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Abstract

Metastasis has intrigued researchers for more than 100 years. Despite the development of technologies and therapeutic
strategies, metastasis is still the major cause of cancer-related death until today. The famous “seed and soil” hypothesis is
widely cited and accepted, and it still provides significant instructions in cancer research until today. To our knowledge,
there are few reviews that comprehensively and correlatively focus on both the seed and soil factors involved in cancer
metastasis; moreover, despite the fact that increasingly underlying mechanisms and concepts have been defined
recently, previous perspectives are appealing but may be limited. Hence, we reviewed factors involved in cancer
metastasis, including both seed and soil factors. By integrating new concepts with the classic hypothesis, we aim
to provide a comprehensive understanding of the “seed and soil” hypothesis and to conceptualize the framework
for understanding factors involved in cancer metastasis. Based on a dynamic overview of this field, we also discuss potential
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implications for future research and clinical therapeutic strategies.

Background

Cancer is an important public health problem and is the
major cause of human death worldwide [1]. However,
tumor metastasis continues to be the main cause respon-
sible for the cancer-related death [2, 3]. Thus, unraveling
the complexity of cancer metastasis and the development
of new therapeutics are imperative to restrain tumor
metastasis from the primary lesion to distant organs.

In 1889, the English surgeon Stephen Paget proposed
the “seed and soil” hypothesis after scrutinizing the autopsy
records of 735 patients with fatal breast cancer [4, 5]. This
hypothesis suggested that, when a plant goes to seed, its
seeds are carried in all directions but can only live and grow
if they fall on congenial soil. Despite the seed and soil is an
appealing metaphor, it was virtually not accorded serious
consideration and was challenged by James Ewing who
declared that metastasis is determined by purely mechanical
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mechanisms such as anatomical and hemodynamic
factors of the vascular system [6].

In recent years, additional fundamental discoveries
have brought fresh insight into our understanding of
cancer metastasis, and several novel concepts have been
established. For example, the “tumor self-seeding” hypoth-
esis argued that circulating tumor cells (CTCs) can seed
not only to regional and distant organs in the body but
also to the original source, the primary tumor itself [7, 8].
Pre-metastatic niche, conceptualized as a fertile soil con-
ducive to the survival and outgrowth of metastatic seed,
has attracted increasingly more attention in the era of
metastasis research. In this review, we provide a compre-
hensive understanding of the “seed and soil” hypothesis,
and we conceptualize the framework for understanding
factors involved in cancer metastasis. More importantly,
we highlight the dynamic interplay between seed and soil.

Seed factors

Since the seed and soil hypothesis first emerged, a plethora
of studies have been focused on identifying how the “seed”
(cancer cell) contributes to metastasis; indeed, the seed
factors (Fig. 1) play a crucial role in tumor progression
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Fig. 1 Seed Factors, both seed intrinsic and extrinsic factors are depicted here. Seed extrinsic traits remodel the primary soil and secondary soil
via tumor secreted factors, inducing ECM remodeling and hypoxia, and promoting formation of pre-metastatic niche. Seed intrinsic traits, including
CSC, EMT-MET, Autophagy and metastatic dormancy, is in involved in cancer metastasis, EMT and autophagy are linked with stemness of CSCs. Two
alternative means of generating CSCs are depicted here, intrinsic CSCs are thought to exist in primary tumors from the very early stages of
tumorigenesis and induced CSCs may arise as a consequence of EMT. CSCs with metastatic potential would be the most tenacious “seed”
invasion through surrounding tissues, and intravasation, as well as survival in circulation and the eventual colonization at distant sites
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and outgrowth. Herein, we provide a comprehensive
review of seed factors involved in metastasis based on
the latest findings and specialized articles that cover
them in depth.

EMT-MET and metastasis

EMT (epithelial to mesenchymal transition) represents a
shift toward the mesenchymal state, allowing cells to
adopt migratory and invasive behavior [9], while the reverse
process is referred as mesenchymal to epithelial transition
(MET). EMT has been implicated in the process by which
cancer cells enter the circulation and seed metastases [10].
Yu et al. analyzed the EMT in CTCs from breast cancer
patients and found that EMT plays a critical role in the
bloodborne dissemination of human breast cancer [11].

Although EMT was thought to be important in tumor
progression, it is inconsistent with the fact that metastatic
lesions share the epithelial nature of primary tumors [12].
To explain this apparent paradox, it was proposed that
EMT is reversible [13]. Notably, there are a few studies
also supporting a role for MET in distant sites. MET was
implicated in the formation of clinically significant metas-
tasis in bladder cancer [14]. In addition, accumulating
experimental evidence showed the requirement of MET
in the colonization and metastasis of carcinomas [15, 16],
which suggests implications for future therapies against
metastasis. Targeting EMT alone might be counterpro-
ductive, inhibiting both EMT and MET could be promis-
ing therapeutic strategy.

Most of the observations exploring the role of EMT
in tumors have relied on cell culture-mediated loss-of-
function and gain-of-function trials. However, more re-
cently, two papers published in Nature provided intriguing
evidence that EMT is not required for metastasis in vivo
[17, 18]. While these results are interesting, researchers
also suggest potential limitations to these studies, such

that tracking cells based on the expression of a single gene
may miss ongoing EMT events [19], and these genetic
manipulations may fail to suppress the expression of ver-
sions of EMT and completely suppress activation of EMT
[20, 21]. Hence, in the future, further evidence is required
to support the conclusion that EMT is not required for
metastatic colonization.

CSCs and metastasis

The cancer stem cell (CSC) theory suggests that many
types of solid tumors are hierarchically organized and
sustained by a distinct subpopulation of CSCs [22]. In
the cancer stem cell model, cancer stem cells are described
as a reservoir of cells within the tumor that have the ability
to self-renew and to provide the heterogeneous lineages of
cancer cells that constitute the tumor [23, 24]. Alternative
term in literature is described as “tumorigenic cell”, or
“tumor initiating cell”. It has been known purely a mi-
nority of cancer cells have the ability to form tumor
[25, 26] and metastatic colonization is a highly ineffi-
ciency process that only a small subpopulation of dis-
seminated tumor cells accomplished [27].

In 2005, the concept “migrating cancer stem cell” was
first established, which support the existence of mobile
cancer stem cell [28]. A subset of cells from human brain
tumors showing stem cell properties were identified in vitro
and in vivo [29], thus providing strong support for the CSC
theory. In particular, this model integrated two decisive
features, stemness and EMT. Evidence was provided that
CSCs derived from metastatic breast tumor cells exhibit
significantly higher tumorigenic and metastatic capacities
than low metastatic cells [30]. Most intriguingly, the EMT
program was indicated to play a pivotal role in facilitating
the entrance of non-stem cells into stem cell states. For
example, in a mammary tumor progression model, it was
suggested that the acquisition of stem and tumorigenic
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property is stimulated by EMT induction [31]. Collectively,
based on these observations, cancer stem cells have the
capacity of long-term self-renewal and therapy-resistant,
making it more possible to transform from the primary
tumor, survive in the circulation and colonize distant sites.
In other words, the cancer stem cell would be the most
tenacious “seed” to successfully colonize in a foreign “soil”.

Autophagy and metastasis

Autophagy is an intracellular degradation system, by which
cells breakdown cytoplasmic materials in the lysosome [32].
Although autophagy has long been postulated to be in-
volved in cancer metastasis for many years [33], the exact
role of autophagy and underlying molecular mechanisms
is still controversial.

On one hand, evidence indicated that autophagy showed
an anti-metastatic effect [34]. For example, Brahma et al.
showed that rottlerin (a protein kinase C-delta inhibitor)
can stimulate autophagy, resulting in cell death in pancre-
atic CSCs [35]. Similarly, caffeine (neuroactive compounds)
induced autophagy and promoted apoptosis in various cell
lines, including cancer cells. These results are consistent
with previous studies on the use of caffeine to treat human
tumors [36].

On the other hand, emerging experimental data support
the idea that autophagy plays a pro-metastatic role in
cancer metastasis, for its involvement in regulating tumor
invasion [37], anoikis resistance [38], CSCs viability [39-41],
EMT program [42, 43], and tumor colonization [38, 44].
Clinically, pancreatic cancers exhibit high basal levels
of autophagy, and thus, a phase II clinical trial (https://
clinicaltrials.gov: NCT01273805) and translational study
of hydroxychloroquine (HCQ), an inhibitor of autophagy,
in patients with previously treated metastatic pancreatic
cancer was started. However, inconsistent autophagy in-
hibition was achieved and demonstrated negligible thera-
peutic efficacy [45]. Taken together, the role of autophagy
in cancer metastasis still warrants further investigation,
and clinical translation by targeting autophagy remains to
be achieved.

Metastatic dormancy

A clinical phenomenon has been recognized for years that
many patients relapse with metastatic disease months
or years after primary tumor treatment because residual
tumor cells can enter a dormant state and become
refractory to therapies. Tumor dormancy is described
as a lag time between dissemination and metastatic out-
growth, in which disseminated tumor cells (DTCs) main-
tain quiescence, which is a stable, non-proliferative cellular
state. Tumor cells can disseminate to distant sites and enter
a dormant state for long periods, only to then give rise to
metastasis [46].
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With regard to cancer cell itself, dormant cancer cells
retrieved from metastasis-free distant sites retain their
metastatic ability [47]. Recently, numerous genes have
been shown to be correlated with dormancy in many
types of cancer [48—50]. For example, in a bone metastasis
dormancy model, VCAM-1 expression by cancer cells is
shown to support reactivation of indolent cancer cells and
bone metastasis by interacting with the microenvironment
[50]. These evidences showed the crucial role of cancer
cells in mediating tumor dormancy and reactivation.

According to experimental and clinical evidence, tumor
dormant state can also be regulated by microenvironmental
factors in certain organs. For instance, evidence was pro-
vided that BMP7 (bone morphogenetic protein 7), secreted
by bone stromal cells, plays a key role in dormancy and re-
currence of prostate cancer [51]. TGF-2p and p38 signaling
was shown to keep DTCs in a dormant state in bone
marrow but not in lung [52]. In a breast cancer model, the
BMP inhibitor Coco was demonstrated to promote breast
cancer cell dormancy escape [53].

The findings discussed above suggest that dormancy
and reactivation are governed by complex interactions
between DTCs and the microenvironment of the target
organ. Intriguingly, it was indicated that the induction of
autophagy is involved in the induction and survival of dor-
mant ovarian cancer cells [54]. Future research requires
more endeavors to find out the link between autophagy
and tumor dormancy, which will provide insights into
novel therapeutic strategies to metastatic cancer.

Tumor-secreted factors

The extrinsic traits of cancer cells, tumor secreted factors
also play a pivotal role in promoting cancer metastasis.
These tumor-secreted factors include extracellular vesicles
(EVs), cytokines and chemokines, and other molecular
components. Numerous molecular components and mech-
anisms have been identified in past years.

Tumor-secreted extracellular vesicles (EVs)

EVs are secreted vesicles that include exosomes (30—
100 nm diameter), microvesicles (MVs 100—1000 nm diam-
eter), and newly identified “large oncosomes” (1-10 pm
diameter) [55]. In recent years, EVs have been shown
to play a critical role in mediating the interaction
between tumor cells and host cells, which prepares the
pre-metastatic niche for the formation of secondary
sites [56]. In particular, cancer cells secrete considerably
more EVs than normal cells, leading to a substantial in-
crease in detectable EVs circulating in the blood. Increasing
evidences have been shown that tumor-secreted EVs,
containing DNA, RNA, proteins, and other molecule com-
ponents, such as hypoxia-inducible factor-l1a (HIFla)
[57, 58], are capable of mediating cell-cell communication
and playing an essential role in inducing metastasis. Tumor-
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secreted exosomes are small membrane vesicles (30—
100 nm) derived from the luminal membranes of mul-
tivesicular bodies and released into the extracellular
milieu by fusion with the membrane. On one hand, tumor-
secreted exosomes are shown to be involved in enhancing
the metastatic traits of cancer cells and remodeling the
primary microenvironment. In other words, educating the
primary “soil” for a tumor-permissive microenvironment
and metastasis. For instance, it was reported that breast
cancer cells with increasing metastatic potential secrete
exosomes that proportionally increase cell motility, which
suggests that exosomes play a dynamic role in mediating
metastasis [59]. MCF7 and MDA-MB-231 cells secrete exo-
somes that induce the differentiation of adipose-derived
mesenchymal stem cells into myofibroblasts, increasing
their secretion of factors such as SDF-1, VEGF, CCL5, and
TGEp, which are involved in regulating tumor progression
and metastasis [60]. On the other hand, tumor-secreted
exosomes are capable of educating distant “soil”. In pancre-
atic ductal adenocarcinomas (PDACs), macrophage migra-
tion inhibitory factor (MIF) was found to be overexpressed
in PDAC-derived exosomes, and its blockade impeded liver
pre-metastatic niche formation [61]. Exosomes from mouse
and human organotropic cancer cells were found to prefer-
entially fuse with resident cells at their predicted destin-
ation. Further, the uptake of tumor-derived exosomes by
organ-specific cells was also shown to promote the pre-
metastatic niche [62]. Consistently, small nuclear RNAs
from primary tumor-derived exosomes were found to acti-
vate alveolar epithelial TLR3, leading to chemokine secre-
tion and neutrophil infiltration [63], and to contribute to
the pre-metastatic niche formation. In a recent study,
elegant work by Guoguang and colleagues validated a novel
mechanism concerning liver-tropism metastasis, that is,
the remodeling of the liver microenvironment by EGFR-
containing exosomes derived from tumor cells mediated
gastric cancer metastasis [64]. Taken together, these studies
indicate that primary tumor exosomes contribute to cancer
metastasis by promoting the metastatic traits of cancer cell
and, more importantly, by educating the primary soil
and distant soil. Microvesicles (MVs), also known as
“microparticles” [65] and/or “metastasomes” [57], owing
to their ability to merge with and transfer a repertoire of
bioactive molecular content (cargo) to recipient cells, are
increasingly regarded as mediators of intercellular com-
munication [58]. Accumulating evidence showed that
many cancer-related cell biological processes correlate
with accelerated rates of MVs secretion from tumor
cells [66]. Particularly, MVs are also shown to play a
crucial role in metastasis [67]. It was reported that osteo-
pontin expressed by tumor-secreted MVs plays an import-
ant role in bone marrow-derived cell mobilization and
colonization of tumors [65]. Large oncosomes (LO) are
large (1-10 um diameter) cancer-derived extracellular
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vesicles (EVs), originating from the shedding of membrane
blebs. In human prostate cancer, it was found that LO
that contains metalloproteinases, RNA, caveolin-1, and
the GTPase ADP-ribosylation factor 6 and are biologically
active toward tumor cells, endothelial cells, and fibro-
blasts, suggesting a mechanism that LO is involved during
the formation of pre-metastatic niche [68].

Tumor-secreted cytokines and chemokines

It has been well established that cytokines and chemokines
derived from cancer cells can selectively attract and activate
different cell types. The diverse functions of these factors
establish them as key mediators of communication between
cancer cells and microenvironment. Thus, these factors are
always associated with multiple aspects of cancer metasta-
sis. To understand how cancer cells affect the tumor micro-
environment, Kim et al. conducted a biochemical screen for
macrophage-activating factors secreted by metastatic
carcinomas; the results indicated that Lewis lung car-
cinoma produced factors that activated myeloid cells
via TLR2 and that induced TNF-« secretion by myeloid
cells, thus enhancing metastatic growth by preparing
the pre-metastatic niche [69]. CCL2-expressing breast
tumor cells engaged CCR2" stromal cells of monocytic
origin, including macrophages and preosteoclasts, to
facilitate breast cancer metastasis to lung and bone [70], re-
spectively. Similarly, tumor cell-secreted IL6 causes Stat3
phosphorylation in lymphatic endothelial cells (LECs),
inducing CCL5 expression in LECs and accelerating
triple-negative breast cancer (TNBC) cell metastasis [71].
In summary, these factors indeed play a pivotal role in
promoting metastasis by preparing the formation of the
pre-metastatic niche.

However, it is important to note that these factors
mediate a complex interplay between various host cell
types and tumor cells, and pharmacological inactivation
of these molecules or their receptors to reduce metastasis
should be cautiously employed. For instance, the inhib-
ition of CCL2—-CCR?2 signaling blocks the recruitment of
inflammatory monocytes, inhibits metastatic seeding and
prolongs the survival of tumor-bearing mice [72]. How-
ever, a paper published in Nature reported a paradoxical
effect of CCL2 in four syngeneic mouse models of meta-
static breast cancer. Surprisingly, the interruption of
CCL2 inhibition led to an overshoot of metastases and
accelerated death [73].

Other molecular components

Other molecular components also play a pivotal role in
mediating metastasis. For instance, in a previous study
[74] with in vitro and in vivo models using MDA-MB-231
human breast cancer cells, it was demonstrated that tumor-
derived osteopontin (OPN) induces mesenchymal stem
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cells (MSC) production of CCL5, mediating metastasis.
Likely, breast cancer cell-derived tenascin C (TNC)
promotes the survival and outgrowth of pulmonary
micrometastases [75]. In hepatocellular carcinoma (HCC),
it was found that a tumor-derived protein secretory clus-
terin (sCLU) contributed to HCC migration and EMT in
vitro and metastasis in vivo [76]. Together, certain pro-
teins derived from tumor cells also play a key role in me-
diating metastasis. Interestingly, a recent study reported
that nucleotides released from the highly metastatic breast
cancer cell also contribute to pre-metastatic niche forma-
tion by mediating lysyl oxidase secretion, collagen cross-
linking, and monocyte recruitment [77].

CTCs and metastasis

As discussed above, the metastatic traits of seed indeed
play a pivotal role during cancer metastasis; however,
there is a big gap between the seeding cells and the
formation of secondary tumor. Because most tumor dis-
semination occurs through the blood, CTCs that have
been shed into the vasculature are of obvious interest
[78]. Metastasis is a multistep process that includes local
invasion by cancer cells, intravasation, arrest at a distant
organ, extravasation, adapting to a new environment and
colonizing distant organ, which is also regulated by the
delivery and survival of CTCs in circulation and the
ability of intravasation and extravasation [79].

After entering the circulation, the survival and trans-
portation of CTCs depends on the physical interactions,
mechanical forces and the microenvironment they encoun-
tered [80]. At the cellular and molecular levels, CTCs adhe-
sion is a complex process involving dynamic cell-cell
interactions. For instance, endothelial adhesion is necessary
for CTCs dissemination, evidence indicated that monocytes
promoted metastatic breast cancer cell adhesion to endo-
thelium under flow [81]. By using in vitro models of vascu-
lature, platelets have been shown to be an important ally
for CTCs survival and extravasation [82]. More recently,
CTCs clusters were demonstrated to greatly contribute to
the spread of cancer [83]. In addition, physical trapping of
CTCs and optimal circulation pattern are necessary for
metastasis formation. CTCs were thought to preferentially
arrest in the microvasculature that appeared to be more
curved, branched, and stretched [84]. By imaging the
establishment of brain metastases in vivo, capillary branch-
ing was revealed to be efficient in trapping CTCs [85].
Moreover, Leonard Weiss et al. suggested that metastatic
colonization sites also correlated with blood flow patterns,
as revealed by autopsy. Furthermore, CTCs that success-
fully survived and crossed the physical barrier imposed by
the endothelium will eventually seed the distant organ [86].

Altogether, the metastatic cascade is driven by a sequence
of both mechanical and molecular factors. Both favorable
soil and suitable biomechanics are necessary for the
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eventual formation of a secondary tumor [87]. Addition-
ally, it is self-evident that CTCs have great potential value
for clinical applications, such as the early detection and
novel treatments for metastases, as CTCs provide the pos-
sibility of targeting metastasis in real time [78].

Soil factors (Fig. 2)

The primary soil factors

The primary tumor microenvironment has been known
to play a pivotal role in the regulation of cancer metastasis
[88]. Numerous studies have focused more on the seed-
to-soil signaling events that explain the mechanism by
which the seed remodels the microenvironment. However,
the soil-to-seed signaling events have been largely ignored.
In the past decades, data have shown that signals provided
by the primary tumor microenvironment are important
modulators of the capacity of tumor cells to invade, access
the vasculature, and metastasize. A variety of stromal cells
and other molecular components surrounding the pri-
mary tumor have been identified to provide signals to en-
hance the invasive properties of cancer cells in many
experimental models (Table 1). In addition, hypoxia in the
primary microenvironment also plays a pivotal role in the
regulation of tumor metastasis.

Tumor-associated microphages (TAMs)

Tumor-associated macrophages (TAMs) are alternatively
activated cells that are induced by interleukin-4 (IL-4)-
releasing CD4" T cells. It was demonstrated that TAMs
enhance the invasiveness of breast cancer cells via exosome-
mediated delivery of oncogenic miR-223 [89]. Chen et al.
showed that CCL18 derived from breast TAMs promotes
the invasive capacity of cancer cells by triggering integrin
clustering and promoting their adherence to the extra-
cellular matrix [90]. Similarly, in pancreatic cancer, CCL20
released from TAMs enhances the invasiveness of cancer
cells via its unique receptor CCR6 [91]. More recently,
TAM-secreted lipocalin-2 (Lcn2) was found to promote
cancer cell dissemination by regulating EMT, resulting in
increased cancer cell motility [92].

Mesenchymal stem cells (MSCs)

Mesenchymal stem cells have been shown to localize to
breast carcinomas, where they integrate into the tumor-
associated stroma. It was proven that MSCs within the
tumor stroma enhance the metastatic ability of cancer
cells, which is dependent on CCLS5 signaling via its chemo-
kine receptor CCR5 [93, 94]. To elucidate mechanisms in-
volved in cancer cell migration, CCL9 produced by MSCs
was also shown to play a critical role in promoting cancer
cell invasion [94]. More recently, Gonzalez and colleagues
reported that MSC-derived DDR2, a unique receptor tyro-
sine kinase activated by fibrillary collagen in the primary
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Fig. 2 Soil factors, both primary soil factors and secondary soil factors are depicted here. Primary soil factors promote metastasis by enhancing
the metastatic potential of seed. A variety of stromal cells and other molecular components surrounding the primary tumor provide signals to
enhance the invasion properties of cancer cell. In addition, hypoxia in primary soil also play a crucial role in accelerating cancer metastasis. The
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tumor, endows cancer cells with growth and migratory
advantage through alignment with collagen [95].

Endothelial cells

PHD proteins serve as oxygen sensors and may modulate
oxygen delivery, and haplodeficiency of PHD2 normalized
the endothelial lining and vessel maturation, which pro-
moted tumor perfusion and oxygenation and inhibited
the migration ability of cancer cells [96]. Furthermore,
it is revealed that endothelial cells within the prostate
cancer microenvironment secreted IL-6, resulting in the
downregulation of androgen receptor (AR) signaling in
prostate cancer cells, which enhance the invasion of
cancer cells [97]. More recently, it is important to note
that these studies showed a novel role of endothelial

cells in promoting metastasis by chaperoning circulat-
ing tumor cells and protecting them from anoikis [98].

Carcinoma-associated fibroblasts (CAFs)

In breast cancer, data indicated that CAFs promote tumor
growth and angiogenesis through their ability to secrete
SDF-1 (stromal cell-derived factor 1)in large part [99]. Fur-
ther, Stroma associated with cancer metastases is enriched
in Cavl-expressing CAFs, in vitro and vivo, and it was
demonstrated that fibroblast expression of Cavl (caveolin-1)
favors migration and invasion of cancer cells by regulating
p190RhoGAP, and stromal Cavl remodels microenvi-
ronments to facilitate tumor invasion [100]. Intriguingly,
exosomes secreted by CAFs also were shown to promote
breast cancer cell protrusive invasion and motility through
Wnt-planar cell polarity (PCP) signaling [101].
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Table 1 Factors of primary soil-to-seed signaling events involved in cancer metastasis

Page 7 of 19

Stroma cell type  Molecules Underlying mechanisms Cancer type Ref
TAMs miR-223 Regulates the invasiveness of cancer cells through exosome-mediated Breast cancer [89]
delivery of oncogenic miRNAs.
CccL18 Promotes the invasiveness of cancer cells by triggering integrin clustering Breast cancer [90]
and enhancing their adherence to extracellular matrix.
CCL20 CCL20 secreted by TAMs enhances the invasive properties of cancer cells Pancreatic cancer [91]
via its unique receptor CCR6.
Len2 TAM-derived Lcn2 promotes cancer cell dissemination by inducing EMT Breast cancer [92]
and resulting in increased cancer cell motility and invasion.
MSCs CCLs/ MSC-derived chemokines act on cancer cells to enhance their motility, Breast cancer [93, 94]
CCR9 invasion and metastasis.
DDR2 MSC-derived DDR2 in the primary tumor endows cancer cells with Breast cancer [95]
growth and migratory advantage through alignment with collagen.
ECs PHD2 Haplodeficiency of PHD2 normalizes the endothelial lining and vessel Melanoma [96]
maturation, resulting in inhibited metastasis. Lung cancer
Pancreatic cancer
IL6 EC-derived IL-6 triggers the increased invasion of cancer cell. Prostate cancer [97]
Undetermined  EC-bound tumor cells show a significantly higher anoikis resistance via Squamous carcinoma  [98]
the activation of Src-FAK pathway.
CAFs SDF-1/CXCL12  Promote tumor growth and angiogenesis through their ability to secrete Breast cancer [99]
stromal cell-derived factor 1 (SDF-1).
Cavl Stromal Cav1 remodels peri- and intratumoral microenvironments to Breast cancer [100]
facilitate tumor invasion, correlating with increased metastatic potency.
Exosomes Fibroblast-secreted exosomes promote breast cancer cell protrusive activity — Breast cancer [101]
and motility via Wnt-planar cell polarity (PCP) signaling.
Adipocytes Undetermined  Adipocytes promote tumor cell invasion and EMT program. Melanoma [105]
Undetermined Pre-adipocytes increase prostate cancer metastasis via modulation of Prostate cancer [106]
signaling pathways.
IGFBP-2 Adipocytes stimulate invasion of cancer cells by secreting IGFBP-2. Breast cancer [107]
Adipocytes cancer cells, resulting in their transition to an invasive mes-

Recently, increasingly more evidence supports the concept
that adipocytes are associated with tumor growth and
metastasis, and several molecules derived from adipocytes
in the tumor microenvironment are associated with me-
tastasis [102, 103]. Evidence also indicated that adipocytes
promote cancer cell invasion [104] and the EMT program
[105]. In prostate cancer, it was shown that pre-adipocytes
promote metastasis by modulating miR-301a/AR/TGEF-
B1/Smad/MMP9 signals [106]. More recently, data indi-
cated that IGFBP-2 secreted by mature adipocytes increases
breast cancer cell invasion [107]. Together, these observa-
tions support the point that signals provided by adipocytes
may play a key role in mediating metastasis.

Other cellular and molecular components

Other molecular signaling within the primary micro-
environment can also regulate tumor metastasis by increas-
ing the metastatic potency of tumor cells and modulating
the microenvironment [108, 109]. Platelets have long been
recognized as contributing to tumor metastasis [110]. Data
indicated that platelet-derived TGFp and platelet—tumor
cell contacts synergistically activate signaling pathways in

enchymal-like phenotype and thus promoting metasta-
sis in vivo [111]. Similarly, adenine nucleotides derived
from tumor cell-activated platelets regulate the opening
of the endothelial barrier to allow transendothelial mi-
gration of tumor cells via the P2Y, receptor and there-
fore promotes cancer cell extravasation [112]. Together,
these observations suggest that signals from platelets
promote several steps of tumor metastasis. By using
genetic mouse models and pharmacological inhibitors,
pericyte depletion was demonstrated to be associated with
enhanced hypoxia, EMT and Met receptor activation,
which provided evidence that pericytes within the primary
tumor microenvironment likely serve as important
gatekeepers against metastasis [113]. Most intriguingly,
data suggest that immune cells within the primary
microenvironment provide signals that promote tumor
metastasis. For instance, B lymphocytes were found to
be associated with tumor cell dissemination and EMT
activity. More recently, infiltrating CD4"T cells could
promote tumor metastasis by enhancing cancer cell inva-
sion via modulation of FGF11/miRNA-541/AR/MMP9
signaling [114].
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Hypoxia in primary soil

Because of the rapid growth of tumor cells, the tumor
often outpaces its blood supply, resulting in substantial
hypoxia. Hypoxia has long been recognized to promote
aggressive phenotypes of tumor and induce tumor inva-
siveness and metastasis. To investigate the molecular
mechanism of Notch-ligand activation by hypoxia in
primary soil, it was found that hypoxia activates Jagged2
in breast cancer cells, induces EMT and enhances cell
survival in vitro [115]. Moreover, intratumoral hypoxia
promotes metastasis by activating hypoxia-inducible fac-
tors (HIFs). Data showed that HIFs regulate molecular sig-
naling between breast cancer cells and MSCs to stimulate
metastasis [116]. More recently, a paper demonstrated
that the HIF-1a/CCL20/IDO axis plays a crucial role in
accelerating cancer metastasis in hepatocellular carcinoma
by inducing EMT and an immunosuppressive tumor
microenvironment [117]. Moreover, it is worth noting that
hypoxia in the primary tumor is also involved in facilitat-
ing pre-metastatic niche formation in secondary organs by
providing cytokines and growth factors that create a con-
genial microenvironment via the recruitment of myeloid
cells and a reduction in cytotoxic effector functions of the
NK cell population [118].

The secondary soil factors

It is conceivable that the “secondary soil” factors, that
is, the distant organ microenvironment or the metastatic
microenvironment, play a critical role in promoting
colonization and metastasis outgrowth. The secondary
soil is composed of many factors and cell types that
influence cancer metastasis. Research to date has predom-
inately focused on intrinsic programs of tumor cells that
induce the pre-metastatic niche. However, the signals pro-
vided by distant organ remains largely unknown. Unques-
tionably, the preferential outgrowth of metastases in organs
such as the lung, liver, bone, and brain is largely due to the
presence of endogenous microenvironments within these
organs that contain special metastatic niche-promoting cel-
lular and molecular components. Herein, we summarize
what is currently known regarding the key factors within
secondary soil that promote tumor invasion, colonization
and outgrowth (Table 2).

Lung microenvironment-derived factors

Previous studies indicated that some molecules are spe-
cially induced in pre-metastatic lung endothelial cells
and microphages that transmit signals to cancer cells to
promote colonization and tumor growth [119-121]. For
example, in the leukocyte-rich microenvironment of the
lungs, macrophage binding to breast cancer cells via the
a4-integrin-VCAM-1 interaction transmits survival signals,
which stimulates lung-specific metastasis [120]. Inflamma-
tory chemo-attractants and myeloid cell recruitment have
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been suggested to be associated with pre-metastatic
niche formation [122]. Mechanistically, myeloid cells
were shown to remodel the pre-metastatic lung into an
inflammatory and proliferative environment, to diminish
immune protection, and to induce EMT of cancer cells
[123, 124]. Stroma-derived periostin (POSTN), a compo-
nent of the extracellular matrix within the secondary sites
lung is shown to recruit Wnt ligands and thereby in-
creases Wnt signaling, which enables cancer stem cell
maintenance and thus promotes tumor colonization and
metastasis [27]. In addition, other immune cells in the
lung microenvironment are also involved in promoting
metastasis. For instance, neutrophils play a key role in in-
flammatory responses. In a mouse breast cancer model,
Stefanie et al. demonstrated that neutrophil-derived leuko-
trienes mediate the colonization of distant lung by select-
ively expanding the subpool of cancer cells that retain
high metastatic potential [125]. More recently, evidence
supported that T-cell-intrinsic expression of the oxygen-
sensing prolyl-hydroxylase (PHD) proteins function in T
cells to coordinate immunoregulatory programs within
the pre-metastatic lung that are permissive to cancer
metastasis [126].

Liver microenvironment-derived factors

Evidence indicated that hepatic stellate cells (HSCs) play
a crucial role in modulating the pro-metastatic niche
[127]. A recent study supported that the secretion of
granulin by metastasis-associated macrophages (MAMs)
stimulates resident hepatic stellate cells (hStCs) into myo-
fibroblasts that release periostin, thus leading to a fibrotic
microenvironment in the liver that sustains metastatic
tumor growth [128]. Similarly, macrophage migration
inhibitory factor (MIF) derived from human hepatic sinus-
oidal endothelial cells (HHSECs) instead of colorectal can-
cer (CRC) cells, induced migration and EMT and promoted
proliferation and apoptotic resistance in CRC cells [129].
Additionally, angiopoietin-like 6 protein, a soluble fac-
tor accumulated in hepatic blood vessels, was found to
interact with circulating cancer cells, which induced liver
colonization of CRC cells [130]. Liver sinusoidal endothelial
cell lectin (LSECtin) expressed in the liver microenviron-
ment is shown to directly correlate with CRC progression,
including adhesion and metastasis [131].

Bone microenvironment-derived factors

Bone marrow-derived hematopoietic progenitor cells that
express vascular endothelial growth factor receptor 1
(VEGFRI; also known as Flt1) form cellular clusters before
the arrival of tumor cells, and the expression pattern of
fibronectin is shown to provide a permissive niche for
incoming cancer cells [132]. Furthermore, bone colonization
is induced by the osteogenic niche that is mediated by
heterotypic adherens junctions including osteogenic N-
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cadherin and cancer-derived E-cadherin, which activate
the mTOR pathway in cancer cells and consequently
drive tumor progression [133]. In addition, the osteo-
cytes within the bone microenvironment were found to
promote cancer invasion and growth by secretion of
CCL5, MMP and extracellular ATP and adenosine in
prostate cancer and breast cancer [134, 135].

Brain microenvironment-derived factors

Astrocytes were suggested to be associated with brain
metastasis [136]. Recently, several studies reported that
astrocytes within the brain microenvironment indeed
play a pivotal role in mediating metastasis. For instance,
IL-23 derived from astrocytes upregulates the secretion
of the matrix metalloproteinase MMP2 and enhances
the metastatic potential of brain metastasizing melan-
oma cells [137]. In particular, elegant work by Lin Zhang
et al. demonstrated that astrocytes in the brain micro-
environment induced the loss of PTEN in tumor cells by
secretion of exosomal miRNA, which in turn created a
permissive metastatic niche for cancer cells. Mechanis-
tically, cancer cells receive signals from the brain micro-
environment that lead to an enhanced secretion of the
chemokine CCL2, which recruits myeloid cells that re-
ciprocally stimulate the outgrowth of brain metastatic
cancer cells through enhanced proliferation and reduced
apoptosis [138].

The soil supports seed and evolves together

As discussed above, both seed and soil factors play a piv-
otal role in mediating metastasis. The seed depends on
supportive soil; however, it is important to note the dy-
namic interplay between seed and soil affect each other
and evolve together. As a best proof, CSCs are thought
to be the most tenacious seed, and TAMs are particu-
larly abundant in “soil” among the immune cells present
in the tumor site [139]. CSCs require a supportive niche
to maintain a balance between self-renewal and differen-
tiation; moreover, the dynamic interplay between CSCs
and TAMs may affect the functional role and phenotype
of each other [140].

Accumulating data indicated that distinct subsets of
TAMs were found in different tumor microenvironments
and that these TAMs were classified into two macrophage
classes: M1 phenotype and M2 phenotype [141]. Further-
more, distinct subpopulations of TAMs represent distinct
functional roles in the tumor microenvironment [142].
Additionally, TAMs were also shown to have the ability to
regulate the adaptive immune response [143]. Increasing
evidences have validated the key role of TAMs in support-
ing tumor growth, angiogenesis and metastasis by regulat-
ing the tumor microenvironment [144, 145]. Of note,
previous studies indicated that TAMs are “educated” by
myeloid-derived suppressor cells and present a distinct
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state of macrophage polarization, which enhances the
tumor-supportive role of stromal cells. This study high-
lights the crosstalk between TAMs, MSCs, and tumor
cells and supports the idea that TAMs within the tumor
microenvironment evolve together with tumor cells. More
recently, experimental data showed that host-produced
histidine-rich glycoprotein inhibited tumor growth and
metastasis by skewing TAMs polarization away from the
M2- to a M1-like phenotype. Promising therapeutic strat-
egies may involve targeting the crosstalk between TAMs
and CSCs. However, more research is required in this area
to harness the great opportunities that emerging know-
ledge offers. Similarly, tumor-associated neutrophils in
lung cancer were shown to have the ability of polarizing to
either an “N1” or “N2” phenotype that inhibits or pro-
motes tumor progression, respectively [146].

Clinical treatments

Although great progress has been made in the last few
decades, neither the efficient prevention of metastatic
tumor dissemination nor the eradication of already exist-
ing metastasis have yet to be achieved in modern cancer
research. While the aim of cancer treatment in other
stages is curative, the objectives in the metastatic stage
are mainly palliative, then the goal turns to increase
survival and symptom control [147]. Currently, agents
targeting seed factors have been major components of
anti-metastasis therapeutic strategies.

Targeting seed factors

With the goal in mind that treatment of metastatic cancer
is to achieve eradication of cancer cells and hence seed fac-
tors—including unique genes expressed in tumor cells
[148], factors affecting the EMT program [9], the existence
of CSCs [149], autophagy [150], tumor dormancy
state[151] and tumor-secreted factors that play pivotal
roles in mediating metastasis are ideal targets for thera-
peutic interventions.

By targeting seed factors, it is likely to provide a curative
effect that inhibits tumor growth and reduces metastasis.
For instance, in a preclinical model, schisandrin B (Sch B),
a naturally occurring dibenzo cyclooctadiene lignan with
very low toxicity, could inhibit cancer metastasis by sup-
pressing TGF-B-induced EMT of tumor cells [152]. More
recently, targeting metastasis-initiating cells via fatty acid
receptor CD36 resulted in almost complete inhibition of
metastasis in a mouse model [153]. A humanized mono-
clonal antibody targeting av integrins, which are involved
in cell-to-extracellular matrix and cell-to-cell interactions,
was used in a multicenter phase 1 study to inhibit prostate
cancer metastasis [154]. A phase II trial of AS1411 (a
novel nucleolin-targeted DNA aptamer) in metastatic
renal cell carcinoma [155] has been completed, which
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suggests a novel way to target cancer cells at the molecu-
lar level and to improve treatment.

Although a plethora of clinical trials that targeted seed
factors have had substantial successes in metastatic cancer
therapy [156—158], one problem plaguing the use of thera-
peutics targeting seed factors is drug resistance, which is
determined by not only the complexity of the genomic
aberrations that tumor cells harbor but also the properties
of the tumor microenvironment [159]. It is also worth
noting that targeting seed factors is not always effective,
for example, to determine whether metastatic cancers that
overexpress Her-2 (a gene found in both normal cells
and cancer cells) or CEA (a protein present mostly in
cancer cells) can be treated effectively with lymphocytes
(white blood cells) that have been genetically engineered
to contain an anti-Her-2 protein or anti-CEA protein.
Two clinical trials were conducted (https://clinicaltrials.
gov:NCT00924287,NCT00923806), respectively. However,
both studies were terminated due to the suboptimal side
effect. In particular, two recent studies published in
Nature demonstrated that, in early lesions before any
apparent primary tumor masses were detected, a subpop-
ulation of early cancer cells was indicated to be invasive
and to be able to spread to distant organs [160, 161].
These observations remind us that targeting at seed may
be less effective.

Considering the abovementioned observations, dissemi-
nated cancer cells from early and later stages have meta-
static potential. Therefore, therapies targeting the seed of
metastasis need to address issues of heterogeneity. Taken
together, targeting seed of metastasis currently seems to be
challenging and less effective. Future research focusing on
uncovering the mechanisms involved in drug resistance
and the complex link between EMT, CSCs, autophagy and
metastatic dormancy may shed light on novel treatments
that involve combined targeting of these factors.

Targeting the primary soil factors

Based on data presented in this review, primary soil-
derived factors often confer tumor cells with the ability
of invasion and tumor growth. It is likely that interven-
tions targeting these factors will inhibit cancer metasta-
sis. For example, a phase I study of monoclonal antibody
F19 targeting a cell-surface protein of tumor stromal
fibroblasts was conducted [162]. More recently, in a
multicenter, randomized, placebo-controlled, phase 3
clinical trial, regorafenib—the first small-molecule multi-
kinase inhibitor—was used to treat metastatic colorectal
cancer by blocking various signaling pathways implicated
in promoting tumor progression [163]. However, it is
naive to think that individual cellular or molecular com-
ponents function in isolation in a complex system. For
instance, despite inhibition of CCL2 or CCR2 within the
tumor microenvironment was indicated to be beneficial
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in inhibiting metastasis [72]. Based on this preclinical
model, to determine the safety and effectiveness of block-
ing CCL2 and CCR2 in metastatic patients, two clinical
trials have been conducted, respectively (https://clinical
trials.gov: NCT00992186, NCT01015560). However, the
results proved to be less effective possibly due to the
highly complicated interaction between chemokines and
chemokine receptors, as various chemokine ligands do
not exclusively bind to one chemokine receptor [164].

Conclusions

Unifying appealing hypothesis and novel concepts

In recent years, by harnessing advancing research tech-
niques, such as genome sequencing technology, additional
fundamental discoveries have brought fresh insight into
our understanding of cancer metastasis, and several novel
concepts have been established. However, it is important
to note that these newly established concepts or hypoth-
eses are not mutually exclusive and have improved our
understanding of cancer metastasis and have enriched the
connotation of each other.

As the best example of this concept, the famous “seed
and soil” hypothesis and the “mechanical mechanisms”
hypothesis proposed by James Ewing should be integrated
to better understand the factors involved in cancer metasta-
sis. The seed and soil hypothesis states that metastatic
tumor cells will metastasize to a site where the local micro-
environment is favorable, just like a seed will only grow if it
lands on fertile soil [4]. The mechanical mechanisms hy-
pothesis states that metastasis is determined by the pattern
of blood flow [6]. Growing evidence have indicated that
both mechanical mechanisms and favorable soil play com-
plementary roles in influencing metastatic dissemination [3,
79, 80]. More importantly, the pitfall of the seed and soil
model is that only “seed” and “soil” factors are considered,
while there is a big gap between metastatic seeding and the
formation of secondary tumor. That is, the transportation
processes for a metastatic seed travelling from the primary
soil to the secondary soil are not included in the model. In
reality, the mechanical mechanisms model exactly concerns
more about the transportation process of metastatic seed.
As such, accumulating data indicate that metastasis is a
multistep process, during which metastatic cancer stem
cells (seeds) travel to target organs (soil) through vessels
and then colonize the soil [3].

In addition, other novel concepts such as “pre-meta-
static niche”, “tumor self-seeding”, and “dormant niche”
have been well established. Of note, these newly estab-
lished concepts are not mutually exclusive and have
enriched our understanding of metastasis. Thus, we sug-
gest these appealing hypotheses and novel concepts
should be integrated to better understand the nature of
cancer metastasis, which will generate guiding signifi-
cance for future research in this field.
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An equal role of seed and soil

The classic “seed and soil” hypothesis was a pivotal mile-
stone in research of cancer metastasis, and this hypothesis
introduced the concept that a permissive microenviron-
ment is required for cancer cell colonization and metasta-
sis formation. To date, it is without question that both
“seed” and “soil” are involved in the multistep process of
cancer metastasis. In other words, the interaction between
cancer cells and the tumor microenvironment determined
the metastasis program.

However, given the data presented in this review, our
current efforts focus more on characterizing the role of
the “seed”. Undoubtedly, seed factors play a critical role
in promoting metastasis via their intrinsic metastatic
traits, which suggests the involvement of the EMT program
[9, 17, 19], the existence of cancer stem cells [149, 165, 166]
autophagy [150], metastatic dormancy [151] and other
intrinsic traits, and extrinsic factors of seed including
tumor-secreted factors— such as extracellular vesicles
[56], exosomal microRNAs [63], cytokines and chemo-
kines [72, 73, 164], and other molecular components
[75, 76]—which have been described to remodel the
primary microenvironment and prime the secondary
microenvironment. Together, these observations focus
more on how tumor-derived factors (seed) affect the
microenvironment (soil) and finally induce the forma-
tion of the pre-metastatic niche.

Although the characteristics and significance of the pre-
metastatic niche, which involve the formation of meta-
static niches in ectopic organs driven by the primary
tumor, have been well summarized [167], it is important
to consider that soil factors are largely unknown. How-
ever, the mechanism by which soil factors affect the seed
is poorly characterized, as summarized in this review.
Moreover, the exceptional cellular and molecular compo-
nents derived from unique soil, which is composed of pri-
mary soil and secondary soil, act on cancer cells and
stimulate metastasis. Primary soil-derived factors have
been described as molecules derived from stroma cells,
such as TAMs [89-91], MSCs [93, 94], CAFs [99-101]
and endothelial cells [96-98], within the primary micro-
environment that provide signals stimulating the invasion
and growth of tumor. In secondary soil, factors derived
from common fertile soil such as lung [27, 125, 126, 168],
liver [127, 129, 131], bone [132-135] and brain [136—138]
were shown to play a focal role in facilitating the meta-
static potential of cancer cells and the colonization,
tumor growth, and formation of the pre-metastatic
niche. Hence, signals provided by the soil are associ-
ated with several processes of metastasis that play a
pivotal role in mediating metastasis. Conversely, des-
pite the importance of soil-derived factors, especially
the secondary soil factors, these factors are still largely
unknown.
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Collectively, based on a global overview of this field,
an important objective for current research is to estab-
lish the idea of considering the seed and soil equally.
Therefore, we emphasize that additional investigations
are required to identify the soil-derived factors involved
in cancer metastasis, especially the factors derived from
distant soil.

Thinking outside the seed and soil

Undeniably, both seed and soil factors play a pivotal role
in mediating cancer metastasis. However, other external
factors outside of seed and soil may provide novel in-
sights that will enable a better understanding of factors
involved in tumor progression and metastasis.

In recent years, with the continuous advancements of
modern surgical techniques, an increasing number of
cancer patients are candidates for surgery. Accumulating
experimental and clinical data have revealed that surgery
is involved in tumor growth and metastasis. For instance,
by performing laparotomy or mastectomy to mimic the
surgery, Lee et al. showed that surgery could promote
tumor growth and angiogenesis in ovarian carcinoma [169].
Removal of the primary colorectal cancer correlated with
improved risk of liver metastasis. Surgery-induced in-
flammation may facilitate metastasis by altering the dis-
tant microenvironment. In a recent paper, it was
reported that reactive oxygen species (ROS) were pro-
duced by macrophages (Kupffer cells) during surgery,
which altered the ultrastructure of the liver and promoted
cancer cell adhesion[170]. In clinical practices, removing
primary tumors is accompanied by an exceptionally rapid
metastatic outgrowth in many cases, which are in line with
experimental evidence. For example, Peeters et al. showed a
marked increase in proliferation and a significant decrease
in apoptosis in metastatic lesions [171], which suggests that
metastasis is influenced by surgical resection of primary
tumor in human. Thus, considering the involvement of re-
moving a primary tumor or metastatic lesion may provide
novel insights into metastasis research.

It has been well established that commensal microbiota
have an impact on tissue development and immunity [172].
In the context of cancer, commensal bacteria were shown
to play a key role in modulating tumor microenvironment,
which controls cancer responses to therapy [173]. Fueled
by recent clinical success, cancer immunotherapy using
antibodies that specifically target CTLA-4 and the PD-1/
PD-L1 axis to block immune inhibitory pathways is emer-
ging as a promising future for cancer therapy. Recently, two
papers published in Science showed that gut microbiota are
involved in cancer immunotherapy. In mice and patients, it
was demonstrated that the anticancer effects of CTLA-4
blockade are dependent on the gut microbiota [174]. Simi-
larly, combining oral administration of Bifidobacterium and
anti—-PD-L1 therapy can nearly abolish tumor outgrowth by
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regulating the immune response in the tumor microenvir-
onment [175].

Food intake has been thought to be associated with a
risk of death and recurrence in cancer patients. Is the
dietary intake of food also involved in modulating the
tumor microenvironment and metastasis? Increasing evi-
dence supports the idea that dietary phenolic com-
pounds play a role in inhibiting cancer invasion and
metastasis [176]. Moreover, combining low carbohydrate,
high protein diets and the cyclooxygenase-2 inhibitor can
significantly lower the levels of metastasis [177]. Defi-
ciency of plasminogen activator inhibitor-1 produced by
the host was shown to reduce metastasis promoted by
the high-fat diet. In gastric carcinoma, elevated dietary
linoleic acid was reported to promote cancer cell inva-
sion and metastasis in mice [178]. In addition, other en-
vironmental chemicals may also have an impact on
perturbing the tumor microenvironment [179].

Based on abovementioned discussions, extrinsic factors
outside the “seed and soil” may also play a critical role in
metastasis. Metastasis is orchestrated by a complex system
composed of dynamic interactions between seed (cancer
cell), soil (primary soil and secondary soil) and external fac-
tors. As a consequence, manipulation of one factor of this
complex system will have an impact on the other factors.
The external factors such as surgery or other therapeutic
interventions, such as microbiota, dietary food intake and
other environmental chemicals may also have an impact on
interactions between seed and soil and thus may influence
cancer metastasis. The classic “seed and soil” hypothesis is
appealing but may be limited. Herein, thinking outside the
seed and soil, we suggest that external intervention factors
should also be taken into consideration. In other words,
the complex system may be viewed as a dynamically
open ecosystem comprising seed factors, soil factors
and external intervention factors, named “microecosystem”.
Moreover, inner factors may be influenced by various exter-
nal intervention factors and lead to the imbalance of the
“microecosystem”. A promising therapeutic concept for
future treatments is to establish the idea that recovering the
“microecosystem homeostasis” with a comprehensive treat-
ment of seed factors, soil factors and external factors. Based
on this new concept, we foresee that future research focus-
ing on how the dynamically open ecosystem influences
cancer metastasis will undoubtedly provide novel insights
into metastasis research and designing multimodality thera-
peutic strategies.

A model for prevention and control of metastasis

It would be far better to prevent the seed dissemination
from the primary site to a secondary site than to treat a
patient after having metastasis. With this in mind, we
aim to provide suggestions for the prevention and con-
trol of seed dissemination to distant organ based on the
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principle of prevention and treatment of infectious dis-
eases, which include managing the source of infection,
blocking the transmission route, and protecting the sus-
ceptible population. Clearly, the primary tumor should
be the source of infection, and the transmission route of
seed should include the blood and lymphatic vessel.
Moreover, the susceptible population refers to frequent
metastatic sites; for example, in metastatic breast cancer,
the lung, liver and bone [180] may be the susceptible
secondary soil.

Based on the abovementioned model, treatments of man-
aging the source of dissemination are composed of target-
ing the primary tumor cells and modulating the primary
microenvironment by regulating tumor cell-primary
microenvironment interaction. Furthermore, regulating
the transmission route should be converted to targeting
the interaction between the tumor cells and endothelial
cells that line the vessels to block seed dissemination,
or in other words, targeting tumor cell intravasation and
extravasation, which is supported by recent evidence. Evi-
dence has been provided that different molecules, signaling
pathways and circulating cells are involved in promoting
tumor cell extravasation across the endothelial barrier [86].
For instance, a recent paper published in Nature demon-
strated that the tumor cell-EC interaction facilitated ex-
travasation and metastasis via the expression of amyloid
precursor protein and death receptor 6 (DR6) by tumor
cells in vitro and in vivo, which suggests that treatments
targeting endothelial DR6-mediated necroptotic signaling
pathways may be effective in inhibiting metastasis [181]. In
the future, identification of underlying mechanisms by
which cancer cells interact with ECs to promote extravasa-
tion will definitely lead to the development of new therapies
to reduce metastasis. Intriguingly, recent data indicated that
tumor cells implanted into the brain of nude mice spread
along the abluminal surface of blood vessels instead of the
bloodstream [182], which raises the possibility and likeli-
hood of an alternative mechanism of dissemination. If other
pathways besides the blood and lymphatic vessels for tumor
dissemination are validated, then current therapeutics tar-
geting cancer cells in circulation may be less effective.

In addition, protecting the susceptible secondary soil
should be converted to targeting organs by regulating the
interaction between metastatic cancer cells and the distant
organ microenvironment. A salient feature of cancer me-
tastasis is organotrophic, as certain types of cancer tend to
metastasize to specific organs. For instance, the most
common sites for breast cancer metastatic spreads are
bone, liver and lung [180], and bone is the major site for
prostate cancer metastasis [183]. Moreover, the metastatic
colonization is highly inefficient, and organ infiltration is
not sufficient for metastatic outgrowth [3]. Taking a
comprehensive consideration of these two traits, it would be
valuable to determine the underlying molecular mechanisms
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involved in organ-specific colonization, which would provide
support that intervention of the colonization process by
targeting the secondary soil may be promising. Secondary
soil-derived factors transfer signals to cancer cells that
promote tumor cell colonization in the distant organ;
interventions that target blocking these signals may be ef-
fective in inhibiting metastasis. Consistently, the results of
a phase 3, randomized, placebo-controlled trial showed
that targeting the bone microenvironment can delay bone
metastasis in men with prostate cancer, which supports
the idea that soil factors can be promising therapeutic
targets [184].

Research on the mechanisms that soil-derived factors
support tumor distant metastasis and the mechanisms
underlying the pathway of seed dissemination should
yield clues for innovative treatments of metastatic can-
cer, and making use of the prevention and control model
in preventing metastasis may be promising in the future.

Recent technology advances that favoring metastasis
research

Research on cancer metastasis has been hindered by the
complex biological nature of both seed and soil. In the
past few decades, advancements in mass spectrometry,
microarray technology, and advanced genome sequencing
technology have dramatically accelerated the endeavor to
comprehensively characterize the role of metastatic cancer
cells in mediating metastatic disease and the relationship
between primary and secondary tumors. Recently, increas-
ingly more powerful technologies have been developed to
aid metastasis research, which will definitely help us to
resolve numerous important questions in this field, such
as the complex interactions between seed and soil, the es-
tablishment of the pre-metastatic niche, the colonization
process and the tumor dormancy state.

In particular, single-cell sequencing has emerged as a
powerful technology to characterize the nature of individual
cancer cells instead of analyzing bulk tissue samples com-
posed of millions of cells [185] and has provided new in-
sights into our understanding of the complex multicellular
ecosystem of metastatic cancer [186]. The development of
intravital microscopy and imaging technology has enabled
the visualization and analysis of cancer cell dynamics in live
animals in real time, which may therefore lead to novel
findings in metastasis research and may be promising tools
in designing therapeutic interventions [187, 188]. By count-
ing methylated haplotypes within informative genomic re-
gions, the presence of cancer cells and the tissues or organs
with tumor growth can be mapped [189].

In addition, considering the complexity of the soil,
characterizing single components may be insufficient to
uncover the integrated role of the soil. Recent techniques
employ three-dimensional (3D) culture models to recon-
stitute features of organs and enable in vitro recapitulation
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of in vivo function, which may be highly promising in
accelerating the characterization of metastasis and the
development of therapeutic strategies targeting the soil.
Several organs have been reconstructed in vitro system,
such as the lung [190, 191], liver [192] and brain [193].
Collectively, future comprehensive applications of these
advanced technologies will undoubtedly facilitate our
deeper understanding of the cellular and molecular mech-
anisms involved in the whole process of metastatic disease
progression.
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