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Abstract

Purpose: Hypoxia is a major regulator of angiogenesis and always influences the release of exosomes in various
types of tumors. The present review aimed to assess the role of hypoxia-induced exosomes in the tumor biology.

Methods: The relevant publications were retrieved from PubMed using keywords such as hypoxia, exosome, extracellular
vesicles, tumor, cancer, and other similar terms.

Results: Recent studies have shown that cancer cells produce more exosomes under hypoxic conditions than do
parental cells under normoxic conditions. The secretion and function of exosomes could be influenced by
hypoxia in various types of cancer. Hypoxia-induced exosomes play critical roles in tumor angiogenesis, invasion,
metastasis, and the immune system.

Conclusions: These findings provide new insights into the complex networks underlying cellular and genomic
regulation in response to hypoxia and might provide novel and specific targets for future therapies.
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Background
Hypoxia, the condition of insufficient oxygen, is a com-
mon feature of malignant tumors. In a majority of malig-
nancies, the median oxygen level is about 10 mmHg,
while the normal tissues have rather high oxygen pres-
sure (between 40 and 60 mmHg) [1]. This phenomenon
is attributed to the high oxygen demand from proliferating
cancer cells and low oxygen supply due to irregularities in
tumor vascularization or distance from supporting blood
vessels [2, 3]. Hypoxia has been well acknowledged as an
intricate element of the tumor microenvironment involved
in tumor aggressiveness and metastasis [4–6]. In response
to hypoxia, the cancer cells alter the transcription of nu-
merous genes in conjunction with the oxygen-monitoring
mechanism, including hypoxia-inducible factors (HIFs),
the major components of hypoxia signaling pathways [7].
HIFs are dimeric proteins that comprise of an oxygen-sen-

sitive subunit HIF-α (HIF-1α, HIF-2α, or HIF-3α) and
a constitutively expressed HIF-1β subunit [8, 9]. In

the presence of oxygen, HIF-1α is hydroxylated by
prolylhydroxylase (PHD), following which, the hydrox-
ylated HIF-1α is recognized by von Hippel-Lindau
(VHL). This serves as the targeting subunit of an E3
ubiquitin ligase complex and thereby tags HIF-1α for
ubiquitination and degradation by the 26S proteasome
[10]. However, under hypoxic conditions, PHDs are
no longer active to hydroxylate HIF-1α, resulting in
HIF-1α stabilization and dimerization with HIF-1β.
The expression of HIF-1α is also influenced by an-
other oxygen sensor factor-inhibiting HIF-1α (FIH).
As a key regulator of HIF-1α, FIH-1 catalyzes an as-
paragine hydroxylation step that controls the associ-
ation of HIF-1α transcription factors with CBP/p300
transcriptional co-activators and reduces the tran-
scriptional activity of HIF-1α [11]. Given the observa-
tions that most malignant tumors experience hypoxic
conditions, HIFs activation occurs in almost all types
of cancer. A large part of HIF-dependent hypoxic re-
sponse relies on intercellular signalling, which regulates
the expression of genes associated with angiogenesis,
epithelial-to-mesenchymal transition (EMT), metastasis to
promote cell survival and the adaptation of cells to
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hypoxic conditions [12]. In addition to intercellular hyp-
oxic signaling pathways, recent studies have shown the
importance of the crosstalk between tumor cells and their
microenvironmental factors via extracellular vesicles (EVs)s
secreted from hypoxic tumor cells [13].
EVs are cell-derived vesicles with different sizes and

intracellular origins, which can be characterized into
three categories: exosomes (30–100 nm diameter),
microvesicles (MVs) (100–1000 nm diameter), and larger
vesicles termed oncosomes (1–10 μm diameter) [14–17].
Recently, the role of EVs, especially exosomes secreted
by tumor cells in modulating cell-to-cell communication
has been highlighted [18, 19]. Exosomes are generated
from the inward budding of late endosomes, and thus,
released into the extracellular space upon fusion with
the plasma membrane [20, 21]. Once released into the
extracellular space, exosomes can reach the recipient
cells and deliver the contents to elicit the functional re-
sponses and promote phenotypic changes that would
affect the physiological or pathological status [22]. The
contents of exosomes are complex, including various
types of proteins, RNAs, and DNAs that can act as mes-
sengers for cell communication in local and distant mi-
croenvironments [23–25]. RNAs are reported as the
major bioactive factors of tumor cell-derived exosomes,
along with several species of non-coding RNAs including
microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
and circular RNAs [26–28]. These functional non-coding
RNAs delivered by exosomes to recipient cells can regulate
numerous gene expression to promote tumor growth, local
invasion, and create premetastatic or metastatic niches.
It is now clearly evident that exosomes derived from

tumor cells play critical roles in modulating the tumor
microenvironment [13]. Recent findings have reported
that hypoxia stimulate increased levels of exosomes,
thereby facilitating tumor intercellular communication
at a distance, indicating a role of exosomes as vital regula-
tors in hypoxic tumors [29, 30]. In breast cancer, the can-
cer cells exposed to hypoxia has been reported increase
their production of exosomes in an HIF-dependent man-
ner, which stimulate invasion and metastasis by contacting
with recipient cancer cells [31]. In the present review, we
will discuss how exosomes induced by hypoxia par-
ticipate in tumor angiogenesis, invasion, metastasis,
and immune system.

Hypoxia induces the release of exosomes
Exosomes are vital mediators of intercellular communica-
tion that can transfer the cells’ phenotype to non-hypoxic
cells through the production of exosomes. As mentioned
above, recent researches indicated that hypoxia can induce
the release of exosomes. Target genes include numer-
ous plasma membrane receptors such as glucose
transporter (GLUT-1), epidermal growth factor receptor

(EGFR), transfer receptors, P-glycoprotein (P-gp), and
multidrug resistance protein 1 (MRP1). The altered recep-
tor expression can increase the receptor activation and
internalization or result in receptor clustering, which con-
sequently induces endocytosis and promotes exosome re-
lease [32]. Interestingly, the small GTPases, RAB27A and
RAB27B, were implicated in exosome secretion in human
HeLa cells [33, 34]. In breast cancer, RAB22A was also re-
quired for mediating the formation of extracellular vesi-
cles [31]. However, the specific molecular mechanisms
regulating the exosome secretion are yet to be elucidated.
In addition to the quantitative impact of exosome se-

cretion, hypoxia stress also causes significant changes in
the content and function of exosomes. As Kore et al.
found that hypoxic exosomes derived from GBM cells
selectively elevated some proteins such as protein-lysine
6-oxidase (LOX), thrombospondin-1 (TSP1) and vascular
derived endothelial factor (VEGF), which were known to be
associated with tumor progression, metastasis and angio-
genesis [35]. Moreover, several pieces of evidence have
established that hypoxia regulates the expression of differ-
ent non-coding RNAs delivered by exosomes. For example,
miR-210 is a well-established target of HIF-1α and strongly
induced in most cancer types in response to hypoxia. King
et al. demonstrated that breast cancer cells release high
levels of exosomes and miR-210 in hypoxic exosomes in an
HIF-1α-dependent manner. Furthermore, three different
breast cancer cell lines were exposed to moderate (1% O2)
and severe (0.1% O2) hypoxia, leading to significant increase
in the number of exosomes [36]. Similarly, in another study
addressing the molecular mechanisms regulating exosomal
shedding, Umezu et al. found that hypoxia-resistant mul-
tiple myeloma (HR-MM) cells produced more exosomes
with a significantly higher expression of miR-135b as com-
pared to normoxic cells, indicating that the tumor-secreted
exosomes could be induced by hypoxia [37].

Hypoxia influence the exosomes secreted by the tumor
microenvironment
Most tumors develop a hostile tumor microenvironment
associated with the expansion of hypoxic and necrotic
areas as the existing vasculature cannot fulfill the in-
creasing oxygen demand of rapidly expanding tumors.
The tumor microenvironment can be subdivided into
the chemical microenvironment (for example, low oxy-
gen, low pH, and low nutrition), the diverse extracellular
signaling molecules, and the cellular microenvironment,
which include tumor cells, stromal cells, extracellular
matrix (ECM), and inflammatory immune cells [38]. The
immune component of the tumor microenvironment is
comprised of myeloid cells including tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), dendritic cells (DCs), and tumor-infiltrating
lymphoid cells (TILs). All these cells are greatly affected
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by hypoxic stress present in the tumor microenviron-
ment. Hypoxia can interfere with the differentiation and
function of immune cells by modulating the expression
of co-stimulatory receptors and the type of cytokines
produced by these cells. Furthermore, exosomes secreted
by other cells also could be influenced by hypoxia. For ex-
ample, Fernanda et al. revealed that the TGF-β1-contain-
ing exosomes from injured epithelial cells activate the
fibroblasts that in turn, initiate tissue regenerative re-
sponses and fibrosis. Thus, the present study suggested
that TGF-β1 mRNA transported by exosomes constitute a
rapid response initiating the tissue repair/regenerative re-
sponses and the activation of fibroblasts when resident
parenchyma is injured [39].
The content of hypoxia-induced exosomes varies de-

pending on the cell origin including signal transducers,
transcription factors, enzyme, lipids, mRNAs, and non-cod-
ing RNAs. In different cancers, exosome-mediated signaling
promotes tumor progression through communication be-
tween the tumor and surrounding stromal tissues, involving
tumor angiogenesis, invasion, metastasis, and immune es-
cape. The function of exosome-mediated signaling path-
ways under hypoxic states will be discussed in the
following sections.

Hypoxia-induced exosomes enhance cancer angiogenesis
Angiogenesis is a complex process involving the sprout-
ing and configuring of new MVs from pre-existing blood
vessels [40, 41]. It is a critical step in cancer progression
via stimulation of the tumor growth. This process is
highly regulated by a group of ligands and receptors
through multiple signaling pathways. The proangiogenic
signaling molecule vascular endothelial growth factor
(VEGF) and its cognate receptor (VEGFR) play a central
role in angiogenesis and are highly expressed in tumor
tissues [42]. VEGF signaling stimulates cellular pathways
that lead to the formation and branching of new tumor
blood vessels, facilitating rapid tumor growth, and meta-
static potential [43]. The development of antiangiogenic
treatments by several investigators is focused on inhibit-
ing the VEGF/VEGFR signaling.
Recent studies have highlighted the role of hypoxia-in-

duced exosomes in angiogenesis and tumor develop-
ment. For example, exosomal miR-135b has also been
found to be transferred into endothelial cells by
hypoxia-resistant multiple myeloma (HR-MM) cells and
target HIF-1, thereby enhancing angiogenesis [37]. Exo-
somes isolated from hypoxic lung cancer cells contained
miR-23a, which increased the angiogenesis by targeting
prolyl hydroxylase and tight junction protein ZO-1 [44].
Also, Tadokoro et al. reported that exosomes derived
from hypoxic leukemia cells enhanced the tube formation
in human umbilical vein endothelial cells (HUVECs) via
miR-210 [45]. Moreover, Mao et al. revealed that hypoxia-

induced miR-494 promotes angiogenesis in non-small cell
lung cancer (NSCLC). Firstly, hypoxia induces the expres-
sion of miR-494 via the HIF-1α-mediated mechanism.
The upregulated miR-494 was secreted from tumor cells
into microenvironment and delivered into ECs via
exosomes, followed by downregulation of PTEN and
activated Akt/eNOS pathway in ECs; consequently,
the tumor development is exacerbated by promoting
angiogenesis [46] (Fig. 1).

Hypoxia-induced exosomes promote cancer cell invasion
and metastasis
Invasion and metastasis are the determination features of
malignant tumors. It is well-known that tumor invasion
and metastasis involve multiple steps, among which, the
epithelial-mesenchymal transition (EMT) is an absolute
and crucial step for metastasis [32]. During EMT, the
cancer cells shed their epithelial features, remodel their
cytoskeleton, and acquire a mesenchymal phenotype that
correlates to enhanced migratory and invasive capacity
[47]. At the molecular level, the changes occurring during
EMT are explained by the loss of epithelial and the gain of
mesenchymal markers. The loss or downregulation of
E-cadherin is a major event in EMT, and it can be identified
as one of EMT biomarkers [48]. It is known as a trans-
membrane glycoprotein expressed in epithelial cells that
regulate cell-to-cell contact, cell shape, and polarity [49].
Moreover, it connects the adjacent cells through homophi-
lic interactions as well as linked to the cytoskeleton via a
multi-catenin complex that is attached to their cytoplasmic
tails [50, 51]. In this complex, β-catenin and p120 are
directly associated with E-cadherin, while α-catenin is the
link between β-catenin and the actin microfilament
network of the cytoskeleton [52]. Loss of E-cadherin
results in the loss of cell-to-cell contact, disruption of
E-cadherin-catenin complex, abnormal activation of
β-catenin signaling, and cellular cytoskeletal alterations.
Overall, these changes are essential for the cells to lose their
epithelial polarity and acquire an invasive phenotype [53].
An increasing number of studies provide novel evi-

dence that under hypoxic conditions, the migration and
invasion ability of cancer cells can be enhanced by
hypoxia-induced exosomes. Ramteke et al. reported that
hypoxia-induced exosomes promoted the invasiveness
and metastasis of prostate cancer cells by targeting adhe-
rens junction molecules [54]. In the study, hypoxia-induced
exosomes promoted the loss of E-cadherin in PC3 cells
along with an increase in cytoplasmic and nuclear
β-catenin expression, which might be responsible for the
observed increase in the invasiveness, motility, and stem-
ness of PCA cells by TDEs. Consecutively, another study
also found that hypoxia enhances the exosome-mediated
shuttling of lncRNA-UCA1 into bladder cancer cells,
and hypoxic exosomal lncRNA-UCA1 also promotes
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development, invasion, and migration of tumor cells in
vitro and in vivo [55]. Furthermore, Ling et al. showed that
exosomes from oral squamous cell carcinoma (OSCC) cells
were upregulated under hypoxia, and the upregulated exo-
somal miR-21 downregulates a pool of genes and induces
EMT of the target normoxic cells [56]. Other studies pro-
vide more evidence on the role of hypoxic-induced exo-
somes in tumor invasion and metastasis as below (Table 1).

Hypoxia-induced exosomes influence cancer immune
system
Reduced immune surveillance is a key mechanism
through which primary tumors create permissive envi-
ronments in secondary organs that favor the develop-
ment of metastasis [57–59]. Accumulating evidence has
shown that tumor-derived exosomes induce T-cell apop-
tosis, reduce NK cells activity, inhibit IFN-γ dependent
class II expression of macrophages, and alter the differ-
entiation of monocytes to increase the myeloid-derived
suppressor cell (MSDCs) population, which leads to a col-
lective failure of the immune system in containing the
cancer growth [60–64]. For example, SW et al. found that
breast cancer exosomes directly suppress the T-cell prolif-
eration and inhibit the NK cell cytotoxicity, and hence
suppressed the anticancer immune response in premeta-
static organs [65]. MiRNAs in lung cancer cell-derived
exosomes can silence the transcripts associated with
Toll-like receptor (TLR) family in macrophages. This
mechanism stimulates the macrophages to secrete proin-
flammatory cytokines, which supports enhanced tumor
dissemination. Cancer cells are capable of inhibiting the

anti-tumor functions of the host immune system via an
exosome-induced signaling mechanism [66]. Moreover,
T lymphocytes are not the sole immune cells targeted
by tumor-derived exosomes. The activities of human
NK cells, B-cells, and monocytes are impaired by
co-incubation in the presence of exosomes. In NK cells, the
downregulation of the expression of the activating
receptors, especially NKG2D, is induced by tumor-derived
exosomes carrying the MICA and MICB ligands
[67]. NK-cell activation and cytotoxicity are inhibited by
TGF-β, which is predominantly displayed on exosomes as
TGF-latency associated protein (TGF-LAP). Moreover,
tumor-derived exosomes can synthesize adenosine from
ATP by virtue of carrying CD39 and CD73, which are
implicated in inducing suppressive activity in activated B
cells as adenosine can convert the activated B-cells into
regulatory B-cells [68]. In addition, tumor-derived exo-
somes skewed the differentiation of myeloid precursor cells
towards development into highly suppressive MDSCs [69].
Interestingly, a recent study found that hypoxia

induces macrophage polarization involving the expres-
sion of exosomes in epithelial ovarian cancer [70]. In
addition, the study demonstrated that SKOv3 cells under
hypoxia expressed much more miR-940 than the cells
under normoxia, as well as, in exosomes. Moreover,
hypoxic exosomes induced macrophages to express higher
levels of the M2-type markers, CD163 and CD206, as
compared to normoxic exosomes. These data suggested
that exosomes could deliver miR-940 to macrophages and
that hypoxic exosomes could induce macrophages to an
M2-like phenotype. Also, Berchem demonstrated that

Fig. 1 Hypoxic-induced exosomes promote angiogenesis in multiple cancers. Under chronic hypoxic conditions, cancer cells secrete higher levels
of exosomes. The upregulated exosomal ncRNAs and specific proteins induced by hypoxia are taken up by the surrounding endothelial cells, resulting
in the accelerated angiogenesis
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hypoxic tumor-derived MVs (TD-MVs) negatively regulate
the NK cell function by a mechanism involving TGF-β1
and miR23a transfer. The hypoxic TD-MVs transfer
TGF-β1 to NK cells, decreasing the cell surface expression
of the activating receptor NKG2D, thereby inhibiting the
NK cell function. Subsequently, miR-23a in hypoxic
TD-MVs serve as an additional immunosuppressive factor
as it directly targets the expression of CD107a in NK cells.
Moreover, exosomal miR-24-3p is enriched in hypoxic
cells from nasopharyngeal carcinoma (NPC) cells. The
present study showed that NPC tumor-derived exo-
somes inhibit T-cell proliferation and Th1 and Th17
differentiation, while inducing the differentiation of
regulatory T-cells (Tregs) [71] (Fig. 2).
In conclusion, exosomes act as biologically active vesi-

cles that exert a negative impact on the functions of dif-
ferent types of immune cells by mechanisms engaging
more than one molecular pathway responsible for the
genetic changes in recipient cells.

Future perspectives
According to the studies mentioned above, hypoxia-
induced exosome-mediated cellular communication is a
key signaling mechanism involved in numerous patho-
logical problems. A major mechanism of exosome-mediated
cell-to-cell communication is speculated to exert protection
of the encapsulated components from degradation, thereby
allowing the transfer of exosomal cargo to distant recipient
cells. This phenomenon suggests that the biological effects
of exosomes are exerted following cellular entry and cargo
release. However, the contribution of initial signaling
activation upon attachment of exosomes to recipient
cells with respect to the functional effects of the sub-
sequent cargo transfer remains unclear. Despite exten-
sive research on the role of specific cargo delivery for
exosome-mediated functions, the mechanisms underlying
cellular exosomal capture and internalization have received
less attention. Thus, understanding the mechanisms of
hypoxic exosomes transfer and target cell selection would

Table 1 Hypoxia-induced exosomes involved in cancer biology

Regulatory factors Cancer types Response to hypoxia Biological function Mechanism Ref

Exosomal miR-135b Multiple myeloma Increased Increase angiogenesis Downregulates its target FIH-1 [37]

Exosomal miR-23a Lung cancer Increased Increase angiogenesis
and migration

Inhibition of PHD1, PHD2 and ZO-1 [44]

Exosomal miR-210 Leukemia Increased Increase angiogenesis Inhibits the expression of Ephrin A3 [45]

Exosomal miR-494 Non-small cell lung cancer Increased Increase angiogenesis Downregulates PTEN and activates
Akt/eNOS pathway in ECs

[46]

Exosomal miR-21 Oral squamous cell carcinoma Increased Promote migration
and invasion

Downregulate a pool of genes and
induces EMT of these cells.

[56]

Exosomal miR-940 Epithelial ovarian cancer Increased Regulate immune
response

Induces macrophages to express
higher levels of the M2-type
markers CD163 and CD206

[70]

Exosomal miR24-3p Nasopharyngeal carcinoma Increased Regulate immune
response

Not mentioned [71]

Exosomal miR-210 Hypoxic cancer Increased Increase angiogenesis Inhibits the expression of Ephrin
A3 and PTP1B

[72]

Exosomal linc-UCA1 Bladder cancer Increased Promote migration and
invasion

Promotes EMT [55]

Exosomal linc-RoR Hepatocellular cancer Increased Promote migration and
invasion

Not mentioned [73]

Exosomal proteins Prostate cancer Increased Promote migration and
invasion

Not mentioned [54]

Exosomal CA9 Renal cell carcinoma Increased Increase angiogenesis Upregulates its target MMP2 [74]

Exosomal TF Glioblastoma multiforme Increased Increase angiogenesis Enhances TF/VIIa-mediated PAR-2
activation and activates endothelial
cells

[75]

Exosomal Wnt4 Colorectal cancer Increased Increase angiogenesis Increases β-catenin nuclear
translocation in endothelial cells

[76]

Exosomal MMP13 Nasopharyngeal carcinoma Increased Promote migration and
invasion

Not mentioned [77]

Exosomal HIF1α Nasopharyngeal carcinoma Increased Promote migration and
invasion

Promotes EMT [78]

Exosomal TGF-β1
and miR23a

Hypoxic cancer Increased Regulate immune
response

TGF-β1 downregulates NKG2D and
miR23a directly targets CD107a

[79]
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improve the prospect of therapeutic targeting of exo-
somes and their development as therapeutic delivery
vehicles. Nevertheless, several challenges are noted for
future research on hypoxic exosomes. The direct
mechanism of induction extracellular vesicles by HIF
and its impact in the modulating processes of exo-
somes formation and release remains to be deter-
mined. Also, the orchestration of these processes
during hypoxia necessitate further investigation.

Conclusion
Hypoxia/HIF regulation on exosome and microvesicles
function is now recognized as a new and exciting area in
cancer research. The discovery of hypoxia-induced exo-
somes, especially in the context of long-term hypoxia,
has led to an intensive focus on tumor angiogenesis,
invasion-metastasis, and immune system in various can-
cer types. Further investigation is warranted for better
understanding the alterations in exosome production

and release machinery under hypoxic conditions, which
would be helpful in targeting the production of exo-
somes and prevent metastatic onset in the tumor cells.
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