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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated mortality
worldwide with an overall five-year survival rate less than 7%. Accumulating evidence has revealed the cancer
preventive and therapeutic effects of metformin, one of the most widely prescribed medications for type 2 diabetes
mellitus. However, its role in pancreatic cancer is not fully elucidated. Herein, we aimed to further study the
preventive and therapeutic effects of metformin in genetically engineered mouse models of pancreatic cancer.

Methods: L SL-Kras®'??*: Pdx1-Cre (KC) mouse model was established to investigate the effect of metformin in
pancreatic tumorigenesis suppression; LSL-Kras®'2P/* Trp53ﬂ/+; Pdx1-Cre (KPC) mouse model was used to evaluate
the therapeutic efficiency of metformin in PDAC. Chronic pancreatitis was induced in KC mice by peritoneal
injection of cerulein.

Results: Following metformin treatment, pancreatic acinar-to-ductal metaplasia (ADM) and mouse pancreatic
intraepithelial neoplasia (mPanIN) were decreased in KC mice. Chronic pancreatitis induced a stroma-rich and
duct-like structure and increased the formation of ADM and mPanIN lesions, in line with an increased cytokeratin
19 (CK19)-stained area. Metformin treatment diminished chronic pancreatitis-mediated ADM and mPanIN formation.
In addition, it alleviated the percent area of Masson'’s trichrome staining, and decreased the number of Ki67-positive
cells. In KPC mice, metformin inhibited tumor growth and the incidence of abdominal invasion. More importantly, it

prolonged the overall survival.

Conclusions: Metformin inhibited pancreatic cancer initiation, suppressed chronic pancreatitis-induced
tumorigenesis, and showed promising therapeutic effect in PDAC.
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Background

Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer-associated mortality worldwide
with a mortality that closely parallels incidence. Al-
though great efforts have been made, the 5-year survival
of PDAC is still less than 7% [1]. Most patients remain
asymptomatic until they develop to an advanced stage
with complications involving distant metastasis. Surgical
resection is regarded as the only potentially curative
treatment. Gemcitabine, S-1, or an oral fluoropyrimidine
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derivative is given as adjuvant chemotherapy for surgery.
For those who are not eligible for surgical resection but
have good performance status, FOLFIRINOX (fluoroura-
cil, folinic acid [leucovorin], irinotecan, and oxaliplatin)
and gemcitabine plus nanoparticle albumin-bound pacli-
taxel (nab-paclitaxel) are regarded as the treatments of
choice [2]. However, even for those who received a
complete surgical resection, 5-year survival is still ap-
proximately 25% [2, 3].

PDAC mostly arises from microscopic noninvasive
precursor lesions. Based on the pathological architecture
and the degree of cytological atypia, precursor lesions
are graded into several grades, including acinar-to-ductal
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metaplasia (ADM) and pancreatic intraepithelial neopla-
sia (PanIN), which is further divided into three grades,
namely PanIN1, PanIN2 and PanIN3 [4]. Desmoplastic
reaction, a dominant character of PDAC, is formed by
the activation of pancreatic stellate cells (PSCs), which
synthesize and secrete large amounts of extracellular
matrix (ECM) [5]. Kras is one of the most common
genes mutated in PDAC and plays a crucial role in the
initiation and progression of PDAC, in which Kras mu-
tation occurs in more than 90% of patients [6]. Somatic
mutations in the Trp53 tumor suppressor gene are an-
other frequent genetic event that drives PDAC progres-
sion. Substantial evidence has identified various
molecular mechanisms, including JAK/STAT3 signaling
and epidermal growth factor receptor (EGFR) signaling,
both of which are important factors proven to be re-
quired for Kras-induced tumorigenesis [7, 8].

Metformin is one of the most widely prescribed medica-
tions for type 2 diabetes mellitus. Substantial epidemio-
logic and clinical studies have suggested its cancer
therapeutic potential [9]. However, its cancer preventive
and therapeutic effects and the mechanisms involved in
pancreatic cancer are not fully elucidated. A previous
case-controlled study suggested that diabetic patients who
had taken metformin showed a significantly lower risk of
pancreatic cancer compared with those who had not taken
metformin [10]. In addition, metformin use was associated
with an improved outcome in diabetic patients with pan-
creatic cancer [11, 12]. Metformin inhibited pancreatic
cancer cell and tumor growth by down-regulating Sp tran-
scriptional factors and showed an impact on the tumor
microenvironment in PDAC [13-15]. Our previous study
revealed that in human PDAC tissue, AMPK inactivation
is correlated with desmoplastic reaction and patients’ poor
prognosis. Our subsequent in vitro study found that the
activation of AMPK by metformin inhibits pancreatic
cancer invasion and migration. In addition, metformin
suppresses TGF-B-induced PSC activation. In accordance
with in vitro findings, metformin reduced tumor growth
and desmoplasia in subcutaneous and orthotopic models
of PDAC [15].

In the current study, using an oncogenic Kras-mediated
and cerulein-induced mouse model of chronic pancreatitis
in LSL-Kras®'?P; Pdx1-Cre (KC) mice, as well as LSL-
Kras®12P/+, Trp53ﬂ/ *; Pdx1-Cre (KPC) mouse model, we
aimed to further investigate the cancer preventive and
therapeutic effects of metformin. Interestingly, we
observed a delayed formation of precursor lesions and im-
paired tumor progression following metformin treatment.

Methods

Genetically engineered transgenic mice

Pdx1-Cre mice, LSL-KrasS'*® mice and Trp53"" mice
were purchased from the Nanjing Biomedical Research
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Institute of Nanjing University, Nanjing, China. The
breeding of LSL-KrasS'?P; Pdx1-Cre (KC) transgenic
mice was achieved by crossing LSL-Kras®'* mice with
Pdx1-Cre mice (Additional file 1: Fig. S2A). LSL-
Kras®?P"*;  Trp53"*; Pdx1-Cre (KPC) mice were
obtained by firstly crossing Trp53"" mice with Pdx1-
Cre mice to generate Trp53"% Pdxl1-Cre offspring.
Trp53™"%; Pdx1-Cre mice were then crossed with LSL-
Kras®**P mice to generate KPC animals (Additional file 1:
Fig. S2B). Polymerase chain reaction (PCR) was applied
for the genotyping of transgenic mice (Additional file 2:
Fig. S3). The primer sequences used for the genotyping of
transgenic mice were presented in Additional file 3: Table
S1. All mice were housed under pathogen-free conditions
and with free access to water and food. All experimental
protocols were approved by the Ethical Committee of the
First Affiliated Hospital of Medical College, Xi’an Jiaotong
University, Xi'an, China.

Induction of chronic pancreatitis

To induce chronic pancreatitis, cerulein (Sigma, St.
Louis, MO, USA) was administered daily by intraperito-
neal injection (0.1 ml of a 50 mg/ml solution in saline)
5 days per week as previously described [16]. Mice were
treated for 4 consecutive weeks and allowed to recover
for 1 week before harvesting the tissue.

Tissue preparation and histology

Mice were sacrificed, and the pancreas and other organs
such as the liver and lungs were gently removed. The
pancreas tissues were weighed and the tumor volumes
were measured; then, the tissues were immediately fixed
in 10% buffered formalin and embedded in paraffin. For
histopathological analysis, tissues were sliced (5 pum),
and Hematoxylin & Eosin (H&E) staining was performed
according to the manufacturer’s instructions. Identifica-
tion of ADM and grading of mPanIN (graded as mPa-
nIN1A, mPanIN1AB, mPanIN2, and mPanIN3) and
PDAC were based on criteria described previously [17].
For quantification of ADM and mPanIN lesions, five
10X pictures were randomly taken in every section, and
the numbers of ADM and mPanIN lesions were calcu-
lated. Liver and lung were serially sectioned, and every
fifth section was stained with H&E for the recognition of
distant metastasis.

Immunohistochemistry

Immunohistochemical staining was performed using the
SABC kit (Maxim, Fuzhou, China) according to the
manufacturer’s instructions. Briefly, the pancreas tissue
sections were incubated in primary antibodies for CK19
(Abcam, Cambridge, MA, USA), phospho-STAT3 (CST,
Danvers, MA, USA), phospho-AMPK (CST, Danvers,
MA, USA), phospho-mTOR (Abcam, Cambridge, MA,
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USA), and a-SMA (Abcam, Cambridge, MA, USA) over-
night at 4 °C; then, sections were incubated in the ap-
propriate biotinylated secondary antibody for 30 min at
room temperature, followed by 30 min of incubation
with streptavidin peroxidase (Dako LSAB + HRP kit).
After rinsing, the results were visualized using DAB, and
the slides were counterstained with hematoxylin.

Masson'’s trichrome staining

Trichrome staining was performed using the Sigma
Trichrome Stain (Masson) Kit according to the manu-
facturer’s instructions. To quantitatively evaluate
trichrome-stained fibers in each group, representative
slides per mouse were chosen, and at least 5 10X
pictures were taken by light microscopy from each slide;
then, the percentages of stained area were calculated
using Image J software.

In vivo treatment with metformin

Metformin was administered at 200 mg/kg daily by
gavage. According to the Reagan-Shaw method for
dose translation from animal to human studies [18],
the human equivalent of a murine dose of 200 mg/kg
is 972 mg for an average sized 60 kg adult human.
Therefore, the selected dose in the present study is
within the safe therapeutic range reported in humans
(1000 to 2500 mg).

Statistical analysis

The data are presented as the mean + SD. Compari-
sons between groups were analyzed by Student’s
t-test. Kaplan-Meier analysis was used for survival
analysis. P values <0.05 were considered significant.

Results

Genetically engineered mice recapitulated the
histopathological characteristics of PDAC in human
patients

Genetically engineered mouse models have the potential
to assist our understanding of the histopathological
characteristics of noninvasive and invasive pancreatic
neoplasia and thus facilitate the development of pre-
ventative and therapeutic strategies for PDAC, as well as
progress novel tests for the early detection of pancreatic
neoplasia. Firstly, we sacrificed the KC and KPC mice at
different time points to investigate the kinetics of tumor
formation, as demonstrated in Additional file 4: Fig. S1.
In line with previous reports [19, 20], we found that in
early mPanIN lesions, the lesions presented as flat epi-
thelial lesions composed of columnar cells with basally
located nuclei and supranuclear mucin (Fig. 1b). In late
mPanIN, the flat epithelium turned to papillary struc-
tures accompanied by nuclear abnormalities, including
loss of polarity and nuclear crowding (Fig. 1c). PDAC in
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the transgenic engineered mice presented as chaos of
the architecture and cancer cells interspersed in abun-
dant stroma (Fig. 1d). Masson’s trichrome staining was
performed to observe the desmoplastic reaction during
PDAC progression. We found that Masson’s trichrome
staining was detected in early precursor lesions such as
ADM and mPanIN1 (Fig. 1f), and it was exacerbated
when the lesions progressed to late mPanIN and invasive
PDAC (Fig. 1g, h). Consistent with Masson’s trichrome,
a-SMA staining was detected and showed an increasing
tendency from early mPanIN to invasive PDAC (Fig. 1i-1).
These results reinforced the resemblance of pancreatic
cancer initiation and progression in genetically engineered
mice and human patients.

Metformin suppressed precursor lesion formation in KC
mice

To test whether the intake of metformin was sufficient
to suppress pancreatic preneoplastic lesion formation,
we investigated the cancer preventative effect of metfor-
min in KC mouse model. Starting at 6 weeks of age, KC
mice were treated daily with metformin (200 mg/kg) or
vehicle for 4 weeks by gavage (Fig. 2b). Then, the mice
were sacrificed, and a histological examination was per-
formed to evaluate the effect of metformin on ADM and
mPanIN formation (Fig. 2a). Cytokeratin 19 (CK19) was
stained to show the duct-like lesions (Fig. 2d). We
showed that at the end time point, the pancreas from
KC mice presented with multifocal lesions, which were
composed of early precursor lesions (ADM and
mPanIN1) and less late mPanIN lesions (mPanIN2 and
mPanIN3). However, following metformin treatment, the
percentage of early and late mPanIN lesions was
decreased (Fig. 2e). We also detected a decreased
percentage of CK19-stained area (Fig. 2c). We conclude
that metformin suppressed initiation of pancreatic
cancer in KC mice.

Metformin suppressed chronic pancreatitis-induced pan-
creatic tumorigenesis

Chronic pancreatitis is a widely accepted risk factor for
PDAC [21]. To investigate the role of metformin in
chronic pancreatitis-associated tumorigenesis, KC mice
were treated chronically with a low dose of cerulein
(0.1 ml of a 50 pg/ml solution in saline), a cholecysto-
kinin analog that can induce the secretion of pancreatic
enzymes, 5 days per week [16]. The pancreas tissues of
mice treated with cerulein or cerulein combined with
metformin were analyzed. As expected, chronic treat-
ment with cerulein induced a coarse and granular
macroscopic appearance of the pancreas (Fig. 3b), in line
with an increase in the weight of the pancreas tissue
(Fig. 3c). The hematoxylin & eosin (H&E) staining of
cerulein-treated pancreas showed a replacement of the
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Fig. 1 Genetically engineered mice recapitulate the pathological characteristics of pancreatic cancer. a-d Representative images of normal
pancreas tissue (a), early mPanIN (b), late mPanIN (c) and invasive PDAC (d) stained by hematoxylin and eosin (H&E). e-h Masson'’s trichrome
staining of different stages of pancreatic precursor lesions and invasive PDAC. i-h Immunohistochemical staining of a-SMA in different stages of

normal pancreatic acini with glandular metaplasia and
mPanIN lesions, which was accompanied by obvious fi-
brosis. We also observed frequent late mPanIN lesions
and focused areas of PDAC (Fig. 3e). IHC showed
significantly increased staining of CK19 in pancreatic tis-
sues with chronic pancreatitis (Fig. 3b).

Surprisingly, compared to mice treated with cerulein
alone, mice treated with metformin showed decreased
pancreas weight (Fig. 3c). The histology showed large
areas of normal acini preserved (Fig. 3b). Statistical ana-
lysis suggested that metformin treatment significantly
suppressed the progression of precursor lesions, with a
decreased percentage of mPanIN2 plus mPanIN3 and a
decreased incidence of PDAC (Fig. 3e). Accordingly, the
CK19-positive area was decreased (Fig. 3d). These re-
sults show that treatment with metformin delayed
chronic pancreatitis-induced pancreatic oncogenesis.

Metformin reduced fibrosis in mice with chronic
pancreatitis.

Chronic pancreatitis is an inflammatory disease charac-
terized by the atrophy of normal acini accompanied by
obvious pancreatic fibrosis [22]. To investigate the role
of metformin in eliminating chronic pancreatitis-
induced fibrosis, pancreatic tissues from mice treated

with vehicle, cerulein, or cerulein plus metformin were
stained with Masson’s trichrome (Fig. 4a). As previously
reported, the percentage of area stained with Masson’s
trichrome was dramatically increased following cerulein
treatment. Metformin  decreased the Masson’s
trichrome-stained area (Fig. 4b). PSCs are responsible
for fibrosis. Under normal conditions, PSCs are main-
tained in a quiescent state. Once activated by external
insults such as pancreatitis or pancreatic injury, PSCs
become activated and express high levels of a-SMA,
thus up-regulating the synthesis of extracellular matrix
(ECM) [23]. Hence, we stained a-SMA to evaluate the
activity of PSCs in different groups, and we found
obvious effects of metformin on reducing the «-SMA
positive area (Fig. 4c).

Metformin impaired STAT3 signaling and inhibited
proliferation

A previous study has suggested a crucial role for STAT3
signaling in Kras-induced pancreatic tumorigenesis [8].
We evaluated the effect of metformin on the STAT3
pathways in a KC mouse model. Immunohistochemical
(IHC) staining of p-STAT3 was detected in early mPa-
nIN and the surrounding acini from KC mice treated
with vehicle. Mice treated with metformin showed a
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Fig. 2 Metformin impaired oncogenic Kras-mediated mPanIN formation in KC mouse model. a H&E staining of the pancreas in vehicle or
metformin-treated mice. Scale bars: (top row) = 400 um; (2nd row) = 100 pum. b Scheme showing the experimental design of metformin
treatment protocols in mice. ¢ Quantification of the percentage of CK19 positive duct-like structures in mice treated with vehicle or metformin.

d Representative images show pancreatic precursor lesions stained by anti-CK19. Scale bars: top row = 400 pm; 2nd row = 100 pm. e Quantification of
the percentage of early mPanIN (ADM plus mPanIN1) and late mPanIN (mPanIN2 plus mPanIN3) in mice treated with vehicle or metformin.

decreased level of p-STAT3 staining (Fig. 5a). In cerulein-
induced tissue of chronic pancreatitis, IHC staining of
p-STAT3 was dramatically increased. However, metformin
treatment impaired cerulein-induced p-STAT3 staining
augmentation (Fig. 5a). Considering the evidence that
STATS3 is involved in the proliferation of cancer-initiating
cells as well as cancer cells [24, 25], we set out to investi-
gate whether metformin impaired cell proliferation in
precursor lesions. IHC staining of Ki67 was performed on
the pancreas tissue of mice treated with vehicle or metfor-
min. In mice that received metformin treatment, the
pancreas showed a decreased number of Ki67-positive
cells (Fig. 5b). Repeated cerulein injection induced a sig-
nificant increase of Ki67 staining. However, it was reversed
following metformin treatment (Fig. 5b). Collectively, our
results revealed that metformin suppressed pancreatic
oncogenesis in part through impairment of STAT3 signal-
ing and inhibition of cell proliferation.

Metformin reduced tumor burden and prolonged survival
in KPC mice

To further evaluate the therapeutic effect of metformin
in pancreatic cancer treatment, we assessed whether

treatment with metformin inhibited tumor progression
in KPC mouse model. Starting at 6 weeks of age, KPC
mice were treated daily with vehicle or metformin. As
expected, KPC mice treated with metformin presented a
prolonged overall survival (Fig. 6h). Accordingly, mice
treated with metformin had a decreased tumor volume
and tumor weight (Fig. 6a, c). Among those treated with
vehicle, we observed abdominal invasions including peri-
toneal invasion (4/10), mesenteric invasion (4/10), dia-
phragmatic invasion (2/10) and bile duct invasion (2/10)
(Fig. 6d, e). Metformin treatment dramatically decreased
abdominal invasions, where just one out of eight showed
mesenteric invasion (1/8), two showed peritoneal
invasions (2/8), and one showed bile duct invasion (1/8)
(Fig. 6e). Previous evidence suggested the role of metfor-
min in pancreatic desmoplasia [5], as well as its role in
reducing chronic pancreatitis-induced pancreatic fibro-
sis. We further evaluated its anti-fibrotic role in KPC
mice. Similar to our previous report [15], the Masson’s
trichrome-stained area was decreased following metformin
treatment (Fig. 6f, g). In addition, we detected activation
of AMPK signaling, demonstrated as increased ex-
pression of p-AMPK and p-ACC (Additional file 5:
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Fig. S4A-B). We also found that metformin treatment
down-regulated the levels of p-mTOR and p-P70S6K
(Additional file 5: Fig. S4A-B). Collectively, these data
suggest that metformin treatment decreased tumor
burden and abdominal invasion. Importantly, it pro-
longed the overall survival of KPC mice.

Discussion

The development of genetically engineered mouse
models has led to an understanding of the initiation and
progression of pancreatic cancer, thus providing a more
efficient tool for the research of pancreatic cancer pre-
vention and treatment [20]. Oncogenic Kras-mediated
PDAC mouse models recapitulate tumor onset and pro-
gression from ADM to mPanINs and eventually to inva-
sive pancreatic cancer. We found that intake of
metformin delayed pancreatic tumorigenesis in KC

mouse model, represented by a decreased percentage of
early lesions (ADM and mPanIN1) and late mPanIN
lesions (mPanIN2 and mPanIN3). Furthermore,
metformin suppressed chronic pancreatitis-induced
tumorigenesis, and it showed a promising effect in redu-
cing chronic pancreatitis-induced pancreatic desmoplas-
tic reaction. Accordingly, the activity of STAT3 signaling
was decreased in KC mice as well as mice with chronic
pancreatitis following metformin treatment. More
importantly, metformin induced tumor regression and
prolonged the overall survival of KPC mice.
Accumulating evidence has suggested that metformin
has a cancer preventive effect [26, 27]. Patients who
received metformin demonstrated a decreased risk of
incident cancer, including ovarian cancer [28], prostate
cancer [29], and colorectal cancer [26]. A previous study
indicated that metformin inhibited cancer cell
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proliferation and stemness in non-small cell lung cancer
(NSCLC) [30], and it suppressed tobacco carcinogen-
induced lung tumorigenesis. A subsequent study showed
that metformin’s anti-tumorigenic effects could be medi-
ated by inhibiting the phosphorylation of insulin-like
growth factor-I receptor/insulin receptor (IGF-1R/IR),
AKT, ERK, and mTOR [31]. PDAC is believed to initiate
from precursor lesions of the pancreas such as ADM
and PanINs, which could be induced by oncogenic Kras
or pancreatitis [32]. Our data support the idea that, in
accordance with its cancer preventive effect in other
cancers, metformin plays an important role in prevent-
ing pancreatic tumorigenesis.

Chronic pancreatitis has been accepted as one of the
most important risk factors for PDAC [16, 33]. A previ-
ous study suggested that on the background of onco-
genic Kras, chronic pancreatitis is essential for the
initiation and acceleration of PDAC [16]. Recent studies
suggested that the interleukin 17 pathway mediates the
pancreatitis-to-cancer transition and induces the activa-
tion of the JAK2-STAT3 pathway during ADM and in
early PanIN lesions [34]. Chronic pancreatitis can also
contribute to the initiation and progression of PDAC by
abrogating the senescence barrier characteristic of low-

grade mPanINs. Suppression of pancreatitis promoted
tissue repair and retarded PanIN expansion [35]. Our
data shows that, in line with previous findings, mice
treated with cerulein induced chronic pancreatitis, which
presented an almost complete replacement of normal
pancreatic tissue with ductal architecture and deposition
of a large amount of collagen and fibril in the stroma.
The majority of acini were replaced by PanIN lesions
and metaplasia. Surprisingly, we found that metformin
significantly retarded the chronic pancreatitis to PDAC
transition and reduced pancreatic fibrosis. Accordingly,
the pancreatic proliferation index, measured by Ki67,
was also diminished.

Cancer initiation is associated with abnormal alter-
ation of several signaling pathways, among which the
signal transducer and activator of transcription (STAT)
proteins are included [8]. STAT3 is present in the cyto-
plasm under basal conditions. Once activated, STAT3 di-
merizes and localizes to the nucleus [36]. Previous
studies have revealed that STAT3 is persistently acti-
vated in a wide range of human malignancies, and it ex-
erts diverse roles in cancer cell proliferation, epithelial to
mesenchymal transition (EMT), invasion and metastasis
[37]. In addition, STAT3 promotes cancer development
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by promoting the self-renewal and differentiation of can-
cer stem cells (CSCs), which play crucial roles in tumori-
genesis [38]. STAT3 has been identified as a key
regulator in epithelial and gastric carcinogenesis [39, 40].
In pancreatic cancer, STAT3 was observed during all
stages of pancreatic oncogenesis, and inhibition or loss
of STAT3 reduced oncogenic KRAS-induced ADM and
PanIN formation [8]. Accordingly, we showed expression
of p-STAT3 in precursor lesions from KC mice, and
chronic pancreatitis induced an increased STAT3 activ-
ity. Treatment with metformin reduced the activation of
STAT3 signaling in KC mice and mice with chronic
pancreatitis.

For pancreatic cancer, gemcitabine remains the main-
stay of chemotherapy [41]. S-1 is also applied for adju-
vant chemotherapy for resected pancreatic cancer [3].
Previous evidence showed that patients with pancreatic
cancer benefit from the FOLFIRINOX scheme and nab-
paclitaxel [42, 43]. For those who present with
metastatic pancreatic cancer and have received
gemcitabine-based therapy previously, nanoliposomal iri-
notecan in combination with fluorouracil and folinic
acid extends patients’ median overall survival [44]. How-
ever, therapeutic efficiency was achieved at the cost of a

high incidence of adverse events such as leucopenia,
neutropenia, liver injury or gastrointestinal discomfort.
Numerous studies have revealed the therapeutic effects
of metformin in diverse cancer types including endomet-
rial cancer [45], castration-resistant prostate cancer [46],
and breast cancer [47]. We previously reported that met-
formin inhibited tumor growth in subcutaneous and
orthotopic models of pancreatic cancer [15]. Recent
study revealed that mitochondrially targeted metformin
(MitoMet) considerably more efficiently killed pancreatic
cancer cells and suppressed pancreatic tumors in vivo by
targeting the mitochondrial complex I (CI) [48]. Here,
we find that in a genetically engineered mouse model
(KPC mice), metformin also showed therapeutic effi-
ciency with a decreased tumor burden and lower inci-
dence of abdominal invasion. More importantly,
metformin prolongs the overall survival of KPC mice.
Desmoplastic reaction is one of the characteristics of
PDAC. PSCs are responsible for pancreatic fibrosis,
during which PSCs transform from a quiescent state into
a-SMA positive activated state [49]. Substantial evidence
has revealed that fibrotic stroma establish a fertile
microenvironment for tumor growth and distant metas-
tasis [50, 51]. We found that in KPC mouse model,
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Fig. 6 Metformin inhibited the growth and invasion of PDAC in a KPC mouse model. a Representative macroscopic images of PDAC in KPC mice
treated with vehicle or metformin. The white dotted line shows the pancreas. b Histology of tumors from KPC mice in groups as indicated. ¢
Quantification of tumor weight in mice treated with vehicle or metformin. d Representative images of bile duct invasion (a), peritoneal invasion
and ascites (b), mesenteric invasion (c) and diaphragmatic invasion (d) identified in KPC mice. e Table listing the incidence of abdominal invasion
in KPC mice treated as indicated. f Representative images of Masson's trichrome staining. g Quantification of Masson’s trichrome in mice as
indicated. h Kaplan-Meier survival analysis of KPC mice treated with vehicle or metformin. **P < 0.01

treatment with metformin inhibited the activation of
PSCs and suppressed fibrosis in PDAC tissues.

Conclusion

The present study showed that in genetically engineered
mouse models of PDAC, metformin inhibits oncogenic
Kras-induced pancreatic tumorigenesis. Treatment with
metformin suppressed chronic pancreatitis-induced meta-
plasia and the pancreatitis-to-cancer transition, accompan-
ied with the elimination of fibrosis. Additionally, metformin
reduced tumor burden and prolonged the overall survival.
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