIM. Loss of CAF-specific Caveolin-1 expression has
been reported to be linked to worse prognosis in mul-
tiple cancers including breast cancer [10].

Based on the individual single-cell gene expression pro-
files, principle component analysis (PCA) revealed clearly
distinguishable clusters of experimental CAFs when com-
pared to their control counterparts (Fig. 1d). Strikingly,
corresponding gene clusters were predominantly defined
by gene groups (ie. pluripotency, BCSC-like, proliferation,
fibroblast and epithelial markers) indicating potential
co-regulation of a specific cellular function. However,
expression patterns of transcription factors and soluble
factors were more diverged, suggesting a more complex
transcriptional regulation and induction of paracrine
molecules.

SMAu is the most widely used marker to assess CAF
activation status and is associated with worse clinical
outcome [11]. Interestingly, we observed a bimodal dis-
tribution of expression level among the experimental
CAF population (Fig. le), indicating a mixed population
of ACTA2 low and high expressing cells. Thus, in order
to determine the role of SMAa in regard to fibroblast
activation status we stratified cells according to their
ACTA2 expression level for correlation with other CAF ac-
tivation markers. However, comparison of ACTA2 low to
ACTA2 high expressing CAFs demonstrated no difference
in gene expression profile other than ACTA2. Yet com-
pared to control fibroblast, ACTA2 low CAFs showed sig-
nificant higher expression of CXCL12, PDGFA, VEGFA and
ALDHIAS3 (Fig. 1f). These data suggest that CAFs with low
SMAa expression do not correspond to a normal fibroblast
phenotype but rather constitute a subset of activated
CAFs with tumour-promotive features. Whether SMA«
induction is in fact abrogated or merely bypassed using
alternative fibroblast activation mechanisms needs to
be clarified.
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Fig. 1 Molecular markers distinguish normal fibroblasts from the tumour-activated counterparts. a Table of selected gene targets colour-coded
according to their attributes (gene group). b Schematic representation of study design. ¢ Basic statistics of single-cell gene expression profiles of
experimental fibroblast model. Graphs represent frequency of selected gene targets in percentage as bars and average gene expression levels given as
log2-transformed relative quantities depicted as dots. Error bars represent SEM (*p-value < 0.05 Student t-test, Control F: control fibroblast, expCAF:
experimentally-generated cancer-associated fibroblast). d (Left panel) Principal component analysis (PCA) of 183 individual Control fibroblasts (n =92,
blue dots) and expCAFs (n =91, red triangles). In the principal component projections the position of a single cell (scores) is based on the expression
of the analysed genes (n = 43), each dot represents a single cell. (Right panel) Plot represents the gene loadings for the PCA. Principal component
projection of the genes illustrates the contribution of each gene to the scores of PC1 and PC2. Groups of genes are indicated as follows;
orange: epithelial, red: fibroblast markers, purple: chemokines, green: transcription factors, blue: proliferation markers, grey: breast cancer-specific
stem cell markers, black: pluripotency. e Histogram of distribution of ACTA2-specific gene expression with Gaussian regression analysis for
control fibroblasts (blue line) and expCAFs (red line: sum of two Gaussians) demonstrating a bimodal gene expression pattern. f Plots depict
correlations of gene expression between ACTA2 low expressing expCAFs and Control fibroblasts (left) and ACTA2 high expressing expCAFs
(right). Genes outside the significance area (dotted black line) are denoted

Gene correlation analysis confirmed observed PCA-
projected gene clusters and highlighted five main clusters
(Fig. 2a). Gene cluster A displays a strong correlation of
CAV1, CD44 and VIM with proliferation and BCSC

markers. Strikingly, gene cluster B reveals correlation of
all pluripotency markers with CCLS, which encodes for
Rantes, a known mesenchymal stem cell effector [12] sug-
gesting a distinct subpopulation with potential stem-like
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Fig. 2 Gene and cell-to-cell correlation analysis. a Heatmap (unsupervised clustering, Euclidian distance) demonstrating gene correlations coefficients
(Spearman) based on gene expression of all cells. b Heatmap (unsupervised clustering, Euclidian distance) demonstrating cell-to-cell correlations
coefficients (Spearman) based on individual gene expression profile of each cell. Manual grouping was performed according to hierarchical clustering
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properties. The remaining clusters display overlap of
correlation, fibroblast markers FAB COLIAI and FNI
(Cluster C) correlate with ACTA2 and TNC (Cluster D)
and to Cluster E including PDGFA, CXCL12, VEGFA and
ALDHIAS3. The latter interestingly shows a strong inverse
correlation with gene cluster A. Remarkably when analysing
gene correlation separately, correlating gene clusters in-
cluding pluripotency were largely maintained within nor-
mal fibroblasts but either overlapping or absent in CAF
cells (Additional file 2A, middle and left panel). This data
indicates the presence of a stem-like subtype within normal
fibroblasts and that CAFs may be more streamlined or in
fact displaying transitional phenotypes rather than true
(distinct) subtypes.

Collectively, our study confirms a distinct regulation
of fibroblast-specific markers, including several indica-
tors for aggressiveness, making them suitable markers

for monitoring fibroblast activation. Whether downregu-
lated expression of mesenchymal markers is a side-effect
or a fundamental step of fibroblast activation needs to
be further tested.

Identification and modelling of subpopulations defining
fibroblast differentiation states

To examine the existence of subpopulations at the
single-cell level we performed cell-to-cell correlation
analysis based on all analysed genes. The correlation co-
efficient (Spearman rho) which indicates how one cell
relates to another is depicted in a heatmap, clustering
cells by similarity (Fig. 2b). Cells were grouped according
to hierarchical clustering of their correlation and conse-
quently divided into five subgroups (Cell cluster #1-5)
including two groups per cell type and one mixed sub-
group (Cell cluster #3). Cell identification for clusters
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were noted and used for manual subgrouping of cells. In
order to avoid skewing data by global RNA expression
level, samples were normalized by autoscaling data per
cell. As a result PCA analysis depicts clustering of iden-
tified cellular subgroups and also distinction of CAFs
from normal counterparts (Fig. 3a). Strikingly, within
cell cluster #3 normal fibroblasts show gradual conver-
sion to more CAF-like phenotype. Similar cell clusters
were observed when subgrouping samples applying self-
organizing map (SOM) analysis. Projection of gene
loadings for normalized cells was principally unaffected,
displaying similar gene groupings (Fig. 3a).

For further analysis of frequency and average expres-
sion levels of gene targets per cell group, we divided
mixed cell cluster #3 into control fibroblasts and
expCAFs to assess potential differences in physiological
fibroblast differentiation status and tumour-mediated
fibroblast activation (Fig. 3b). We noticed that gene ex-
pression was mostly regulated by in- or decreased tran-
script level except for HGF, CCLS, pluripotency and
BCSC-like target genes. Changes in number of positive
cells may be indicative of a more switch-like gene regu-
latory mechanism of putative stem cells. To account for
switch-like and transitional gene regulation equally, we
generated pseudo-temporal gene expression profiles
combining target-specific frequencies and relative ex-
pression levels for each cell cluster. Gene groups or
similar gene expression profiles within the fibroblast
and soluble factors gene transcripts are plotted together
(Fig. 3c). According to their most prominent gene tran-
scription we denoted normal fibroblast cell clusters as
following; #1 as ‘stem-like’ (defined by high pluripo-
tency expression), #2 ‘naive’ (lowest activation marker
expression) and #3 as ‘primed’ (characterized with
increased MMP2, FSP1, TNC, COLIAI and FNI ex-
pression) whereas expCAFs were denoted #4 as ‘proto-
myofibroblasts’ (ACTA2 expression is higher compared
to control fibroblasts, but lowest amongst CAFs), #5 as
‘ECM-regulating myofibroblasts’ (highest COL1A1 and
FN1 expression) and #6 as ‘secretory myofibroblasts’
(highest CXCL12 and PDGFA expression). Based on se-
lected markers unsupervised hierarchical clustering
confirms much closer resemblance between ‘stem-like’
and ‘naive’ fibroblasts whereas ‘primed’ normal fibro-
blast were somewhat closer related to expCAFs, al-
though still low in soluble factor secretion. According
heatmap further illustrates proposed stepwise regula-
tion of gene expression during fibroblast activation
(Fig. 3d).

Overall, identifying distinct but overlapping gene ex-
pression patterns in fibroblast subpopulations allowed
modelling of a transitional, progressive differentiation
process and the regulation of pluripotency markers indi-
cates an underlying hierarchical program.
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Molecular classification of patient-derived fibroblasts
With regard to the CAF model, patient-derived normal
and according cancer-associated fibroblasts revealed a
conserved gene expression, defined by increased tran-
script levels of ACTA2, COLIAI, TNC, VEGFA and
ALDHIA3, with concomitant decreased expression of
CAV1, CD44 and VIM in CAFs (Fig. 4a).

Likewise, PCA of primary normal fibroblasts and CAFs
presents them as distinct molecular cell types (Fig. 4b).
The according gene expression pattern was somewhat
more convoluted, yet proliferation and pluripotency
gene clusters remained. Identified gene clusters of cell
line model are highlighted. We observed gene cluster A
to be divided into two (Al, A2) marking normal fibro-
blasts and overlapping gene clusters C-D characterizing
fibroblast activation and CAF phenotypes whereas gene
cluster E is absent. In order to identify whether and
which fibroblast markers contribute the most to a gene-
ric CAF phenotype, we combined both data sets, CAF
model and primary fibroblasts, by mean-centering data.
We found ACTA2, TNC and ALDHIA3 to be the best
common CAF markers, however not sufficient for a
clear distinction from normal fibroblasts (Fig. 4c). SMA«x
and Tenascin-C are known fibroblast activation and
CAF markers [4], but to the best of our knowledge this
is the first report linking an aldehyde dehydrogenase
family member to CAF activation.

No clear distinct gene correlations defining normal
and activated fibroblasts could be identified for primary
cells (Additional file 2B, left panel). Gene cluster A and
a minimized gene cluster C/D, attributed to ‘naive’ and
‘proto-myofibroblastic’ states respectively, were identi-
fied (Additional file 2B, middle and right panel). Indi-
vidual gene correlations only hint at a stem cluster
exclusive for the normal fibroblasts and a tighter gene
co-regulation for CAFs. In line with PCA analysis no
gene cluster E was observed, however we further ob-
served an additional correlation cluster including TNC
and VEGFA which was absent for normal fibroblasts
(Additional file 2B). It has been suggested that FSP1-
positive CAFs expressing Tenascin C and VEGFA rep-
resent metastasis-associated fibroblasts [13]. However
analysed patient-derived CAFs revealed a pronounced
decrease in FSPI transcript levels.

Utilizing defined molecular fibroblast differentiation
states we applied data of primary cells as test set within
a PCA to determine their activation status. We found
normal fibroblast to be closest resembling the “naive”
phenotype, if somewhat more diverse, ranging from
‘stem-like’ to ‘primed’ than the CAFs which clustered
more tightly mainly between the ‘primed” and ‘proto-
myofibroblastic’ phenotypes. Thus, generation of a mo-
lecular differentiation model allows classification of
patient-derived breast cancer-associated fibroblasts as
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Fig. 3 Identification of fibroblast subpopulations and generation of a molecular differentiation model. a Principal component analysis (PCA) of
183 individual normal (n =92, dots) and experimentally generated cancer-associated fibroblasts (expCAFs, n =91, triangles) colour-coded according to
their subgroups. Data was normalized by autoscaling data per cell to eliminate differences due to global expression level (left). Kohonen self-organizing
map (SOM) analysis confirms subgroups based on cell-to-cell correlation (middle). According gene loadings for PCA. Gene clusters are highlighted
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depict pseudo-temporal gene expression profile representing the product of relative expression level and frequency across subgroups. d Heatmap
(unsupervised clustering) of pseudo-temporal gene profiles (combined frequency and relative average expression) per subgroup which were assigned
a specific cellular state according to their most prominent gene transcripts thereby creating a pseudo-timeline of molecular differentiation states.
Genes with extremely pronounced differences between subgroups were plotted separately for better visualization

early onset CAFs defined by relatively low ACTA2
positivity and moderate secretory profile and mostly
remodelling qualities
COLIA, TNC, MMP2, LOX and LOXL2 levels with

exhibiting ECM

concomitant decrease in CAVI and CD44.

with high

progeny. The

Functional analysis of stem potential
Stem cells are unspecialised cells at the apex of a hier-
archical cellular organization with the ability to self-
renew and give rise to more specialised/ differentiated
discovery of specific markers

and
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Fig. 4 Analysis of patient-derived fibroblasts. a Basic statistics of single-cell gene expression profiles of patient-derived fibroblasts isolated from
invasive, ERa-positive breast cancer and according normal tissue. Graphs represent frequency of selected gene targets in percentage as bars and
average gene expression levels given as log2-transformed relative quantities depicted as dots. Error bars represent SEM (*p-value < 0.05 ANOVA,
NF: normal fibroblast, CAF: cancer-associated fibroblast). b (Left panel) Principal component analysis (PCA) of 152 individual normal (n =77, blue dots)
and cancer-associated fibroblasts (n =75, red triangles). (Right panel) Plot represents the gene loadings for the PCA. Principal component projection

of the genes illustrates the contribution of each gene to the scores of PC2 and PC3. Groups of genes are indicated as follows; orange: epithelial, red:
fibroblast markers, purple: chemokines, green: transcription factors, blue: proliferation markers, grey: breast cancer-specific stem cell markers, black:
pluripotency. Identified gene clusters of cell line model are highlighted with gene cluster A divided into two (A1, A2) whereas gene cluster E is absent.
¢ PCA depicting combined mean-centered datasets of single-cell gene expression of CAF model and patient-derived fibroblasts based on ten genes
with potential fibroblast activation-predictive qualities. d PCAs of subgroups/differentiation states and applying patient-derived normal (feft panel) and
cancer-associated fibroblast (middle panel) single-cell data as test set. Patient data was normalized due to variable global expression levels by autoscaling

data per cell. (Right panel) According gene loadings for PCAs

common molecular process underlying the core stem
cell properties, also referred to as stemness, has been
object of intense study. Stemness potential is typically
characterized by high expression of pluripotency genes,
tissue-specific stem cell markers and low proliferation
rate/quiescence [14].

Cellular organization of fibroblasts is still obscure
owing to diverse cells of origin and modes of activation.
In order to validate the existence of a potential hierarch-
ical framework of fibroblast we assessed anoikis resist-
ance/anchorage independence and subsequent sphere
formation capacity as functional readout for stem-like
characteristics. Label-retention analysis was employed as
proof-of-principle confirming the ability of a single cell
to give rise to spheroid growth upon survival under
non-adherent conditions (Fig. 5a). Furthermore, when

we compared RNA expression of conventionally cul-
tured fibroblasts with 24 h anoikis-resistant cells, we
noted increased expression of all pluripotency genes and
CCL5 while proliferation genes (CCNA2, MKI67) were
downregulated (Fig. 5b). In line, CDKN1A, encoding p21
which regulates cell cycle arrest/ quiescence was upregu-
lated. Remarkably, fibroblast activation markers ACTA2,
TNC and ALDHI1A3 showed lower expression whereas
ECM markers COLIAI and FNI and several soluble
factors (most prominently HGE MAMP2) exhibited
higher transcript levels. Taken together, single-cell de-
rived sphere formation and anoikis resistance-mediated
increase in pluripotency support validity of our approach
to monitor stemness.

Quantifying stem cell-like potential in the fibroblast
cell lines we observed significant lower sphere number



Busch et al. Molecular Cancer (2017) 16:73

Page 9 of 12

A Label-retention: Single-cell derived sphere

C Sphere formation

B Ancikis-resistance
]
NN

Mean expression

3.2
-3.2

MSC-like ?

ACTA2, ALDH1A3

CXCL12, PDGFA, 1GFB1, VEGFA

Naive

SOX2, NANOG, CCL5

depicted as normal-matched (blue) and cancer-associated fibroblast (red) and

comprising diverse activation states with overlapping molecular profiles

Fibroblast activation  Fibroblast inhibition  CAF inhibition
0.6- 5 * 0.3-
n 1] 3 N 3
O os o o o oz
9] * I} o o}
< < < * < €
o [-% o [=% 3
[ o %) A 0a 3
N ® R 1 N o
0.0- 0 0.0-
N SO & &P
© & L8P & & F
o of K é”;,e&js; & &‘:’Vﬂ»&vﬂ\@
D Patient-derived fibroblasts: Sphere formation
10 s
10 s
8 ® . OF
» . 7] L
I) o) 'S
© g 6 o
< <
& &4 < <
v’ S o)
= SIPI I N & & K
. £ & R R
< & & & Mono-  Anoikis-
& e & layer resistance
Ky &
E Model: Fibroblast differentiation
Molecular profiles Cellular states Functions Differentiation
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10 ng/ml of recombinant human TGFB1 (rhTGF@1), 72 h cell-conditioned media of breast cancer cell lines (MCF7, MDA-MB-231) or 10uM of TGF3
signalling-targeted pharmacological inhibitors (TGFBR1 inhibitors: SB431542, LY2157299; dual TGFBR1/TGFBR2 inhibitor: LY2109761). Three independent
experiments with triplicates were performed. d Graphs representing sphere formation as percentage of individual patient-derived fibroblasts (triplicates)

tumour number (T1-T9). Clinical information for each tumour can be found in Additional file 1. e Working model of hierarchical fibroblast differentiation

Tissue homeostasis Cellular plasticity
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Recruitment/ Activation
Fibroblast migration?
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ECM remodelling, Migration, Invasion

Type lI:
Survival, Angiogenesis,

Metastasis, Immune modulation ) o
Fibroblast activation

paired treatment response. Each sample is marked with corresponding

for expCAFs (Fig. 5¢). To test whether paracrine activa-
tion of fibroblasts accounts for loss of sphere-forming
capacity we transdifferentiated control fibroblast through
cultivation with recombinant human TGEFP1 ligand or
cancer cell-conditioned media. TGFp1 and cancer-
secreted factors significantly reduced sphere formation
whereas the use of pharmacological TGFp inhibitors in-
creased sphere formation. This potentially highlights a
key role of the TGFp pathway in stem cell maintenance.
In contrast inhibiting TGFEB pathway in expCAFs did
not affect sphere numbers suggesting an irreversible dif-
ferentiation state and diminished cellular plasticity of
highly activated fibroblasts.

Two out of three patient-derived fibroblasts confirmed
reduced sphere-forming capacity in CAFs (Fig. 5d). It is
noteworthy that sphere number was considerably higher
in primary cells compared to CAF model cell lines.
Modulation of TGFp signalling demonstrated reduced
sphere formation in normal fibroblasts using TGEB
ligand and increased sphere number in both, normal fi-
broblasts and CAFs, upon TGFp inhibition. Latter obser-
vation may be a result of either a retained cellular
plasticity of ex vivo fibroblasts, distinct tumour-stromal
interaction with the associated tumour or a mixed popu-
lation of CAFs with discrete anatomic origin. It has been
demonstrated that fibroblast isolated from distinct
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tumour zones exhibit different biomodulatory properties
[15]. The recruitment process and functional role of
MSCs to the tumour site is still matter of debate [16],
however it was shown that about one fifth of CAFs may
originate from bone-marrow derived MSCs [17]. Multi-
potency may thus be distinct from CAFs of other origin.
Analysis of more patient samples is required to address
this. Overall our data highlight the existence of a subset
of cells with stem-like characteristics and suggest a hier-
archical cellular organization of fibroblasts.

Discussion

CAFs are critical components of the tumour stroma and
thus present a promising novel treatment option. How-
ever, the multifunctional role of CAFs and their funda-
mental heterogenic nature makes targeting the tumour
stroma clinically challenging. Therefore it is essential to
characterize underlying molecular processes of tumour-
associated fibroblast activation in order to identify
relevant markers enabling monitoring and appropriate
targeting of potential functionally distinct CAF subtypes.

Within this comprehensive program we demonstrate
that normal fibroblasts and their tumour-activated coun-
terparts are molecularly distinct cell types. Beside loss of
Caveolin-1 and increased SMAa and Tenascin-C, we
report a member of the ALDH family as a novel
fibroblast activation marker which may be linked to
pro-tumourigenic features such as secretion of angiogenic
and chemotactic growth factors (ie. VEGFA, PDGFA,
SDF1). We suggest a combination of these markers to
determine stromal activation status as no single marker ac-
counts for all CAFs.

We further reveal that CAFs differentiate with simul-
taneous increase of numerous characteristic fibroblast
activation target genes and paracrine factors with a
dominating group of genes regulating a specific tumour
microenvironmental aspect such as ECM remodelling
(‘Type I') or growth factor/ cytokine secretion (‘“Type II).
Based on cell-to-cell similarity and the overlapping gene
expression profiles indicating transitional states, we cre-
ated subgroups in a sequential manner. Generating a
pseudo-timeline recapitulating theoretical differentiation
stages allowed ultimately for classification of patient-
derived fibroblasts to be predominantly of an early-stage
phenotype characterized with minimal ACTA2 induction
but ECM-remodelling qualities (‘proto-myofibroblast’)
(Fig. 4d).

Notably, an earlier study suggested two distinct CAF
subtypes based on either SMA« or FSP1 expression [18].
Both markers have been shown to be protumourigenic.
However FSP1 was found to be expressed on resting as
well as activated fibroblasts. With regard to our data
highlighting FSP1 as a marker for a ‘primed’ cellular
state found in normal fibroblasts, we suggest FSP1 as an
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early marker in fibroblast activation that may be reverted
upon SMAa« induction. In accordance, we observed
FSP1 profoundly reduced in the patient-derived CAFs
compared to the normal counterparts whereas SMA«-
encoding ACTA2 gene expression level increased to-
gether with TNC and ALDHIAS3. Loss of FSPI in mice
was shown to impair fibroblast motility and reduced me-
tastasis. Strikingly, in line with this, evaluation of clinical
aspects of analysed tumour revealed the absence of
lymph node metastasis despite the high risk of lymph
node involvement for the ERa+/HER2+/Ki67"€" tumour
subtype [19].

In more detail, analysed fibroblasts are derived from a
patient with invasive ductal carcinoma molecularly char-
acterized with high Ki67 index, ERa- and PR-positivity
and harbouring HER2 amplification (Additional file 1).
This expression profile classifies the tumour to be of the
luminal B subtype with worse prognosis compared to
the ERa-positive luminal A subtype [20]. Further, the
histopathologically observed vascular invasion is associ-
ated with unfavourable outcome [21]. However, the
tumour presented with residual DCIS which was shown
to be associated with favourable outcome [22] and most
importantly the tumour displayed no lymph node in-
volvement which is most significant prognostic indicator
for patients with early-stage breast cancer [21].

Taking together the tumours clinico-pathological pa-
rameters and CAFs’ gene expression profiling it is
tempting to assume that despite aggressive features
such as big tumour size, high Ki67 status and vascular
invasion, that the presence of DCIS, absence of lymph
node metastasis and lack of chemotactic “secretory type
II CAFs” marks the onset of a spreading tumour which
has not yet manifested. With this in mind, analysing
CAF-specific markers could be of great prognostic and/
or predictive value aiding patient selection and thus ad-
vancing personalised medicine.

Our study further highlights the existence of stem-like
cells as a physiological feature of tissue-resident fibro-
blasts. Putative stem-like cells were defined as expressors
of pluripotency genes and surviving non-adherent condi-
tions which induces or enriches for pluripotency gene
expression, and give rise to single-cell derived spheres.
Strikingly, pluripotency correlated with CCL5 expres-
sion, which is a prominent factor in stromal gene ex-
pression signatures and linked to worse prognosis in
breast cancer [12, 23]. It has previously been demon-
strated that fibroblastic cells within the tumour stroma
possess mesenchymal stem cell (MSC) qualities and that
breast cancer cells stimulate secretion of CCL5, which in
turn facilitates its metastatic capacity [12]. Fibroblasts
are likely to be more restricted in their differentiation
potential than multipotent MSCs, but they may retain
some cellular plasticity which appears to be regulated by
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TGEP. Very few studies have reported an anoikis-
resistant phenotype of fibroblasts, however with a pro-
tective role of TGFP on survival of differentiated fibro-
blasts [24, 25] which may be a distinct functional feature
compared to assessing single-cell survival with subsequent
sphere formation. Notably, CAFs appear to be associated
with a loss in sphere-forming capacity potentially repre-
senting a more differentiated cell type with diminished re-
generative ability or cellular plasticity. However it remains
to be determined how stem-like CAFs differ functionally
from normal stem-like fibroblasts and whether their regu-
lation is dependent on the associated tumour type or
other microenvironmental factors.

Of note, a recent review by Kalluri suggests that resting
or quiescent fibroblasts may be considered adult tissue-
resident mesenchymal stem cell [26]. Even further our
data presented here is in line with the hypothesized three
main fibroblast phenotypes: (1) resting or quiescent fibro-
blasts with MSC capacity, (2) normal or wound-healing-
associated activated fibroblasts (NAFs) with increased
ECM synthesis, secretion and motility thus representative
of “primed” fibroblasts and (3) CAFs which exert an en-
hanced secretory profile while concomitantly associated
with loss of contractility (SMAa) and decreased synthetic
activity (collagen, fibronectin) compared to NAFs. How-
ever transitional stages or cellular states need to be further
defined.

Conclusion

Collectively our data indicate that underlying the cellular
heterogeneity, fibroblasts may be hierarchically orga-
nized (see model Fig. 5e). The notion of cancer as “a
wound that never heals” implies parallels of the tran-
scriptional program between fibroblasts in the tumour
stroma and during wound response. We propose that
tumour-secreted factors such as TGFp recruit and acti-
vate resident ‘naive’ fibroblasts. A subsequent increase in
ECM deposition and ECM-remodelling enzymes is
‘priming’ fibroblasts to a more differentiated state
whereas loss of particular mesenchymal markers such as
Caveolin-1 may indicate a less reversible commitment of
fibroblast activation. This ultimately results in archetypical
CAFs with excessive matrix production (‘Type I') and se-
cretion of angiogenic and metastatic growth factors and
immunomodulatory cytokines (‘Type II). During the
fibroblast differentiation, physiological stem or regenera-
tive potential may be lost, mediated by tumour-secreted
factors such as TGF( which in turn effectively induces
fibroblast activation.

Distinct fibroblast specialization may depend on cell of
origin [27] and it has been noted that heterogeneity and
interactions of different types of CAFs potentiates
tumour-promoting qualities [28]. Findings reported
herein relate to the ERa-positive breast cancer subtype
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and tissue-resident derived fibroblasts. It has been noted
that the majority of CAFs are derived from local stem or
progenitor cells whereas about a third may have different
cellular origins [28]. We present evidence that tissue-
derived fibroblastic cells provide a local source for CAFs
and contribute to the immunomodulatory function of the
reactive tumour stroma. Overlapping marker expression
pattern may indicate transitional cellular states rather than
distinct cell types and predominant cellular states of CAFs
may be inherent or affected by extrinsic factors such as
genetic makeup of the tumour or tumour stage.

Further characterization of individual tumour stroma
phenotypes will expand opportunities to discover novel
clinical biomarkers and therapeutic targets. Categorizing
patient groups with respect to CAFs in combination
with current diagnostic tests will enable a more reliable
selection of therapeutic strategies that block the tumour
microenvironment.

Additional files

Additional file 1: Characterization of patient-derived fibroblasts and
clinical information of used tumours. Fibroblast morphology and SMAa
expression levels of isolated normal and cancer-associated fibroblasts.
Clinical information of all analysed tumours. (PDF 1033 kb)

Additional file 2: Gene correlation analysis. Heatmaps depicting gene
correlation analyses according to fibroblast subgroups (normal versus
cancer-activated) for CAF cell line model and primary fibroblasts.
(PDF 2716 kb)

Abbreviations

7AAD: 7-amino-actinomycin D; ABCG2: Adenosine triphosphate-binding
cassette sub-family G member 2; ACTA2: Actin, alpha 2, smooth muscle,
aorta; ALDHTA3: Aldehyde dehydrogenase 1 family member A3;
ANOVA: Analysis of variance; BCSC: Breast cancer-specific stem cells;
BSA: Bovine serum albumin; CAFs: Cancer-associated fibroblasts;

CAV1: Caveolin 1; CCL5: C-C motif chemokine ligand 5; CCNA2: Cyclin A2;
CD24: Cluster of differentiation 24; CD44: Cluster of differentiation 44;

CDH1: Cadherin 1; CDKNTA: Cyclin dependent kinase inhibitor 1A;

cDNA: Complementary deoxyribonucleic acid; CO,: Carbon dioxide;

COL1AT: Collagen, type |, alpha 1; CTGF: Connective tissue growth factor;
CXCL12: C-X-C motif chemokine ligand 12; DNA: Deoxyribonucleic acid;
DNase: Deoxyribonuclease; DNER: Delta/notch like epidermal growth factor
repeat containing; ECM: Extracellular matrix; EPCAM: Epithelial cell adhesion
molecule; ERa: Oestrogen receptor alpha; ESR1: Oestrogen receptor 1;
expCAFs: Experimentally generated cancer-associated fibroblasts;

FACS: Fluorescence-activated cell sorter; FAP1: Fas-associated phosphatase 1;
FBS: Foetal bovine serum; FNT1: Fibronectin 1; FOSL1: Fos-like antigen 1;

FSP1: Fibroblast-specific protein 1; GAPDH: Glyceraldehyde-3-phosphate
dehydrogenase; HGF: Hepatocyte growth factor; HIFTA: Hypoxia-induced
factor 1 alpha; ID1: Inhibitor of deoxyribonucleic acid binding 1;
KRT14: Keratin 14; KRT18: Keratin 18; KRT4: Keratin 4; LOX: Lysyl oxidase;
LOXL2: Lysyl oxidase like 2; MKI67: Marker of proliferation Ki-67; MMP2: Matrix
metallopeptidase 2; MSC: Mesenchymal stem cell; NANOG: Nanog
homeobox; PCA: Principle component analysis; PCNA: Proliferating cell
nuclear antigen; PCR: Polymerase chain reaction; PDGFA: Platelet-derived
growth factor; PGR: Progesterone receptor; poly-HEMA: Poly-2-hydroxyethyl
methacrylate; POUSF1: POU class 5 homeobox 1; RNA: Ribonucleic acid;
RNase: Ribonuclease; RT-PCR: Reverse transcriptase polymerase chain
reaction; RUNX1: Runt-related transcription factor 1; SEM: Standard error of
mean; SMAa: Smooth muscle actin alpha; SNAIT: Snail family transcriptional
repressor 1; SNAI2: Snail family transcriptional repressor 2; SOM: Kohonen
self-organizing maps; SOX2: Sex determining region Y-box 2;


dx.doi.org/10.1186/s12943-017-0642-7
dx.doi.org/10.1186/s12943-017-0642-7

Busch et al. Molecular Cancer (2017) 16:73

TGFB1: Transforming growth factor beta 1; TGF: Transforming growth
factor beta; TNC: Tenascin C; TP53: Tumor protein p53; TWIST1: Twist
family basic helix-loop-helix transcription factor 1; VEGFA: Vascular
endothelial growth factor A; VIM: Vimentin

Acknowledgement

The authors would like to thank Dr Akira Orimo for kindly providing us with
the experimental CAF model cell lines. The authors would also like to thank
Ylva Magnusson and Pernilla Gregersson for collection and handling of tissue
samples and patient data.

Funding
This study was supported by the Swedish Research Council and the Swedish
Cancer Society.

Availability of data and materials
The datasets generated during and analysed during the current study are
available from the corresponding author on reasonable request.

Authors’ contributions

SB was involved preparation and data acquisition of single-cell gPCR and
performed cell-based assays, analysed and interpreted data and drafted
manuscript. DA performed primer design and validation and single-cell gPCR.
EB and CW performed fluorescence-activated cell sorting. AS and GL were
involved in experimental set up, data analysis, interpretation and drafting of
manuscript. All authors read and approved the final manuscript.

Competing interests
A.S. declares stock ownership in TATAA Biocenter.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Processing of patient material and data has been approved by the Regional
Research Ethics Committee (REC) in Gothenburg (reference number: 515-12).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Pathology, Sahlgrenska Cancer Center, Institute of
Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg,
Sweden. “Department of Surgery, Institute of Clinical Sciences,
Transplantation and Regenerative Medicine, Sahlgrenska Academy, University
of Gothenburg, Gothenburg, Sweden.

Received: 16 November 2016 Accepted: 22 March 2017
Published online: 03 April 2017

References

1. Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer
wound. J Exp Med. 2014;211:1503-23.

2. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor
stroma generation and wound healing. N Engl J Med. 1986;315:1650-9.

3. Karagiannis GS, Poutahidis T, Erdman SE, et al. Cancer-associated fibroblasts
drive the progression of metastasis through both paracrine and mechanical
pressure on cancer tissue. Mol Cancer Res. 2012;10:1403-18.

4. Augsten M. Cancer-associated fibroblasts as another polarized cell type of
the tumor microenvironment. Front Oncol. 2014;4:62.

5. Tchou J, Kossenkov AV, Chang L, et al. Human breast cancer associated
fibroblasts exhibit subtype specific gene expression profiles. BMC Med
Genet. 2012,5:39.

6. Busch S, Landberg G. CAF-specific markers: role of the TGFbeta pathway.
Oncoscience. 2015;2:835-6.

7. Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-beta and stromal cell-
derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting
mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107:
20009-14.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Page 12 of 12

Akrap N, Andersson D, Bom E, et al. Identification of Distinct Breast Cancer
Stem Cell Populations Based on Single-Cell Analyses of Functionally
Enriched Stem and Progenitor Pools. Stem Cell Reports. 2016;6:121-36.
Stahlberg A, Rusnakova V, Forootan A, et al. RT-qPCR work-flow for single-
cell data analysis. Methods. 2013;59:80-8.

Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Caveolae and signalling in
cancer. Nat Rev Cancer. 2015;15:225-37.

Yamashita M, Ogawa T, Zhang X, et al. Role of stromal myofibroblasts in
invasive breast cancer: stromal expression of alpha-smooth muscle actin
correlates with worse clinical outcome. Breast Cancer. 2012;19:170-6.
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour
stroma promote breast cancer metastasis. Nature. 2007,449:557-63.
O'Connell JT, Sugimoto H, Cooke VG, et al. VEGF-A and Tenascin-C
produced by S100A4+ stromal cells are important for metastatic
colonization. Proc Natl Acad Sci U S A. 2011;108:16002-7.

Melton DA, Cowen C. “Stemness”: Definitions, Criteria, and Standards.
Essentials of Stem Cell Biology. 2nd ed. 2009. p. Xxiii—Xxix.

Gao MQ, Kim BG, Kang S, et al. Stromal fibroblasts from the interface zone
of human breast carcinomas induce an epithelial-mesenchymal transition-
like state in breast cancer cells in vitro. J Cell Sci. 2010;123:3507-14.

Yagi H, Kitagawa Y. The role of mesenchymal stem cells in cancer
development. Front Genet. 2013;4:261.

Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts
contribute to the mesenchymal stem cell niche and promote tumor
growth. Cancer Cell. 2011;19:257-72.

Sugimoto H, Mundel TM, Kieran MW, et al. Identification of fibroblast
heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640-6.
Inic Z, Zegarac M, Inic M, et al. Difference between Luminal A and Luminal
B Subtypes According to Ki-67, Tumor Size, and Progesterone Receptor
Negativity Providing Prognostic Information. Clin Med Insights Oncol. 2014;
8:107-11.

Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast
carcinomas distinguish tumor subclasses with clinical implications. Proc Natl
Acad Sci U S A. 2001;98:10869-74.

Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage
breast cancer. Oncologist. 2004;9:606-16.

Chagpar AB, McMasters KM, Sahoo S, et al. Does ductal carcinoma in situ
accompanying invasive carcinoma affect prognosis? Surgery. 2009;146:561-7.
discussion 567-568.

West RB, Nuyten DS, Subramanian S, et al. Determination of stromal
signatures in breast carcinoma. PLoS Biol. 2005;3:e187.

Horowitz JC, Rogers DS, Sharma V, et al. Combinatorial activation of FAK
and AKT by transforming growth factor-betal confers an anoikis-resistant
phenotype to myofibroblasts. Cell Signal. 2007,19:761-71.

Kim BG, Gao MQ, Choi YP, et al. Invasive breast cancer induces laminin-332
upregulation and integrin beta4 neoexpression in myofibroblasts to confer
an anoikis-resistant phenotype during tissue remodeling. Breast Cancer Res.
2012;14:R88.

Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer.
2016;16:582-98.

Gascard P, TIsty TD. Carcinoma-associated fibroblasts: orchestrating the
composition of malignancy. Genes Dev. 2016;30:1002-19.

Barron DA, Rowley DR. The reactive stroma microenvironment and prostate
cancer progression. Endocr Relat Cancer. 2012;19:R187-204.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cell culture and fibroblast isolation
	Single-cell gene expression profiling
	Anoikis resistance and sphere formation assay
	Label-retention assay
	Standard quantitative RT-PCR

	Results
	Molecular markers characterizing fibroblast activation
	Identification and modelling of subpopulations defining fibroblast differentiation states
	Molecular classification of patient-derived fibroblasts
	Functional analysis of stem potential

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgement
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

