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Abstract

Background: Deregulations of long non-coding RNAs (lncRNAs) have been implicated in cancer initiation and
progression. Current methods can only capture differential expression of lncRNAs at the population level and
ignore the heterogeneous expression of lncRNAs in individual patients.

Methods: We propose a method (LncRIndiv) to identify differentially expressed (DE) lncRNAs in individual cancer
patients by exploiting the disrupted ordering of expression levels of lncRNAs in each disease sample in comparison
with stable normal ordering. LncRIndiv was applied to lncRNA expression profiles of lung adenocarcinoma (LUAD).
Based on the expression profile of LUAD individual-level DE lncRNAs, we used a forward selection procedure to
identify prognostic signature for stage I-II LUAD patients without adjuvant therapy.

Results: In both simulated data and real pair-wise cancer and normal sample data, LncRIndiv method showed good
performance. Based on the individual-level DE lncRNAs, we developed a robust prognostic signature consisting of
two lncRNA (C1orf132 and TMPO-AS1) for stage I-II LUAD patients without adjuvant therapy (P = 3.06 × 10−6, log-rank
test), which was confirmed in two independent datasets of GSE50081 (P = 1.82 × 10−2, log-rank test) and GSE31210
(P = 7.43 × 10−4, log-rank test) after adjusting other clinical factors such as smoking status and stages. Pathway
analysis showed that TMPO-AS1 and C1orf132 could affect the prognosis of LUAD patients through regulating cell
cycle and cell adhesion.

Conclusions: LncRIndiv can successfully detect DE lncRNAs in individuals and be applied to identify prognostic
signature for LUAD patients.
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Background
Long non-coding RNAs (lncRNAs) are non-coding
RNAs ranging in length from 200 nucleotides to ~100
kilobases [1]. LncRNAs are implicated in a variety of
biological processes and deregulation of lncRNAs may
act as biomarkers and therapeutic targets for cancer [2].
Many studies identify the cancer-related lncRNAs using
differential expression analysis methods, such as T-test,
EdgeR [3] and DESeq [4], which are designed to detect

the population-level differentially expressed (DE)
lncRNAs. Although some methods, such as Maximum
Ordered Subset T-statistic (MOST) [5], Cancer Outlier
Profile Analysis (COPA) [6], Outlier Sums (OS) [7] and
Outlier Robust T-statistic (ORT) [8], have already been
proposed to detect differentially expressed genes (DEGs)
in sub-groups of cancer samples, considering the high
heterogeneity of lncRNA expression among patients,
none have been used in detecting DE lncRNAs in indi-
vidual patients. Recently, our research group has suc-
cessfully developed new methods to detect patient-
specific differential expression information [9, 10]. We
have revealed that the relative expression rankings of
genes (miRNAs) tend to be highly stable in specific
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normal human tissues but widely disturbed in the corre-
sponding cancer tissues, and the reversal relationship of
rank between genes (miRNAs) expression level can be
used to identify DE genes (miRNAs) in individual pa-
tient. The advantage of the present relative ordering-
based method is that it is insensitive to batch effects and
data normalization and thus can directly utilize data
from different datasets [9–11]. Thus, by evaluating the
lncRNA expression profiles in this study, we proposed a
new method (LncRIndiv) to detect DE lncRNAs in indi-
vidual patients, which has been improved based on our
original methodology that were developed to detect DE
miRNAs in individuals [9].
Considerable efforts have been devoted to identify

lncRNA prognostic signature for cancers using absolute
expression profiles and risk score based methods [2, 12,
13]. However, due to experimental batch effects and
platform differences, the score-based signatures tend to
produce spurious risk classification in independent sam-
ples measured by different laboratories and are infeasible
in clinical application [11]. Fortunately, we found prog-
nostic signatures derived using the relative genes (miR-
NAs) expression rankings within samples, rather than
the absolute expression values, are robust in independ-
ent datasets from different laboratories and platforms [9,
10]. For example, our previous work found that the ex-
pression rank change of hsa-miR-29c with hsa-miR-30b
can be used as biomarker of poor overall survival for
breast cancer patients [9]. Thus, the individual-level dif-
ferential expression of lncRNA derived by the LncRIndiv
method could be applied to detect the prognostic signa-
ture for cancer.
Lung adenocarcinoma (LUAD) is one of the import-

ant sub-types of lung cancer with high morbidity and
mortality [14]. In this study, by a case study of
LUAD, we demonstrated that LncRIndiv could reach
good performance for individual-level analysis of
deregulated lncRNAs in independent paired normal-
cancer samples. And, a significant proportion of up-
or down-regulated DE lncRNAs showed concordance
of amplified or deleted copy number alterations, pro-
viding evidence of the high reliability of the LncRIn-
div method. Based on the lncRNAs individual-level
differentially expression analysis, we successfully de-
veloped a new prognostic signature (C1orf132 and
TMPO-AS1) for stage I and II LUAD patients without
adjuvant therapy. This new signature does not rely on
pre-setting thresholds for prognostic prediction and
performed well in independent datasets.

Methods
Data and pre-processing
The microarray platform used in this work was Affyme-
trix Human Genome U133 Plus 2.0 Array (HG-U133

Plus 2.0), including the information of probes, Ensembl
IDs and (or) RefSeq IDs. The information for each
lncRNA, such as Ensembl ID, Ensembl transcript ID and
symbol, was downloaded from the GENCODE (release
19). Meanwhile, the corresponding relationship between
Ensembl transcript ID and the RefSeq ID for lncRNAs
were downloaded from the HGNC database (version
corresponding to GENCODE release 19). By matching
those datasets, we got the symbols and RNA types for
each probe. Finally, we retained the long non-coding
genes and filtered them by removing discordant probes
information, pseudogenes, rRNAs, tRNAs, snRNAs,
snoRNAs and other short non-coding RNAs [13]. The
information about microarray probes, the Ensembl IDs/
Reference sequence IDs and symbols of each lncRNA
have been recorded in the Additional file 1: Table S1.
Microarray datasets of LUAD (.CEL files) gener-

ated based on the HG-U133 Plus 2.0 were down-
loaded from Gene Expression Omnibus. The raw
data for each dataset was processed using the RMA
algorithm for background adjustment without
normalization [11]. Then, each probe-set ID was
mapped to the lncRNA annotation file. If multiple probe-
sets were mapped to the same lncRNA, the expression
value of the lncRNA was summarized as the mean of the
values of multiple probe-sets. A set of normal and cancer
samples were pooled together for selecting the signifi-
cantly reversed lncRNA pairs (Additional file 2: Table S2).
The GSE27262 dataset containing 25 paired cancer-
normal samples (Additional file 2: Table S3) were used to
evaluate the performance of LncRindiv. Besides, 136 stage
I or II LUAD patients without adjuvant therapy with
complete overall survival information were used as train-
ing dataset to derive the lncRNA prognostic signature
(Additional file 2: Table S4). The 128 and 204 stage I and
II LUAD samples without adjuvant therapy from
GSE50081 and GSE31210 were used as validation datasets
(Additional file 2: Table S4). The Atlas of Noncoding
RNAs in Cancer (TANRIC) database provided the sequen-
cing expression profiles of lncRNAs in large cohorts of 20
cancer types [15]. We acquired two independent lncRNA
sequencing expression profiles of LUAD patients from the
TANRIC database, including TANRIC-KOREN dataset
and TANRIC-TCGA dataset. The TANRIC-KOREN data-
set with 77 cancer samples and 87 control samples was
used to select the significantly reversed lncRNA pairs
(Additional file 2: Table S2). The lncRNAs with non-zero
expression in at least 90% samples were retained for de-
tecting stable lncRNA pair. Fifty-seven paired cancer-
normal lncRNA expression profiles from TANRIC-TCGA
dataset were used to evaluate the performance of LncRin-
div (Additional file 2: Table S3) and 388 LUAD lncRNA
expression profiles from TANRIC-TCGA dataset were
used for the copy number alteration and expression
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consistence analysis. All tissue specimens were obtained
before the patients receiving therapy.
The Affymetrix Genome-Wide Human SNP array

6.0 data of 429 LUAD samples was downloaded from
The Cancer Genome Atlas (TCGA) database
(https://cancergenome.nih.gov/), and was processed
using the GISTIC 2.0 algorithm [16]. We used the
default cutoff of 0.25 (25% False Discovery Rate,
FDR) to select significant regions. Also, cutoffs of
0.1 and 0.05 were considered in this study.
Benjamini-Hochberg multiple testing correction was
used to estimate the FDR [17]. We used the GEN-
CODE (release 19) annotation to investigate patterns
of lncRNA copy number alterations. As Mermel et
al. did [16], we used the cutoffs of log2 ratio > 0.1 for de-
tecting amplifications and log2 ratio < −0.1 for detecting
deletions to assign a discrete copy number alteration sta-
tus for each lncRNA in each cancer sample. Level 3
mRNA expression profile detected by IlluminaHiSeq

platforms were also obtained from the TCGA data portal
(https://cancergenome.nih.gov/).

Definition of stable and reversal lncRNA pairs
Each lncRNA’s expression value was converted to its rank
within each sample (the smallest expression value corre-
sponding to the minimum rank, and the greatest expres-
sion value corresponding to the maximum rank). Pairwise
comparisons were performed for all lncRNAs to identify
lncRNA pairs with stable order in normal samples. Stable
lncRNA pairs were defined as patterns of rank, such as
lncRNA-A < lncRNA-B, appearing in more than 95% of
normal samples (P = 6.26 × 10−23, binomial test, Fig. 1a).
Reversal lncRNA pairs were defined as lncRNA pairs that
displayed a significant reversal order in cancer samples
compared with their stable order in normal samples
(lncRNA-A < lncRNA-B→ lncRNA-A > lncRNA-B) using
Fisher’s exact test at FDR < 0.1.

Fig. 1 Illustration of LncRIndiv method and work-flow of this study. a Definition of stable and reversal lncRNA pairs. The red and blue circles represent
lncRNA-A and lncRNA-B, respectively. The lncRNA-A and lncRNA-B are ranked according to the expression values, where the smallest expression value
corresponds to the minimum rank and the greatest expression value corresponds to the maximum rank. Letters of a and c represent the number of
samples with the expression level of lncRNA-A < lncRNA-B in normal and cancer samples, while b and d represent the number of samples with the
expression level of lncRNA-A > lncRNA-B in normal and cancer samples, respectively. If lncRNA-A < lncRNA-B appears in more than 95% (a/(a + b) > 95%)
of normal samples, lncRNA-A < lncRNA-B is selected as a stable pair. The Fisher’s exact test is used to test whether the rank of lncRNA-A < lncRNA-B is
significantly reversed as lncRNA-A > lncRNA-B in cancer samples. The P values are corrected by Benjamini-Hochberg multiple tests and lncRNA-A >
lncRNA-B with FDR < 0.1 is defined as a reversal pair. b The schematic diagram of LncRIndiv method. Take lncRNA-A as an example to describe the
LncRIndiv method. Circles with different color represent different lncRNAs. The blue and purple human shapes represent the samples with or without
reversal lncRNA pairs in each line, respectively. The red and green human shapes represent the samples are determined as with and without differen-
tial expression of lncRNA-A by the LncRIndiv method. See the detailed explanation of LncRIndiv in Method section. c The work-flow of this study
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LncRIndiv method

Step 1:The absolute expression profile of lncRNAs is
transformed into rank profile.

Step 2:Take lncRNA-A as an example. According to the
rules in Fig. 1a, there are five reversal pairs with
lncRNA-A in cancer samples, including partner
lncRNAs lncRNA-B, lncRNA-C, lncRNA-D, lncRNA-
E, and lncRNA-F. Only the partner lncRNAs that
have the same dysregulation directions as lncRNA-A
in the lncRNA-A reversal pairs are retained. Here,
the dysregulation directions indicated the expression
of lncRNA-A is up-regulated in the cancer group
comparing with the normal group. In Fig. 1b, the
lncRNA-C is removed because of the down-
regulation trend.

Step 3:Then, we calculate the coefficient of variation
(CV) of rank across cancer and normal samples for
each partner lncRNA of lncRNA-A in the lncRNA-A
reversal pairs (Fig. 1b). We hypothesize that if the
rank of partner lncRNA is approximately constant
across the cancer and normal samples, the reversal
relationship of lncRNA-A and partner lncRNA may
occur because of the rank change of lncRNA-A,
which could be used as evidence to determine
whether lncRNA-A is differentially expressed in
individual cancer samples. Then, the partner
lncRNAs of lncRNA-A are ranked by the CV in
increasing order. If there are more than 3 reversal
pairs for lncRNA-A, the top 3 reversal pairs are
retained; otherwise, all are included for the following
analysis. In Fig. 1b, the lncRNA-D, lncRNA-E and
lncRNA-F are the top three lncRNAs with the
smallest CV and are included in following analysis.

Step 4:In this example, the top 3 reversal lncRNA pairs
(lncRNA-A > lncRNA-D, lncRNA-A > lncRNA-E and
lncRNA-A > lncRNA-F) are used to determine
whether lncRNA-A is differentially expressed in an
individual patient. If more than half of the reversal
lncRNA pairs are detected in a patient, we conclude
that lncRNA-A is differentially expressed in the
patient (red human shape in Fig. 1b).

Evaluating the performance of LncRIndiv
First, a simulation was performed to evaluate the per-
formance of LncRIndiv method. To keep the intrinsic
structure of real lncRNA data, the simulations were con-
ducted based on the real dataset (see Results section for
detailed description of simulation experiments). The
simulation experiment enables us to know both the DE
lncRNAs and non-DE lncRNAs and facilitates the calcu-
lation of sensitivity, specificity and F-score. Here, the
sensitivity is defined as the ratio of correctly identified
DE lncRNAs to all DE lncRNAs and the specificity is

defined as the ratio of correctly identified non-DE
lncRNAs to all non-DE lncRNAs. The F-score, a har-
monic mean of sensitivity and specificity, was calculated
as follows:

F−score ¼ 2 sensitivity � specificityð Þ
sensitivity þ specificity

Moreover, the real pair-wise cancer-normal samples
were used to evaluate the consistence of dysregulation
directions of DE lncRNAs between those identified by
LncRIndiv method and the actual dysregulation direc-
tions observed in the paired samples. For a pair-wise
cancer and normal tissues, if the rank of a lncRNA in
cancer sample was larger than that of matched normal
sample, the dysregulation direction of the lncRNA was
up-regulated (and vice versa), which was taken as the
benchmark. The consistency score was calculated as the
ratio of the observed consistent DE lncRNAs to all DE
lncRNAs identified in each sample.

Developing the prognostic lncRNA signature
First, for each DE lncRNA, stage I and II LUAD patients
without adjuvant therapy were separated into with and
without DE lncRNA groups. Then, we selected prognosis-
related lncRNAs that were significantly associated with pa-
tient overall survival using the log-rank test [18] and uni-
variate Cox proportional-hazards regression model (P <
0.05) [19]. Harrell’s concordance index (C-index) was used
to quantify the predictive accuracy of the prognosis-related
lncRNA. A C-index value of 0.5 indicates no predictive abil-
ity, whereas a value of 1 represents perfect predictive ability
[20]. We performed a forward selection process to search a
set of lncRNAs that achieved the largest C-index value
based on following procedures. Step 1: rank the prognosis-
related lncRNAs in a decreasing C-index value order. Step
2: choose the lncRNA with the maximal C-index as a seed
of the candidate prognosis-related signature. Step 3: add a
prognosis-related lncRNA to the candidate signature once
at a time based on the decreasing C-index value to obtain
the new candidate prognosis-related signature. Step 4:
evaluate the C-index value of the new signature and keep
the new added lncRNA if the C-index is increased. Step 5:
repeat step 3 and 4 until the final C-index value is not in-
creased. Finally, a set of lncRNAs with the largest C-index
is chosen as the prognostic signature for stage I and II
LUAD patients without adjuvant therapy. Survival curves
were plotted using the Kaplan-Meier method [21].

Functional analysis of lncRNA
T-test was used to detect the DEGs between the high-
and low-risk patients at the FDR < 0.05, which were de-
fined as the lncRNA-DEGs. Then, we used GO-function
method to extract the biological process from Gene
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Ontology (GO) database that were significantly enriched
with lncRNA-DEGs (FDR < 0.05) [22]. To investigate the
regulation relationship between lncRNAs and genes, we
detected the significantly co-expressed lncRNAs and
DEGs in the high-risk patient group (P < 0.05, Pearson
Correlation Test). Then, we performed the KEGG (Kyoto
Encyclopedia of Genes and Genomes, Release 58.0) path-
way enrichment analysis for the lncRNA correlated DEGs
to study the regulation function for the lncRNA.

Results
Identification of reversal lncRNA pairs from microarray
and sequencing expression profiles
For each LUAD sample, lncRNA expression values were
converted to rank values with increasing order. A stable
lncRNA pair was defined as that the rank relationships be-
tween the expression levels of two lncRNAs were pre-
sented in more than 95% of normal samples (P = 6.26 × 10
−23, binomial test, Fig. 1a). There were 237459 and 213235
stable lncRNA pairs derived from the microarray dataset
combined from five datasets (GSE18842, GSE37768,
GSE31210, GSE19188, GSE19804) and the sequencing
dataset (TANRIC-KOREN) (Additional file 2: Table S2),
respectively. And, 128540 lncRNA pairs were overlapped
between the two lists of stable lncRNA pairs (P < 1.0 × 10
−15, hypergeometric test), indicating that stable lncRNA
pairs are highly reproducible between different platforms.
Compared with normal samples, 75648 and 38611
lncRNA pairs were significantly reversed in LUAD cancer
samples from microarray and sequencing data, respect-
ively. The consistent ratio of the reversal lncRNA pairs be-
tween the microarray and sequencing was 98.51% (P <
1.0 × 10−15, hypergeometric test). Thus, to evaluate the
performance of LncRIndiv between different platforms, we
performed all analysis on the common 1310 lncRNAs be-
tween microarray and sequencing datasets.
A reversal lncRNA pair was defined as a lncRNA pair

that displayed a significant reversal order in cancer sam-
ples compared with its stable order in normal samples
(Fisher’s exact test, FDR < 0.1). For a lncRNA, consider-
ing all the partner lncRNAs that have reversal relationship
with the specific lncRNA, we selected the top 3 partner
lncRNAs with the smallest coefficient of variation to
perform the following individual analysis. Totally, 1257
and 1123 lncRNAs could be detected with differential ex-
pression status in the microarray (Additional file 3: Table
S5) and sequencing datasets (Additional file 4: Table S6)
for LUAD samples, respectively. We used the heatmap to
visualize the pattern of expression rank of each lncRNA
pair and the significance of reversal lncRNA pair based on
the top 3 pair-wise reversal pairs identified from the
microarray dataset and sequencing dataset (Additional file
5: Figure S1).

Performance evaluation in simulation dataset and
independent datasets
In order to retain the intrinsic structure of the data, 50
up- and 50 down-regulated lncRNAs were randomly
generated from the identified up- and down-regulated
lncRNAs, separately. The 210 normal samples in the
microarray training dataset were used to simulate for
disease samples. First, if a lncRNA was set as differen-
tially expressed in a sample, the pair-wise simulated
diseased sample was simulated by setting the different
magnitudes of differential expression (log2FC = ±1.0,
±1.5, ±2.0, FC means fold change) comparing to the ex-
pression in the normal sample. Then, an average of 10
samples generated by random in which DE lncRNA was
set to be differentially expressed, which was the same as
the real dataset. Finally, LncRIndiv method showed good
performance with sensitivity, specificity and F-score
more than 96%, respectively (Table 1). As Wang et al.
did [10], to determine the effect of sample size, the per-
formance of the method was studied in the small dataset
of 60 disease samples and 60 normal samples, which
were extracted from the training datasets by random. As
expected, similar results were observed for each scenario
(Table 1). The consistence analysis also showed a high
consistency score more than 93% under the criteria of
top 3, 5 and 7 reversal pairs in both microarray and
RNA-Seq pair-wise dataset (Additional file 6: Table S7).
RankComp was another method to detect DE genes in

individual samples [10]. Here, we also compared LncRIn-
div with RankComp in simulation data under the same
condition. The detailed results of simulation experi-
ments and parameter settings were presented in Add-
itional file 6: Table S8. The results showed that F-score,
sensitivity and specificity derived by LncRIndiv were
higher than those from RankComp method. Moreover,
the RankComp reached a lower consistency score at
about 81% level compared with those got by LncRIndiv
method. Also, we showed the DE lncRNAs identified by

Table 1 Sensitivity, specificity, and F-score for LncRIndiv method
in simulated data

|Log2FCa| 210 vs 210 60 vs 60

1.0 F-score 1.0000 0.9569

sensitivity 1.0000 0.9182

specificity 1.0000 0.9990

1.5 F-score 0.9842 0.9697

sensitivity 0.9694 0.9430

specificity 0.9995 0.9980

2.0 F-score 0.9916 0.9873

sensitivity 0.9839 0.9755

specificity 0.9995 0.9994
aFC denotes fold change
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the LncRIndiv and Rankcomp in venn diagram (Add-
itional file 5: Figure S2). The known cancer-related
lncRNAs recorded in the database of Lnc2Cancer
(http://www.bio-bigdata.net/lnc2cancer) are marked with
symbols in the Additional file 5: Figure S2.

Consistence between copy number alterations and
differential expression of lncRNAs in individuals
Four hundred and twenty nine LUAD samples were
screened using the Affymetrix Genome-Wide Human
SNP array 6.0 platform. Among the 1123 DE lncRNAs
derived from sequencing dataset, 285 lncRNAs were in
the regions with significant amplifications or deletions in
LUAD patients. One hundred and nineteen of the 285
lncRNAs showed concordant expression changes with
copy number alterations in LUAD samples, which meant
that the lncRNAs with amplification (deletion) showed
up-regulation (down-regulation). Then, we tested
whether patients with up-regulation (down-regulation)
of lncRNA were significantly overlapped with patients
with copy number gain (loss) (P < 0.05, hypergeometric
test). The results showed that 61 of the 119 lncRNAs
showed significantly consistent changes between copy
number alteration and deregulation of expression in in-
dividual LUAD patients (Additional file 6: Table S9),
which could not be expected by chance (P = 8.52 × 10−6,
hypergeometric test). When selecting lncRNAs with
copy number alterations using FDR < 0.1 and FDR <
0.05, DE lncRNAs also showed consistent changes be-
tween copy number alteration and deregulation of ex-
pression in individual LUAD patients (P = 0.041 for the
threshold of FDR < 0.1 and P = 0.085 for the threshold of
FDR < 0.05, hypergeometric test). Thus, the significant
concordance between the differential expression and
copy number alteration of lncRNAs indicated the high
reliability of the results derived by LncRIndiv.

A prognosis-related lncRNA signature for stage I and II
LUAD patients without adjuvant therapy
We extracted an integrated training dataset with 136
stage I or II LUAD patients without adjuvant therapy
and with complete overall survival information (Add-
itional file 2: Table S4). In total, 66 lncRNAs were sig-
nificantly associated with overall survival of LUAD
patients by log-rank test and univariate cox analysis
(P < 0.05). Then, we performed a forward selection pro-
cedure to obtain a merged prognostic signature that
achieved optimal prognostic performance (see Methods).
As a result, a 2-lncRNA signature (C1orf132 and TMPO-
AS1) with a C-index of 0.641 was obtained. Patients in
the high-risk group (n = 47) had significant shorter over-
all survival than those in the low-risk group (n = 89, P =
3.06 × 10−6, log-rank test, Fig. 2). Here, the high-risk
group meant the LUAD patients with either the

differential expression of C1orf132 (down-regulation,
HR = 2.27, 95% CI = (1.39, 3.71), P = 1.03 × 10−3, univari-
ate cox analysis) or TMPO-AS1 (up-regulation, HR =
1.89, 95% CI = (1.11, 3.22), P = 1.96 × 10−2, univariate cox
analysis) and the rest LUAD patients were classified into
the low-risk group. Compared with the low-risk patient
group, the lncRNA C1orf132 was down-regulated in the
high-risk patients (Fig. 2d) and the lncRNA TMPO-AS1
was up-regulated in the high-risk patients (Fig. 2e).

Validation of the 2-lncRNA signature in independent
datasets
To confirm the prognostic value of the 2-lncRNA signa-
ture, we applied the LncRIndiv on two independent data-
sets. We extracted 128 and 204 stage I or II LUAD patients
without adjuvant therapy from the GSE50081 and
GSE31210 datasets, respectively. For each dataset, patients
were separated into high- and low-risk group based on the
2-lncRNA signature. In consistent with the findings derived
from the training dataset, the 2-lncRNA signature classified
52 and 76 patients into high- and low-risk groups in
GSE50081 dataset with significantly different overall sur-
vival (P = 1.82 × 10−2, log-rank test, Fig. 2b). The GSE31210
dataset was separated into 40 high- and 164 low-risk pa-
tients with significantly different overall survival (P = 7.43 ×
10−4, log-rank test, Fig. 2c). The individual lncRNAs also
have the prognostic value in the training and validation
datasets (Additional file 5: Figure S3).

Independence of the 2-lncRNA signature from other clin-
ical factors
To further investigate whether the prognosis predictive
ability of the 2-lncRNA signature was independent of
other clinical risk factors, including age, gender, smoking
status and stage, we performed the univariate and multi-
variate Cox regression analysis in the training dataset
and two independent datasets. The 2-lncRNA signature
was significantly associated with overall survival (HR =
2.59, 95% CI = (1.60, 4.18), P = 1.00 × 10−4, Table 2) in
the training dataset using the univariate Cox regression
test. Univariate analysis was also performed on
GSE50081 (HR = 1.91, 95% CI = (1.11, 3.29), P = 0.020,
Table 2) and GSE31210 (HR = 3.29, 95% CI = (1.58,
6.85), P = 1.45 × 10−3, Table 2) datasets. The multivari-
able Cox analysis showed that the 2-lncRNA signature
was still significantly associated with overall survival in
the training dataset (HR = 2.43, 95% CI = (1.49, 3.94), P
= 3.45 × 10−4, Table 2), GSE50081 (HR = 1.82, 95% CI
= (1.03, 3.22), P = 0.039, Table 2) and GSE31210 (HR =
2.40, 95% CI = (1.12, 5.11), P = 0.024, Table 2) when con-
sidering the factors of age, gender, smoking status and
stage, which indicated that the 2-lncRNA signature was
an independent prognostic factor for stage I and II
LUAD patients without adjuvant therapy.
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Functional analysis of the lncRNA signature
Furthermore, we used T-test to detect DEGs between
the high- and low-risk patients in each dataset
(GSE50081 and GSE31210) at the FDR < 0.05, respect-
ively. We found that 96.38% of overlapped genes between
the two DEGs lists were consistent in their deregulation di-
rections (up-regulation or down-regulation). Next, using the
GO-function method [22], we further found that the DEGs

detected from GSE50081 and GSE31210 were enriched in
139 and 123 biological process terms derived from the GO
database, respectively (FDR < 0.05). Twenty-four biological
process terms overlapped between the two term lists, in-
cluding “DNA replication”, “cell cycle”, and “cell division”
and so on, which couldn’t be expected by chance (P < 1.0 ×
10−15, hypergeometric test). Results of highly overlapping
DEGs and GO terms between the two datasets suggest that

a

d

e

b c

Fig. 2 A 2-lncRNA signature for LUAD patient prognosis. Kaplan-Meier estimates the overall survival using the 2-lncRNA signature in the a training
dataset, b GSE50081 and c GSE31210. All the P values of Kaplan-Meier analysis were calculated using log-rank test. d The lncRNA C1orf132 was
down-regulated in the high-risk patients. e The lncRNA TMPO-AS1 was up-regulated in the high-risk patients
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the 2-lncRNA is a robust prognostic signature for stage I or
II LUAD patients without adjuvant therapy.
Moreover, GO enrichment results suggest that the two

lncRNAs may regulate the “cell cycle”, “cell division” of
cancer cells to affect the prognosis of LUAD patients.
Thus, we further investigated the regulation relationship
between lncRNAs and lncRNA-DEGs, which might be the
potential mechanism to induce the poor prognosis of
LUAD. Based on the GO-function analysis, we performed
the KEGG pathway enrichment using the overlapped
DEGs between the high- and low-risk groups derived from
the GSE31210 and GSE50081. Under the control of FDR
< 0.05, “Cell cycle” pathway (P = 2.35 × 10−7, hypergeo-
metric test) and “Cell adhesion molecules (CAMs)” path-
way (P = 9.75 × 10−4, hypergeometric test) were
significantly enriched with the lncRNA-DEGs. Twenty-
two DEGs were annotated in the cell cycle pathway (Add-
itional file 5: Figure S4). In the GSE50081 dataset, for each
lncRNA in the 2-lncRNA signature, we calculated the ex-
pression correlation between the lncRNA and 22 DEGs in
cell cycle pathway in the high-risk patient group. The sig-
nal transduction relationship between genes in KEGG
pathway was transformed into undirected gene interaction
network. The sub-network consisting of the significantly
co-expressed relationship between the signature lncRNAs
and DEGs (P < 0.05), and interactions between DEGs and
their first neighbors were presented in Fig. 3a.
Some of the DEGs whose expressions were signifi-

cantly correlated with the lncRNAs have been reported

with the critical roles in the carcinogenesis. For example,
over-expression of gene CDC25A, an oncogene, was sig-
nificantly correlated with poor overall survival in non-
small cell lung cancer [23]. In our results, gene CDC25A
was positively co-expressed with lncRNA TMPO-AS1 (P
= 3.25 × 10−2, Additional file 6: Table S10) and CDC25A
was significantly up-regulated in the high-risk patients
compared with the low-risk patients (P = 1.58 × 10−5, T-
test, Additional file 6: Table S10). Moreover, over-
expression of gene CDC20 could predict poor prognosis
in primary non-small cell lung cancer patients [24]. Our
results showed that TMPO-AS1 was also positively cor-
related with CDC20 (P = 4.14 × 10−2, Additional file 6:
Table S10) and CDC20 was significantly up-regulated in
the high-risk patients compared with the low-risk pa-
tients (P = 7.46 × 10−6, T-test, Additional file 6: Table
S10). Some studies reported that RBL2 [25] and CCND3
may behave as tumor suppressors in LUAD [26]. In our
study, the expression of RBL2 and CCND3 were signifi-
cantly suppressed (P = 3.58 × 10−3 for RBL2, P = 1.33 × 10
−6 for CCND3, T-test, Additional file 6: Table S10) in the
high-risk LUAD patients and both of them were signifi-
cantly positive co-expressed with the C1orf132 (P =
3.04 × 10−9 for RBL2 and P = 4.97 × 10−6 for CCND3,
Fig. 3b and c) in the GSE50081 dataset. The significant
correlation between C1orf132 and CCND3, RBL2 also
happened in the GSE31210 dataset. Because TMPO-AS1
was only detected with differential expression in one pa-
tient in the GSE31210 dataset, we did not perform

Table 2 Univariate and multivariate Cox regression analyses of the 2-lncRNA signature

Characteristics Univariate analysis Multivariate analysis

HRa(95% CI) P-value HR(95% CI) P-value

Training dataset

2-lncRNA signature 2.59(1.60,4.18) 1.00e–04 2.43(1.49,3.94) 3.45e–04

Age≥ 60 vs <60 years 1.41(0.85,2.35) 0.18 1.33(0.79,2.21) 0.28

Gender female vs male 1.09(0.66,1.81) 0.74 1.10(0.66,1.84) 0.72

Stage I vs II 2.80(1.27,6.16) 0.011 2.12(0.95,4.74) 0.066

GSE50081

2-lncRNA signature 1.91(1.11,3.29) 0.020 1.82(1.03,3.22) 0.039

Age≥ 60 vs <60 years 1.50(0.64,3.51) 0.35 1.62(0.68,3.87) 0.27

Gender female vs male 0.74(0.43,1.28) 0.29 0.69(0.39,1.22) 0.20

Smoking vs never-smoking 1.31(0.73,2.35) 0.36 1.07(0.58,1.97) 0.83

Stage I vs II 2.54(1.45,4.44) 1.16e–03 2.49(1.40,4.41) 1.83e–03

GSE31210

2-lncRNA signature 3.29(1.58,6.85) 1.45e–03 2.40(1.12,5.11) 0.024

Age≥ 60 vs <60 years 1.47(0.70,3.10) 0.31 1.59(0.76,3.37) 0.22

Gender female vs male 0.59(0.29,1.22) 0.16 0.97(0.36,2.61) 0.95

Smoking vs never-smoking 1.91(0.92,3.97) 0.084 1.60(0.59,4.33) 0.35

Stage I vs II 4.30(2.09,8.83) 7.21e–05 3.42(1.62,7.26) 1.31e–03
aHR, hazard ratio
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correlation analysis for TMPO-AS1 in this dataset. Based
on the above results, we inferred that the two lncRNAs
could affect the prognosis of LUAD by regulating the
cell cycle pathway. Moreover, as the analysis process for
cell cycle pathway, we also found the C1orf132 could
significantly regulate the cell adhesion molecules
(P = 9.75 × 10−4, hypergeometric test, Additional file 5:
Figure S5 and S6), which indicates that the lncRNA
C1orf132 may be involved in the poor prognosis of LUAD
patients by promoting the invasive process of cancer cells.
Availability and Implementation: LncRIndiv is devel-

oped using R-3.1.2 (https://www.R-project.org) and is
freely available in https://github.com/FuduanPeng/
LncRIndiv (LncRIdiv_1.0.zip for Windows system and
LncRIndiv_1.0.tar.gz for Linux system).

Discussion
Aberrant expressions of lncRNAs in cancer patients have
been comprehensively reported [27]. The expression
levels of lncRNAs across the patients in the same cancer
type are also highly heterogeneous. Current methods to

detect DE lncRNAs are based on the population rather
than individuals. Based on our previous study of detect-
ing the DE miRNAs in individuals [9], we provided a
new method LncRIndiv to detect the DE lncRNAs in
individual cancer patients, which is not limited by the
platform, data normalization methods and batch effects.
In the method LncRIndiv, we used the CV of rank rather
than the absolute expression levels of partner lncRNAs
in our previous work [9], which could avoid the batch
effect from different datasets. Notably, absolute expres-
sion values rather than the rank can actually reflect the
differential expression direction of each lncRNA itself in
the pair-wise cancer and normal samples. Thus, we used
the expression rank of lncRNAs in pair-wise sample to
evaluate the performance of LncRIndiv method. The
LncRIndiv performed well in the independent pairwise
LUAD datasets and the simulation data.
In our work, the LncRIndiv method also identified

some DE lncRNAs that were well characterized by other
studies (Additional file 3: Table S5, Additional file 4:
Table S6, Additional file 5: Figure S1B and S2). For

ba

c

Fig. 3 Sub-network of cell cycle pathway regulated by C1orf132 and TMPO-AS1. a The triangles represent lncRNAs. The circles represent the cell
cycle pathway genes. Nodes with red and green color represent that the genes or lncRNAs were up-regulated and down-regulated in high-risk
LUAD patients compared with low-risk LUAD patients. The gray circles represent the genes that directly interact with differentially expressed
genes in the cell cycle pathway, which are marked by gray lines. The orange lines represent the significantly co-expressed relationships between
lncRNAs and differentially expressed genes. b Expression correlation between C1orf132 and CCND3. c Expression correlation between C1orf132
and RBL2. The P values were calculated using Pearson Correlation test in (b) and (c)

Peng et al. Molecular Cancer  (2017) 16:98 Page 9 of 12

https://www.r-project.org/
https://github.com/FuduanPeng/LncRIndiv
https://github.com/FuduanPeng/LncRIndiv


example, Hou et al. revealed that enhanced expression
of long non-coding RNA ZXF1, known as ACTA2-AS1
(Ensembl ID: ENSG00000180139.10) (Additional file 6:
Table S11), promoted the invasion and migration of
LUAD cells [28]. LINC01207, also named as RP11-
294O2.2 (Ensembl ID: ENSG00000248771.1) (Additional
file 6: Table S11), was significantly up-regulated in ad-
vanced LUAD and the siRNA mediated knockdown of
LINC01207 in A549 cell line could inhibit the cell prolif-
eration [29]. Some differential expression profile of
lncRNAs in individuals could be partly validated by the
copy number alterations of lncRNAs in individuals. As
Yan et al. pointed that the copy number alteration is an
important mechanism that leads to the aberrant expres-
sion of lncRNAs in cancer [27]. For example, the de-
regulation of lncRNA BCAL8 showed positive
correlation with its copy number alteration and was sig-
nificantly associated with poor survival in breast cancer
[27]. In our results, 51.3% lncRNAs showed significantly
consistent changes between copy number alteration and
deregulation of expression in individual LUAD patients.
Some DE lncRNAs with consistent copy number alter-
ation in our results have been proved to be tumor sup-
pressor or oncogenic lncRNAs in cancer (Additional file
6: Table S9). For example, Yao et al. found that the
down-expression of ADAMTS9-AS2 resulted in a signifi-
cant loss in the inhibition of glioma cell migration [30].
These results not only suggested that the differential ex-
pression of lncRNAs in individuals could be owing to
the copy number alteration of itself, but also could be
evidence to support the high reliability of individual
lncRNA differentially expressed profile derived by the
LncRIndiv method. Notably, the rest of lncRNAs without
significant consistence between differential expression
and copy number alterations maybe affected by muta-
tion, methylation and so on, which warrants our future
work.
Some studies use the average or median score or the

expression level as cut-offs to distinguish high- and low-
risk patients [13, 31–33]. However, these methods are
arbitrary in setting a threshold for prognostic signature
detection and are difficult to apply to clinical experi-
ments [11, 34]. Our study reveals a robust 2-lncRNA
signature for LUAD patients, which was validated in in-
dependent datasets and also by the GO enrichment ana-
lysis. In clinical translational application, for each
individual LUAD patient, we only need to test whether
the expression of C1orf132 is lower than IQCH-AS1,
RP11-589P10.5 and LINC00938, or the expression of
TMPO-AS1 is higher than PCBP1-AS1, TCL6 and RP11-
333E1.1. By pathway analysis, our results suggest that
the lncRNAs in the signature are involved in the poor
prognosis of LUAD patients by deregulating the cell
cycle and cell adhesion molecules pathways in cancer

cells, which deserves our future detailed biological ex-
periments. Notably, our results also found the stage is a
factor that related with the prognosis of LUAD patients.
However, as shown in Table 2, the multivariate cox ana-
lysis showed that the 2-lncRNA signature is independent
of the clinical factor of stage.
In our study, we found the down-regulation of

C1orf132 was associated with the poor prognosis. The
underline mechanism is still unclear. It has been pro-
posed that lncRNAs can act as competing endogenous
RNAs (ceRNAs) to influence miRNA activity and
thereby regulate the target transcripts containing
miRNA-binding sites [35]. We supposed that C1orf132
may act as ceRNA with the tumor suppressors RBL2
and CCND3, which have been showed with significant
positive correlation with the expression of C1orf132 in
the (Fig. 3b and c). By integrating the lncRNA-miRNA
interactions and miRNA-target interactions in databases
of miRanda [36], miRTarBase [37], miRcode [38] and
TargetScan [39], we found C1orf132 was significantly
competitively binding miRNAs with RBL2 (P = 2.38 × 10
−12, hypergeometric test) and CCND3 (P = 9.82 × 10−5,
hypergeometric test) (Additional file 6: Table S12). Some
miRNAs, such as hsa-miR-93 [40], hsa-miR-372 [41],
hsa-miR-424 [42], have been reported the important
roles in the progression of LUAD. Thus, we inferred that
the down-regulation of C1orf132 might release the miR-
NAs that targeted RBL2 and CCND3 and further pro-
mote the tumor progression, which warrant further in-
depth experimental research.
Nevertheless, our present method also has some limi-

tations. First of all, although the consistency score are
relatively high, LncRIndiv method may have insufficient
power to detect all samples with differential expression
of one lncRNA. We performed the LncRIndiv method
on the simulated data with large number of samples with
pre-set DE lncRNAs, the sensitivity decreased as the in-
creased number of DE samples (Additional file 6: Table
S13), which indicates LncRIndiv method may have insuf-
ficient power to detect all samples with one DE lncRNA.
However, for each sample, though a certain number of
DE lncRNAs may be missed, a significantly high propor-
tion of lncRNAs show consistent expression changes
with their copy number alterations, which indicates that
the DE lncRNAs in individual patients captured by our
method are true. Improving the power of LncRIndiv war-
rants our future detailed work. Secondly, we used the
pair-wise cancer and normal samples to evaluate the
performance of LncRIndiv method, which is lack of strict
statistical justification. Thus, we further assessed the dif-
ferential extent of lncRNAs identified by LncRIndiv
method, based on the hypothesis that the higher the dif-
ferential extents are, the less the random errors are. The
fold changes of lncNRAs in patients with DE lncRNAs

Peng et al. Molecular Cancer  (2017) 16:98 Page 10 of 12



were significantly higher than those patients without the
DE lncRNAs (P < 2.0 × 10−16, T-test). As examples shown
in Additional file 5: Figure S7, the patients with the DE
lncRNA showed bigger difference with the paired nor-
mal samples in expression values than the patients with-
out the DE lncRNA. Thirdly, our work only analyzed the
overlapped lncRNAs between microarray and sequen-
cing datasets. Because of the number of lncRNAs re-
annotated from the microarray is limited, results showed
that the number of DE lncRNAs in individual patients
from microarray and sequencing datasets are different.
Although some lncRNAs were lost in the microarray,
the results derived by the LncRIndiv method could re-
veal a new robust prognosis-related lncRNA signature
for stage I or II LUAD patients without adjuvant ther-
apy, which was validated in other independent micro-
array datasets. The LncRIndiv method could also be
used in other cancer types with abundant sequencing ex-
pression profile of lncRNAs. Finally, by KEGG pathway
enrichment and correlations analysis between lncRNAs
and DEGs, we found that the lncRNAs (TMPO-AS1 and
C1orf132) could affect the prognosis of LUAD by deregu-
lating cell cycle pathway genes. Although the results are
interesting and meaningful, it is lack of biological experi-
ments for further validation. We will continue to investi-
gate the biological mechanisms that how the lncRNAs
regulate the cell cycle genes during the carcinogenesis in
our future work.

Conclusions
We developed a rank-based method that was not limited
by expression platforms or normalization techniques to
detect differentially expressed lncRNAs in individual
LUAD patients and reached good performance in both
simulated data and real data. The up-regulation (down-
regulation) of lncRNAs in individual LUAD samples,
were significantly consistent with the copy number am-
plifications (deletions), supporting the DE lncRNAs de-
tected in individuals by LncRIndiv. Based on the
differential expression profiles of lncRNAs in individual
LUAD patients derived by our method, we identified a
new robust lncRNA prognostic signature consisting of
C1orf132 and TMPO-AS1 for stage I and II LUAD pa-
tients without adjuvant therapy. This new signature did
not rely on pre-setting thresholds for prognostic predic-
tion and performed well in independent datasets.
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