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Abstract

Autophagy is a genetically well-controlled cellular process that is tightly controlled by a set of core genes, including
the family of autophagy-related genes (ATG). Autophagy is a “double-edged sword” in tumors. It can promote
or suppress tumor development, which depends on the cell and tissue types and the stages of tumor. At
present, tumor immunotherapy is a promising treatment strategy against tumors. Recent studies have shown
that autophagy significantly controls immune responses by modulating the functions of immune cells and the
production of cytokines. Conversely, some cytokines and immune cells have a great effect on the function of
autophagy. Therapies aiming at autophagy to enhance the immune responses and anti-tumor effects of immunotherapy
have become the prospective strategy, with enhanced antigen presentation and higher sensitivity to CTLs. However, the
induction of autophagy may also benefit tumor cells escape from immune surveillance and result in intrinsic resistance
against anti-tumor immunotherapy. Increasing studies have proven the optimal use of either ATG inducers or inhibitors
can restrain tumor growth and progression by enhancing anti-tumor immune responses and overcoming the anti-tumor
immune resistance in combination with several immunotherapeutic strategies, indicating that induction or inhibition of
autophagy might show us a prospective therapeutic strategy when combined with immunotherapy. In this article, the

immunotherapy will be discussed.

possible mechanisms of autophagy regulating immune system, and the potential applications of autophagy in tumor
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Background

Autophagy is stimulated by cellular or environmental
stresses in order to clear damaged organelles, protein ag-
gregates, and intracellular pathogens through the forma-
tion of autophagosomes, which are subsequently targeted
to lysosomal digestion. The complete macroautophagic
process is generally divided into the following stages: in-
duction, vesicle nucleation, vesicle elongation, docking
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and fusion, degradation, and recycling. The degraded
and recycled cytoplasmic components can provide nu-
trients and ATP to maintain protein synthesis and other
necessary metabolic functions. Thus, autophagy is consid-
ered to be an endogenous defense mechanism [1-3]. Most
cells sustain low basal autophagy to survive under normal
circumstances. In addition to cytoprotective effects, au-
tophagy exerts a death stimulation function, known as au-
tophagic cell death, depending on the specific conditions
[4]. In the meantime, autophagy offers a therapeutic op-
portunity to patients with diverse diseases, such as rheum-
atic diseases, ischemic heart diseases, central nervous
system (CNS) diseases and tumors by modulating apop-
tosis, inflammation, immune responses, and other intracel-
lular processes [5—8]. Nevertheless, the defective specificity
of autophagy activators or inhibitors limits their clinical
applications. For instance, rapamycin acts as a autophagy
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activator when it was acute exposure, which leads to rapa-
mycin 1(mTORC1) inhibition through FK506-binding pro-
tein 1A (FKBP1A), further damaging protein synthesis,
mitochondrial biogenesis, and oxidative metabolism. While
chronic rapamycin administration, it acts as a autophagy
inhibitor promotes mTORC2 disassembly, resulting in in-
creased lipolysis, reduced glucose uptake and activated
gluconeogenesis [9, 10].

Autophagy plays a significant role in tumor promotion
and suppression. However, autophagy is a “double-edged
sword” in tumors, depending on the cell/tissue types
and the tumor stages, which hinders the clinical applica-
tion of autophagy activators or inhibitors. During the
early stages of tumor development, autophagy removes
damaged organelles and DNA to maintain normal cellular
structure and metabolic stability to inhibit the develop-
ment of tumors [5]. Epithelial-to-mesenchymal transition
(EMT) is essential for tumor migration and invasion, it
was reported that autophagy stimulation can hander
tumor invasion and metastasis by resulting in EMT in-
ducers degradation [11, 12]. During the advanced stages
of tumors, autophagy is upregulated, and promotes tumor
cell proliferation through absorb nutrients and energy
driving from degraded proteins and organelles [13].
Therefore, treatment of tumors via autophagy regulation
is extremely complicated.

Autophagy has been reported to modulate immune
system components, mainly containing natural killer (NK)
cells, macrophages, dendritic cells (DCs), and T and B lym-
phocytes, and has an influence on their homeostasis, sur-
vival, activation, proliferation, and differentiation, which
represent innate and adaptive immune responses. Mean-
while, it also influences the release of cytokines and anti-
bodies. Conversely, some cytokines, immunoglobulins,
and immune-related cells have a great effect on the func-
tion of autophagy, such as transforming growth factor
(TGF)-B, interferon (IFN)-y, interleukin (IL)-1, IL-2, and
IL-12 are autophagy inducers and IL-4, IL-10, and IL-13
are autophagy inhibitors [14]. It is well-known that sur-
gery, radiotherapy and chemotherapy are the conventional
therapies, they are efficiently used to combat tumors but
have some adverse effects. Immunotherapy is developing
rapidly and has become a promising treatment strategy,
but further research and exploration, which is related to
autophagy-modulated innate and adaptive immune system,
is needed. Autophagy enhances the effect of immunother-
apy by ensuring an optimal release of immunostimulatory
signals via delivering antigens to the immune cells, includ-
ing antigen-presenting cells and CDS8 + cytotoxic T lym-
phocytes, and hence propels their ability to initiate an
immune response, which is indispensable for the activity
of several components of the immune system involved in
tumor recognition and elimination. However, autophagy
also inhibits immune responses to attenuate the effect of
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immunotherapy, which impedes the clinical development
of autophagy activators or inhibitors. In brief, immuno-
therapy has become the major direction for future tumor
treatments [15]. In this article, we discuss the mechanisms
of autophagy, the relationship between autophagy and
tumor development, the mechanism of the autophagy-
regulating immune system, and the applications for tumor
immunotherapy.

Autophagy and its regulating mechanism
Autophagy, which is stimulated by cellular or environ-
mental stresses, is involved in several distinct biological
processes, and the regulation mechanism is complex.
Briefly, when the induction signals suppress mTOR1, the
macroautophagic process is triggered with the formation
of Atgl/ULK complex. Then, the ULK complex binds to
the phospholipids inositol triphosphate-kinase (PI3K)
complex (Beclinl-hVps34—PI3K) and forms a putative
mammalian pre-autophagosomal structure (PAS), pos-
sibly together with vacuole membrane protein 1 (VMP1)
and Atg9, in which PI3K locally produces PI3P. Next,
phagophore elongation depends on two ubiquitin-like
conjugation cascades, including the Atg5-Atgl2 and the
microtubule-associated light chain 3 (MAP-LC3/Atg8/
LC3) conjugation systems. As the phagophore elongates,
it progressively engulfs a portion of the cytoplasm to form
the double-membrane autophagosome by fusing on itself.
Finally, the fusion of an autophagosome with a lysosome
leads to the formation of an autolysosome and degrad-
ation of the loads, and the resulting macromolecules are
released back into the cytosol for reuse [3, 16, 17].

In tumor cells, there are many autophagy-mediated sig-
naling pathways. Several pathways have been reported as
follows: Firstly, the activation of PI3K/Akt/mTOR-me-
diated signaling pathway can inhibit autophagy, which is
modulated by PTEN (phosphatase and tensin homolog
deleted from chromosome ten), insulin, Sirtl, 5> AMP-ac-
tivated protein kinase (AMPK), mitogen-activated protein
kinase (p38-MAPK), p53, and reactive oxygen species
(ROS)-associated pathways [18-20]. Secondly, the Ras/
Raf/ERK signaling pathway, as one of the most commonly
dysregulated pathways activated by frequently activated
mutations in Ras or B-Raf oncogenes in tumors, plays a
vital role in promoting autophagy [21, 22]. Thirdly, the
c-Jun N-terminal kinases (JNK) signaling pathway is in-
volved in the post-translational modification of Bcl-2 and
constitutive Bcl-2 phosphorylation, which dissociates Bcl-2
from Beclinl and stimulates autophagy [23-25]. Lastly,
the intracellular calcium signaling pathway exists in the
ER, mitochondria, and lysosomes. The release of Ca2+
is controlled by the inositol 1,4,5-trisphosphate recep-
tors (IP3Rs) or ryanodine receptors (RyRs), two-pore
channels 1/2 (TPC1/2), and transient receptor potential
superfamily channels, such as transient receptor potential
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cation channel member 1 (TRPML1) and TRPM2, fur-
thermore, ER-Derived Ca2+ released from IP3Rs can
hander autophagy by inhibiting AMPK and stimulate
autophagy by activating AMPK or Beclin1(Fig. 1) [26-29].

The relationship between autophagy and tumor
development

Autophagy, as a “double-edged sword” in tumors, it can
promote or suppress tumor development. The regulation
network of autophagy that influences tumor progression
and resistance to therapy depends on the cell/tissue types
and the stages of tumor, thereby inhibiting or promoting
tumor formation and treatment resistance (Fig. 2). How-
ever, these complicated functions of autophagy in tumors
remain to be elucidated.

In most models, tumor initiation is suppressed by au-
tophagy via preventing the toxic accumulation of dam-
aged proteins and organelles, particularly mitochondria.
Autophagy limits oxidative stress, chronic tissue damage,
and oncogenic signaling, which suppresses tumor initi-
ation. The essential autophagy gene ATG6/BECN1 encod-
ing the Beclinl protein has been implicated as a tumor
suppressor in breast, ovarian, and prostate cancers. Due to
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Fig. 1 The regulating mechanism of autophagy. The signaling
pathways regulating autophagy are complex. PI3K/Akt/mTOR-
mediated signaling pathway inhibits autophagy, P53-activated
PTEN and AMPK promotes autophagy by blocking PI3K and mTOR
activation. The Ras/Raf/ERK signaling pathway induces autophagy.
The JNK signaling pathway stimulates autophagy by activating
AMPK. The ER-Derived Ca2+ signaling pathway enhances IP3Rs-
mediated Ca2+ release, which suppresses autophagy by inhibiting
AMPK activation and enhances autophagy via activating CaMKK{
and AMPK, moreover, ER-Derived Ca2+ provides Beclin1 for autophagy
induction. In addition, autophagy can be blocked by sirtuin1 and
P38 MAPK
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the important role of this gene in essential physiological
and pathological pathways, it could be viewed as a puta-
tive drug target for the development of new therapies [30].
However, there is no evidence for BECN1 mutation or loss
in any other tumors, suggesting that it remains uncertain
whether BECN1 is a tumor suppressor in most human tu-
mors [31]. Regardless of whether BECN1 is a tumor sup-
pressor gene or not, another autophagy-related gene,
PARK2 (Parkin), has been identified as a potential tumor
suppressor that is frequently deleted in human tumors. In-
activation of PARK2 results in the accumulation of cyclin
D and acceleration of cell cycle progression [32]. Defective
autophagy leads to accumulation of p62, which promotes
toxic accumulation of ROS and chromosomal instability,
and p62 is also a signaling adaptor that regulates many
oncogenic pathways, including nuclear factor erythroid 2—
related factor 2 (NRF2), mTOR, and nuclear factor kappa
B (NF-«B) [33]. The induction of p62 in autophagy-defi-
cient cells alters cell function and possibly promotes
tumorigenesis. Autophagy-deficient Kupffer cells promote
hepatocarcinogenesis during the pre-neoplastic stage by
ROS-mediated inflammation and fibrosis-promoting ef-
fects via enhancing NF-kB-IL1a/p pathways [34]. Simi-
larly, ATG gene deletion is seen in the pancreas, as
another tissue in which chronic inflammation is tumor-
promoting, and stimulated benign tumor development
[35]. Furthermore, autophagy plays a role in the response
of death receptor agonists to block tumor cell prolifera-
tion, Fas ligand (FasL), and tumor necrosis-like apoptosis-
inducing ligand (TRAIL). The canonical apoptosis recep-
tor agonists are being tested as anti-tumor agents; how-
ever, in the same population of cells, high autophagy
causes increased sensitivity to Fas-induced apoptosis but
reduced sensitivity to TRAIL-induced apoptosis [36]. Ap-
parently, this effect indicates autophagy-promoted Fas-in-
duced apoptosis is cell type—specific. The molecular
explanation is that a cell type—specific negative regulator
of Fas-induced apoptosis is degraded by selective autoph-
agy. Consequently, the pro-apoptotic effect only existed in
some tumor cells [37]. Another example explains why au-
tophagy inhibits TRAIL-induced apoptosis, in which it
has been shown that autophagy can degrade activated
caspase-8 to limit activation of the TRAIL apoptosis path-
way [38]. Thus, autophagy has opposing effects on two
very similar death stimuli (FasL and TRAIL) even in the
same tumor cells.

During the process of tumors development, it has ac-
knowledged that autophagy handered tumor invasion
and metastasis by degrading EMT inducers. For in-
stance, mTOR complexes inhibition-induced autophagy
contributes to the significant decrease of SNAI family
members such as SNAIL and SLUG proteins, then up-
regulating cadherin and inhibiting invasion and metasta-
sis [12]. Additionally, death effector domain-containing
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Fig. 2 The relationship between autophagy and tumor development. Autophagy promotes tumor development by ensuring metabolic homeostasis,
augmenting tumor cells proliferation, enhancing DNA damage and ATP release. On the other side, autophagy suppresses tumor development by
ensuring normal cellular structure, inhibiting mutagenic entities, protein damage and inflammation

DNA-binding protein (DEDD) activates autophagy by
directly interacting with the class III PtdIns 3-kinase
complex containing PIK3C3 and BECNI, leading to the
autophagy-lysosome dependent SNAI and TWIST deg-
radation and attenuating the EMT process and the
metastatic phenotype [11].

By contrast, some tumors induce autophagy and are
dependent on autophagy-mediated recycling to maintain
mitochondrial function and energy homeostasis to meet
the metabolic demand of growth and proliferation. More-
over, tumors are more autophagy-dependent than normal
tissues; thus, autophagy inhibition may be beneficial for
tumor therapy [39]. p53 encoded by the TP53 gene can
regulate DNA damage response, but in stressful environ-
ments, autophagy suppresses the p53 response to promote
tumor progression [40]. In this specific case, oncogenic
Ras/B-Raf-triggered tumor initiation depends on autoph-
agy to maintain healthy mitochondria and supply glutam-
ine through lysosomal recycling. For example, oncogenic
Ras-driven pancreatic tumors require autophagy in order
to progress to malignant pancreatic ductal adenocarcin-
oma in vivo. The anti-tumor effects of inhibiting autoph-
agy in multiple tumor types in the context of oncogenic
Ras have been reported to be dependent on p53 that sup-
presses autophagy by inhibiting AMPK, and activating
mTOR, suggesting that the loss of the tumor suppressor
p53 in the context of oncogenic Ras significantly acceler-
ates tumor cell proliferation [41, 42]. Hence, autophagy is
not protective in some special conditions and stages, but
is actually related to the anti-tumor effect of most of drugs.
For example, it was reported that erlotinib (a standard
therapy in EGFR-mutant lung cancer) induced autophagy

in growth factor receptor mutated non-small cell lung can-
cer (NSCLC) cells, which caused drug resistance, but in-
hibition of autophagy by chloroquine (CQ) can enhance
the pro-apoptotic effects of erlotinib [43]. Therefore, the
inhibitors of autophagy may be a potential therapy strategy
to overcome drug resistance.

The relationship between autophagy and the
immune system

Immune system including innate immunity and adaptive
immunity plays a key role in immunosurveillance of tu-
mors. In innate immunity, autophagy works downstream
of pattern recognition receptors by activation of innate
immune receptors, including TLRs and NLRs, where it
facilitates a number of effector responses, including NKT
cell activation, cytokine production, and phagocytosis. In
adaptive immunity, autophagy provides a substantial
source of antigens for loading onto MHC class II mole-
cules and it may be important in dendritic cells for
cross-priming to CD8+ T cells (Fig. 3).

Innate immunity-mediated autophagy

Innate-immunity-mediated autophagy can be upregulated
by the activation of innate immune receptors, including
Toll-like receptors (TLRs) and nucleotide oligomerization
domain (NOD)-like receptors (NLRs) [44]. TLR2 has been
reported to stimulate autophagy to enhance host innate
immune responses through the activation of the JNK and
ERK signaling pathways [45, 46]. TLR7 can trigger the au-
tophagy by engaging with Atg5 and Beclinl in a myeloid
differentiation factor 88 (MyD88)-dependent manner
to eliminate intracellular residues [47]. TLR4 induced
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Fig. 3 The mechanism of autophagy regulating immune system. Autophagy can be up-regulated by the activation of innate immune receptors,
including TLRs and NLRs. TLRs can activate TRIF/RIP1/p38MAPK, JNK and ERK signaling pathways, or in a MyD88-dependent manner to trigger
autophagy. NLRs directly induce autophagy through recruiting and interacting with ATG16L1. In adaptive immunity, autophagy can be enhanced
by antigen presentation, and autophagy activation facilitates the recruitment ATG8/LC3 to phagosome membrane, the fusion of phagosomes
with lysosomes and the modification of phagosomal content, contributing to increased antigen presentation and adaptive immunity

autophagy via activating the TRIF (Toll-IL-1 receptor
(TIR) domain-containing adapter-inducing IFN)/RIP1
(Receptor-interacting protein)/p38-MAPK signaling path-
way [48]. It was reported that toll-like receptor adaptor
molecule 1 (TICAM1/TRIF) was required for TLR4- and
TLR3-induced autophagy stimulation by lipopolysaccha-
rides (LPS) and polyinosinic-polycytidylic acid (poly(I: C))
respectively, which is critical for ubiquitination of TRAF6
and subsequent activation of MAPK and NF-KB signaling,
and then produces unfavorable cytokines to enhance mi-
gration and invasion of malignant cells [49]. In addition to
TLRs, the DNA damage-regulated autophagy modulator
1(DRAM1) mediates pathogen recognition by the TLR-
MYDB88-NF-«kB innate immune sensing pathway to acti-
vate selective autophagy [50]. While TLRs sense microbes
on the cell surface, NOD1 and NOD2, members of NLRs,
recognize cytosolic pathogens by incorporating with meso-
diaminopimelic acid (iE-DAP) and muramyl dipeptide
(MDP), respectively. They can also activate the NF-kB and
MAPK pathways to produce proinflammatory and im-
munosuppressive cytokines [51]. NOD1 and NOD2 dir-
ectly induce autophagosome formation by recruiting and
interacting with ATG16L1 [44, 52-54]. NOD1 and NOD2
in DCs could potentiate TLR-mediated invariant NKT cell
activation during bacterial infection and then produce the

key antibacterial cytokines, such as IEN-y [55]. By altering
the balance between pro- and anti-inflammatory cyto-
kines, NOD1 and NOD2 modulate the risk of tumor and
may bring about distinct outcomes. It has been reported
that the variance of the NOD1/CARD4 (caspase re-
cruitment domain) gene might influence lung cancer
diagnosis and treatment, whereas the variance of the
NOD2/CARD15 gene is not associated with lung can-
cer risk in the Turkish population [56]. Recently, inter-
feron regulatory factor 8 (IRF8) has been reported to be
a major regulator for autophagy maturation and innate
immune responses by directly promoting autophago-
some formation and lysosomal fusion [57].

Adaptive immunity-mediated autophagy

In adaptive immunity, autophagy is essential to antigen
presentation, thymus selection, lymphocyte development,
and homeostasis and cytokines release, which participate
in anti-tumor effects. An adaptive immune response de-
pends on the identification of extracellular or intracellular
peptide epitopes presented by major histocompatibility
complex (MHCII) and MHCI molecules, which are recog-
nized by CD4+ and CD8+ T cells, respectively [58]. T cell
receptors interact with antigens presented by professional
antigen-presenting cells (APCs) to initiate the humoral
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and cell-mediated adaptive immune responses, which pro-
mote antibody affinity maturation and cytotoxic T cells
(CTLs) maintenance. In addition, autophagy provides the
ATPs for anti-tumor T-cells to activate APCs. When
autophagy is triggered, autophagosomes engulf intracel-
lular pathogens and deliver degraded products to MHCII-
containing compartments (MIICs) for antigen presenta-
tion to a specific CD4+ T cell. Autophagy might also facili-
tate the presentation of extracellular antigens to MHCII
molecules by means of ATG8/LC3-associated phagocyt-
osis (LAP). ATG8/LC3 is recruited to phagosome mem-
branes surrounded by pathogen-associated molecular
pattern (PAMP) receptors, which enhances the fusion
of phagosomes with lysosomes and modifies phago-
somal content [59, 60]. In Mycobacterium tuberculosis
(Mtb)-infected dendritic cells, PE_PGRS47, as an Mtb
gene, inhibits autophagy and impairs MHCII presenta-
tion of antigens. The PE_PGRS47 deletion mutant of Mtb
attenuates autophagy inhibition and increases acidification
and the fusion of lysosomes with phagosomes [61]. In
addition, autophagy plays a role in antigen processing for
MHCI cross-presentation. A study has proved that alpha-
tocopheryloxyacetic acid (a-TEA) stimulates autophagy
and generates autophagosome-enriched supernatant frac-
tion (a-TAGS), as an antigen carrier which can stimulate
MHCI cross-presentation to antigen-special CD8+ T cells
and enhance cross-priming of CD8+ T cells [62, 63].

The relationship between autophagy and immune
cells

Autophagy activation can promote or inhibit the devel-
opment of tumor by modulating the homeostasis, activa-
tion, proliferation and differentiation of immune cells.
Autophagy facilitates CD8+ T cells to differentiate into
CTLs, promotes T cells to differentiate into Th cells.
Furthermore, autophagy drives DCs and B cells develop-
ment, plasma cells differentiation and specific IgM and
IgG production by enhancing antigen presentation. Au-
tophagy plays an important role in Treg cells survival
and Treg cell-mediated immune tolerance, and autoph-
agy is essential for macrophage production at different
stages, the inhibition of macrophages autophagy pro-
motes M1-like tumor-associated macrophages (TAMs)
polarization resulting in increased specific immune re-
sponses, however autophagy also enhances macrophages
polarization to the immunosuppressive M2-like TAMs.
In addition, autophagy can facilitate Myeloid-derived
suppressor cells (MDSCs) growth. While Tregs, M2-like
TAMs and MDSCs promote tumor development (Fig. 4).

T cells

Basal autophagy is reportedly required for T cells to
maintain homeostasis, and defective autophagy evoked
by the deletion of pro-autophagic mediators, such as
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Atg3, Atg5, Atg7, BECN1, and PI3K can disturb T cell
survival, activation, proliferation, and differentiation
[44]. Survival of naive T cells in the periphery depends
on TCR interactions with stromal cells and IL-7 signal-
ing, which appears to require Atg3-dependent autophagy
in an intrinsic manner [64]. Several studies have shown
that autophagy is increased in T cells after TCR stimula-
tion, which is associated with rapidly increased calcium
levels that shortly activated AMPK to promote autoph-
agy via phosphorylation of ULK1 complex [65-67].
Atg7-deficient T cells behave like Atg5- or Atg3-deficient
T cells and cannot proliferate efficiently, failing to enter
into S phase after TCR stimulation. The main negative
cell-cycle regulator, CDKN1B, is accumulated in naive
autophagy-deficient T cells and cannot be degraded after
T cell activation. However, genetic deletion of a single
CDKNIB allele can restore the proliferative capacity [68].
Moreover, defective autophagy contributes to the insuffi-
cient degradation of mitochondrial components and af-
fects the quality of mitochondria, therefore increasing
ROS generation and damaging T cells [69]. Many studies
have reported that the CD8+ T-cells frequency was re-
duced more than the CD4+ T-cells upon impaired au-
tophagy. Inhibition of mTOR in effector CD8+ T cells can
induce memory CD8+ T cells generation in lymphoid but
not in mucosal tissue. According to this, we speculate that
CD8+ T cells are more dependent on autophagy [70, 71].
Autophagy promotes T-cells to evolve toward invariant
natural killer T (iNKT) and Treg in the thymus by regulat-
ing differentiation [72, 73]. When mTOR is induced in ac-
tivated T cells, they differentiate into Th cells. Whereas
mTOR activation is low and AMPK levels are high, the
naive T cells preferentially differentiate into Treg cells
[74]. Although all Th cells depend on mTOR activity,
Thl and Th17 cells require Rheb-dependent mTORC1
activation, whereas Th2 cells differentiation is pro-
moted by mTORC2 activation, the genetic deletion of
Rheb in T cells specifically eliminates mTORC1 activity
while preserving mTORC2 activity [75]. Th17 cells dif-
ferentiation is additionally regulated by the transcrip-
tion factor hypoxia-inducible factor la (HIF-1a). The
HIFla-dependent transcriptional program is important
for mediating glycolytic activity, thereby contributing to
the lineage choices between TH17 and Treg cells. Lack
of HIF-1a results in diminished TH17 cells develop-
ment but enhances Treg cells differentiation [76]. Alter-
natively, autophagy may provide tumor cells with a
survival advantage, protecting them against immuno-
surveillance by suppressing CD4+ and CD8+ T cells
[77]. Thl signature cytokines, such as IFN-y, induce
macroautophagy and accelerate not only the formation
but also the maturation of autophagosomes via the JAK1/
2 PI3K and p38 MAPK, but not signal transducer and ac-
tivator of transcription 1 (STAT1) signaling pathways [78].
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Fig. 4 The relationship between autophagy and immune cells. Autophagy activation can promote or inhibit the development of tumor by
modulating the homeostasis, activation, proliferation and differentiation of immune cells. Autophagy activated by mTOR inhibition facilitates
CD8+ T cells to differentiate into CTLs, but mTOR induction promotes T cells to differentiate into Th cells. Autophagy drives DCs and B cells
development, plasma cells differentiation and specific IgM and IgG production by enhancing antigen presentation. The association of cytosolic
phosphorylated FoxO1 with Atg7 contributes to the autophagy induction and initiates NKT cells development and effector functions against tumor
cells. mTORCT inhibition and AMPK activation-induced autophagy plays an important role in Treg cells survival and Treg cell-mediated immune
tolerance. ULKT and JNK activation-triggered autophagy is essential for macrophage production at different stages, the inhibition of macrophages
autophagy promotes M1-like TAMs polarization resulting in increased specific immune responses, however autophagy triggered by binding of IL6 and
CCL2 to IL6R and CCR2, respectively, enhances macrophages polarization to the immunosuppressive M2-like TAMs. The inhibition of p38 MAPK or
mTORC1 can block the development of neutrophils via inducing autophagy. In addition, autophagy can facilitate Myeloid-derived suppressor cells
growth. Tregs, M2-like TAMs and Myeloid-derived suppressor cells promote tumor development, and other cells in this figure suppress tumor growth
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In addition, IFN-y is a potent autophagy inducer in the
Mtb-infected macrophages by enforcing phagosome-
lysosome fusion [79, 80]. Conversely, Th2 cytokines, such
as IL-4 and IL-13, which downregulate Th1 responses and
subsequently subvert adequate protective immunity, de-
crease the quantity of IFN-y and inhibit autophagy in hu-
man macrophages [81]. Surprisingly, IL-13 can induce the
activation of I kappa B kinase p (IKKB)/NFkBp65 and up-
regulate Beclin 1 and LC3[ expression and the increase of
autophagosomes in fibroblasts co-cultured with breast
cancer cells [82]. IL-4 can induce autophagy in B cells,
which is dependent on JAK signaling via an mTOR-inde-
pendent and PI3K-dependent pathway, and promotes sur-
vival and antigen presentation of B cells [83]. Autophagy
modulates the development of T lymphocytes; neverthe-
less, the cytokines that T cells secrete conversely pro-
mote or inhibit the progression of autophagy.

NKT cells
Autophagy plays an essential cell-intrinsic role in main-
taining the survival of a subset of innate-like cells known

as iNKT cells. Phosphorylated FoxO1 and Atg7 are lo-
cated in autophagosomes, suggesting that the association
of cytosolic phosphorylated FoxO1 with Atg7 likely con-
tributes to the autophagy induction of iNKT cells indi-
cated by MAP1LC3[3/LC3p lipidation and sequestosome
1(SQSTM1/p62) degradation, initiating NKT cells devel-
opment and effector functions against viral infection
[84]. Autophagy-deficient iNKT cells accumulate mito-
chondria and oxygen radicals and subsequently die of
apoptosis. Furthermore, deletion in autophagy genes not
only interferes with the mature stages of iNKT cells and
decreases the proliferation of NKT cells, but also pre-
vents transition to a quiescent state after population ex-
pansion [85]. Once activated by strong antigens, the
majority of iNKT cells rapidly release large amounts of
both Thl and Th2 cytokines; however, autophagy-defi-
cient iNKT cells exhibit decreased IL-4 and IFN-y levels
[86]. NKT cells exert anti-tumor effects by direct killing
of tumor cells, induction of cell apoptosis, secretion of
IFN-y, and inhibition of tumor metabolism. Recent studies
have demonstrated that NKT cells can induce autophagy
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in tumor cells because lymphocyte-to-tumor cell contact
strongly enhances lymphocyte-mediated autophagy by re-
leasing diffusible factors [87].

Treg cells

Treg cells (FOXP3(+) regulatory T cells) require autoph-
agy to suppress anti-tumor immune responses. Autoph-
agy is essential for Treg cells survival, lineage stability,
and Treg cells-mediated immune modulation. Treg cells-
specific deletion of Atg7 or Atg5, two essential genes in
autophagy, leads to loss of Treg cells, further tumor resist-
ance, and inflammatory disorders. Research has found
Treg cells have higher autophagy activity than naive CD4
+ T cells. Mechanistically, autophagy-deficient Treg cells
have increased apoptosis and lost characteristic expression
of Foxp3 by upregulating mTORC1. The reason is that au-
tophagy plays an important role in restricting mTORC1
activation. mTORC1 is a crucial regulator in Treg cells,
and either diminished or excessive mTORCI1 disrupts
Treg cells suppressive functions [88, 89]. In a model of
KRas-driven lung carcinogenesis, autophagy deficiency is
induced by knockdown of Atg5 or Atg7, which induces
the inopportune recruitment of Treg cells via ENTPD1
(CD39, an ecto-enzyme that is exposed on the cell surfa-
ce)-mediated conversion of immunostimulatory ATP into
immunosuppressive ADP (adenosine diphosphate 1) and
AMP (adenosine monophosphate) to suppress the specific
anti-tumor responses [90]. Therefore, we can design the
strategies for tumor treatment using the inhibitors of
ENTPD1 or the inducer of autophagy to decrease the re-
cruitment of Treg cells. As we known, Foxp3+ T cells ex-
press variable amounts of Treg cells-related cytokines,
including IL-10, TGE-P and Foxp3. IL-10 inhibits autoph-
agy via PI3K/Akt/mTORC1 and JAK-STAT3 activation.
However, TGF-p triggers autophagy via activating the
Smad and JNK signaling pathways [91]. Foxp3 is a pre-
requisite for retroviral protein tax induction of T cell
transformation, and autophagy molecules are required for
maintaining tax transformation of Foxp3+ T cells, silen-
cing key autophagy molecules, including Beclinl, Atg5,
and PI3KCIII, which will result in impairing peripheral
maintenance and the function of CD4 + FoxP3+ regula-
tory T cells [92, 93].

B cells

Autophagy plays a role in B cell development and sur-
vival. It is dispensable for the transition between pro-
and pre-B cell stage and B cell activation in response to
BCR stimulation. Moreover, basal levels of autophagy are
necessary to maintain a normal number of peripheral B
cells and their survival after ligand lipopolysaccharide (LPS)
stimulation that drives plasmablast differentiation and spe-
cific IgM and IgG production [94]. Autophagy-related
genes, especially, Atg5 is essential for B cell development
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[44]. Tumor-derived autophagosomes (termed “DRibbles”)
induce B cell activation, resulting in antibody production
and cytokine secretion. The autophagy-deficient B cells
lack the ability to produce antibodies and cytokines. Unex-
pectedly, it has been reported that unfractionated spleno-
cytes produce a higher level of antibodies and cytokines
than purified B cells, DRibbles stimulation upregulates
CDA40L expression on macrophages, resulting in increased
level of CD40 on B cells. The accessory role of macro-
phages in DRibbles-activated B cells is critically dependent
on the CD40/CD40L interaction. Moreover, macrophages
are able to enhance the antigen presentation function
of B cells for specific T cell stimulation [95]. B cell in-
trinsic autophagy is required for the function and/or
survival of alloreactive B memory cells. During au-
tophagy induction, LC3 molecules link to nascent
autophagosome membranes in memory B cells, con-
tributing to LC3 abundance and increasing the per-
centage of autophagosome-containing cells in memory
B cells compared with naive B cells, which can explain
why the memory B cells have a longer lifespan, and
the lack of autophagy in B cells does not affect pri-
mary alloantibody responses, but affects secondary al-
loantibody production [96]. Therefore, pharmacological
inhibitors of autophagy impair antibody recall response.

DCs

Foxp3+ Treg cells potently impair the autophagic ma-
chinery in DCs in a CTLA4-dependent manner. Mech-
anistically, CTLA-4 binding to CTLA-4 antibody
promotes the activation of the PI3K/Akt/mTOR axis
that results in FoxO1 nuclear exclusion in DCs, leading
to decreased transcription of the LC3p and the forma-
tion of autophagosomes [97]. Deficient autophagy in
DCs impaired cytokines secretion, such as absence of
Atg5 but not Atg7 deficiency in DCs, impaired IL-2 and
IEN-y production by CD4+ T cells in an IL-1p inde-
pendent manner. However, Atg5-deficient DCs exhibited
unimpaired production of IL-12, IL-6, and TNF-a [98].
Autophagy is important for the presentation of cytosolic
antigens on MHCII and efficient cross-presentation of
soluble antigen. A study revealed that Atg5 deficiency in
DCs impaired antigen presentation through the MHCII
pathway. The reason for this might be that the fusion of
lysosomes with phagosomes is delayed, suggesting that
Atg5 is also important for autophagosome formation
and is required for DCs to trigger CD4+ T cells re-
sponses via MHCII antigen presentation, especially trig-
gering protective antiviral Thl cell responses [99, 100].

Macrophages

Autophagy is essential for controlling macrophage produc-
tion at different stages, including hematopoietic stem cell
maintenance, monocyte/macrophage migration, monocyte
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differentiation into macrophages and polarization, in most
solid tumors. TAMs density is significantly higher than
the surrounding normal tissues. Generally, TAMs first ori-
ginate from monocytes that are recruited into tumors by
chemoattractants, including chemokines and cytokines re-
leased from both tumor cells and stromal cells. Among
these chemoattractants, chemokine [C—C motif] ligand 2
(CCL2) exerts a prominent action in recruiting monocytes
and is able to protect monocytes against apoptosis in the
tumor microenvironment by upregulating anti-apoptotic
proteins and inhibiting CASP8/caspase-8 cleavage, and it
also induces hyper-activation of autophagy in TAMs
[101]. When monocytes are stimulated to differentiate
into macrophages, colony-stimulating factor 1 (CSF1) in-
creases the expression and phosphorylation status of
ULK], thus contributing to increased induction of autoph-
agy [102]. CSF2 is also able to promote monocyte survival
and differentiation into macrophages. The differentiation
signal helps Beclinl release from Bcl-2 by activating JNK
and blocks Atg5 cleavage, thus stimulating autophagy,
whereas blockade of autophagy has an inhibitory effect on
CSF2-induced monocyte differentiation into macrophages
[103]. Autophagy also plays a key role in macrophage
polarization. The inhibition of macrophage autophagy
promotes M1 polarization, resulting in increased pro-
inflammatory cytokine secretion. Then, M1 macrophages
stimulate a Th1 response against intracellular microorgan-
isms and tumor cells by activating immune responses,
whereas the induction of autophagy promotes M2
polarization. In the tumor microenvironment, autoph-
agy is triggered by binding of IL-6 and CCL2 to inter-
leukin 6 receptor (IL-6R) and CCR?2, respectively, which
is essential for macrophage polarizaton to the M2 pheno-
type, resulting in increased anti-inflammatory cytokine se-
cretion, which promotes the fading of inflammation as
well as tissue repair and remodeling, but M2 macrophages
are immunosuppressive cells [101, 104—106]. Targeting
the autophagy which regulates macrophage polarization
toward the M1 phenotype should be a promising anti-
tumor strategy.

Neutrophils

Autophagy has a negative effect on the development of
neutrophils. Deficient autophagy indicates an increased
proliferation rate in the neutrophil precursor cells of
the bone marrow and accelerates the process of neutro-
phil differentiation, resulting in the accumulation of ma-
ture neutrophils in the bone marrow, blood, spleen, and
lymph nodes. Pharmacological inhibition of p38 MAPK or
mTORC1 can induce autophagy in neutrophilic precursor
cells and block their differentiation [107]. However, au-
tophagy is required for neutrophil-mediated inflammation.
Autophagy deficiency in neutrophils leads to reduced
nicotinamide adenine dinucleotide phosphate (NADPH)
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oxidase-mediated ROS production and further contribute
to reduced degranulation [108]. Recent studies have re-
vealed that autophagic activity is also required for the re-
lease of neutrophil extracellular traps (NETs), representing
a distinct form of active neutrophil death, namely NETo-
sis. NET formation requires both autophagic activity and
ROS production. Inhibition of the mTOR pathway accel-
erates the rate of NET release and stimulates ROS produc-
tion following neutrophil stimulation with the bacteria-
derived peptide formyl-Met-Leu-Phe (fMLP) [109]. Tumor-
derived neutrophils exhibit much higher levels of LC3-II
and have more autophagosomes than their counterparts
from blood. There is evidence that enhancement of neutro-
phil autophagy in hepatocellular carcinoma (HCC) is
correlated with the release of matrix metalloproteinase-9
(MMP9) and oncostatin M (OSM), but is unrelated to the
deactivation of mTOR signaling, which could contribute to
the advanced migration of tumor cells. According to these
studies, abolishing autophagy initiation by inhibiting the ac-
tivation of Erk1/2, p38, and NF-«B signals in tumor-derived
neutrophils could rapidly restore the spontaneous apoptosis
of cells, which provides a novel strategy for anti-tumor
therapy [110]. Neutrophils have the highest expression of
IgA Fc receptor FcRI (CD89) of all cell types. Co-culturing
of tumor cells, neutrophils, and IgA results in significant
changes in the cell morphology of tumor cells, which is as-
sociated with high LC3-II expression in autophagosomes,
but cell apoptosis remains constant. These phenomena sug-
gest that autophagy participates in the process of activated
neutrophil combat against tumor cells [111].

MDSCs

MDSCs are immune-suppressive cells and their accumu-
lation and suppressive activity are driven by inflammation.
It was reported that high mobility group box 1(HMGB1)
can promote the survival of MDSCs by inducing autoph-
agy [112]. In addition, glycolytic metabolism has an essen-
tial impact on MDSCs. Glycolysis prevents the AMPK-
ULK1 signaling activation and autophagy formation to en-
hance autophagy-mediated partial liver-enriched activator
protein (LAP) expression, which in turn promotes gran-
ulocyte colony-stimulating factor (G-CSF) and granulo-
cyte macrophage colony-stimulating factor (GM-CSF)
expression and supports MDSCs development in tumors
[113]. Furthermore, MDSCs are identified to induce AMPK
phosphorylation, stimulate autophagy and increase the
anti-apoptotic factors MCL-1 and BCL-2, which pro-
motes Multiple Myeloma (MM) progression [114].

The relationship between autophagy and
cytokines

Autophagy is closely intertwined with inflammatory and
immune responses, and cytokines may help mediate this
interaction. Autophagy has been shown to regulate, and
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be regulated by, a wide range of cytokines, and autoph-
agy activation can promote or inhibit the secretion of cy-
tokines to control tumor development (Fig. 5).

1I-1

The two main pro-inflammatory cytokines are IL-1a and
IL-1pB. IL-1 can inhibit signaling pathways, such as cyclo-
oxygenase (COX-1), phosphorylated inhibitor of kB
(IkB), and stress-activated protein kinase (SAPK)/ JNK,
thereby inducing autophagy and promoting tumor devel-
opment, growth, and metastasis. Inhibition of IL-1 ex-
pression in tumor cells can induce upregulation of p21
and p53, leading to suppression of tumor growth [115].
Intracellular IL-1f is targeted by autophagosomes. Au-
tophagy has dual effects on inflammasome activation
and IL-1f secretion. However, the negative effect is pre-
dominant under stable conditions, whereas only the
negative role of autophagy in IL-1a activation has been
reported [116, 117]. It was reported that Atg5-deficient
macrophages secrete reduced amounts of IL-1f upon
autophagy stimulation, restricted T cells activation, and
cytokine production [98]. The production and release of
mature IL-1P requires two distinct signals. The first
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signal is the interaction between TLR4 and TLR3 and
LPS, which activates NF-kB-dependent transcription of
the IL-1B gene and secreting minimal amounts of ma-
ture IL-1B. The second signal is the potassium-proton
ionophore, ATP, which induces greatly increased levels
of extracellular IL-1B that is dependent on caspase-1
[118]. During the pre-neoplastic stage of hepatocarcino-
genesis, autophagy-deficient macrophages increase
IL-1a/p production by enhancing the ROS-NF-kB path-
way [34]. Both IL-1p and IL-la can induce autophagy;
however, autophagy might limit their secretion, indicat-
ing that autophagy represents a negative feedback mech-
anism for controlling IL-1p and IL-1a secretion [119].

IFN

IEN includes type I, type II, and Type III IEN. Type I
IEN includes IFN-a and IEN-f, which are secreted by
mononuclear phagocytes and fibroblasts, respectively. It
has been reported that type I IFN induced autophagy by
activating JAK/STAT via phosphorylation of STAT1 and
STAT?2, which was activated by tyrosine kinase (TYK) 2
and JAKI1, and then implicated the involvement of
MAPK signaling and the PI3K/AKT/mTOR signaling
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Fig. 5 The relationship between autophagy and cytokines. Autophagy activation can promote or inhibit the secretion of cytokines to control tumor
development. IL-1 can induce autophagy by SAPK/JNK signaling pathway, and autophagy represents a negative impact on IL-1 production by
inhibiting the interaction between TLR4, TLR3, LPS and ROS accumulation, resulting in NF-kB signaling pathway inhibition. IL-2 boosts autophagy

T

induction by promoting ATG5-beclin1-HMGB1 complex formation, however, autophay suppresses NF-kB-mediated IL-2 production. IL-6 exerts anti-
autophagic effects by activating p-STAT3 and reducing the protein levels of LC3-Il and Beclin 1, in addition, IL-6 promotes autophagy AMPK activation
and mTORC1 inhibition, and Akt activation. Mutually, autophagy promotes the release of IL-6 by activating NF-kB pathway. IL-10 activates the JAK/
STAT3 and PI3K/Akt/mTORC1 pathways, resulting in autophagy inhibition. IL-12 induces autophagy through suppressing the AKT/mTOR/STAT3 and
PI3K/Akt pathways and activating AMPK pathway, and autophagy decreases IL-12 release by inhibiting inflammation. IL-23 contributes to autophagy
inhibition and ROS accumulation by triggering AKT/mTOR/NF-kB pathway, and autophagy decreases the production of IL-23, TNFa and IFN by
inhibiting IL-13-mediated NF-kB signaling pathway. TNF represses autophagy by decreasing lysosomal acidification, and autophagy inhibits TNF-a
expression through blocking p38MAPK phosphorylation and TRAF6 expression. IFNs induce autophagy by activating JAK/STAT and JAK1/2, PI3K and
p38MAPK pathways, and suppress autophagy by decreasing autophagosome formation and the expression of autophagy-related genes ATG5 and
GABARAP. TGF-( has been demonstrated to activate autophagy by Smads and JNK signal pathways, but autophagy decreases mature TGF-B protein
levels as a result of increased degradation. In this figure, IL-10 and TGF-3 enhance tumor development, other cytokines suppress tumor development
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axis, accompanied by the inactivation of mTORCI1 sig-
naling and activation of mTORC2/AKt signaling via
FOXO3 regulation, which is a direct transcription regu-
lator of autophagy genes [78, 120, 121]. However, the ef-
fect of IFN-a depends on the specific targeted cell type.
IFN-a can inhibit autophagy when combined with
lymphocyte co-culture, although it contributes to greater
MHC-1 increases [87]. IFN-y is the Type II IFN, and it
is produced by activated CD4+ and CD8+ T cells as well
as NK cells. It can induce autophagy in various cell
types, including epithelial cells, immune cells, and tumor
cells. On the one hand, IFN-y accelerates not only the
formation but also the maturation of autophagosomes
via JAK1/2, PI3K signaling cascades and the p38 MAPK
signaling pathway, which is a STAT1-independent path-
way. On the other hand, IFN-y rapidly and consistently
leads to the upregulation of MHCI on the surface and
induces autophagy [78, 122]. Increased autophagy also
enhances the process of viral/bacterial digestion. IL-27
inhibits IFN-y-induced autophagy by concomitant in-
duction of the JAK/PI3K/Akt/mTOR cascade, in addition,
Th2 cytokines IL-4 and IL-13 can also inhibit IFN-y-in-
duced autophagy [14, 81, 123]. Conversely, IEN-y is con-
sidered as a regulator to Th2 responses, and deletion of
IFN-y gene strongly triggers Th2 cytokines secretion in in-
flammatory diseases [124]. Type III IFNs (IFN-As) share
some common characteristics and therapeutic benefits
with type I IENs, but the effects on cellular autophagy are
different from type I IFNs. IFN-\1, the main type III IFNs
produced by hepatocytes during acute HCV infection, can
suppress HCV-induced autophagy indicated by decreased
conversion of LC3B-I to LC3B-II amounts, decreased
autophagosome formation, and decreased expression of
autophagy-related genes ATG5 and GABARAP [125].

II-6

In vitro, IL-6 exerts anti-autophagic effects by activating
the phosphorylation of STAT3 at Tyr705 and reduces
the protein levels of LC3-II and Beclin 1. Treatment
with a STAT3 inhibitor can reverse the inhibitory effect
of IL-6 on autophagy, as activated STAT3 binds to the
promoter of Bcl-2 and leads to its overexpression, which
in turn reacts with Beclinl to inhibit the formation of
the Beclin1-VPS34-Atgl4-p150 complex to decrease au-
tophagy [126]. For instance, IL-6 inhibits the formation
of IFN-y and starvation-induced autophagosomes in
virulent M. tuberculosis H37Rv-infected macrophages by
indicating the decreased LC-II and Beclinl. IL-6 inhibits
autophagy via promoting phosphorylation and expres-
sion of mTOR substrate, then inhibits phosphorylation
of both p38 MAPK and JNK/SAPK induced by IFN-y
[127]. In vivo, IL-6 trans-signaling promotes autophagy
by stimulating a robust increase in lysosomes but not
autophagosomes. The process is dependent on IL-6R
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expression. Autophagy is accelerated when IL-6 is com-
plexed with soluble IL-6R and thereafter locates to gp130
on cellular membranes. The stimulation of autophagy by
IL-6 is regulated via multiple complementary mechanisms,
including two main signals: one is activating AMPK,
which inhibits mTORCI; the other is activating Akt, then
phosphorylating STAT3 at S727 and activating Atgdc and
mTORC2, ultimately leading to autophagy-related enzyme
production to induce autophagy [128]. In lung cancer pa-
tients, cachexia is prevalent. There is a positive correlation
between IL-6 trans-signaling-induced autophagy in the
tumor and weight loss [129]. Mutually, autophagy pro-
motes the release of IL-6 by HBV X protein (HBx)-in-
duced autophagy and activates the NF-kB pathway.
Autophagy inhibition abrogates NF-kB activation and IL-6
production [130].

1I-2

The binding between ATG5, HMGB1 and Beclinl is es-
sential for IL-2-induced autophagy. Autophagy inhibitors
or knockdown of ATG5 and Beclinl can block IL-2-in-
duced autophagy and switch IL-2-induced proliferation
to apoptosis [131]. High-dose IL-2 (HDIL-2) alone in-
creases serum levels of IFN-y, IL-6, and IL-18 and trans-
locates HMGB1 from the nucleus to the cytosol in
hepatocytes. Then, the interaction between HMGBI1 and
Beclinl boosts autophagy. However, the effects could be
inhibited by combining with autophagy inhibitor Chlor-
oquine(CQ), which inhibits autophagy by blocking acid-
ification of the lysosome, preventing fusion with the
autophagosome. In tumor cells, CQ increases autopha-
gic vacuoles and LC3-II levels, inhibits oxidative phos-
phorylation and ATP production, and promotes apoptosis,
suggesting that the combination of IL-2 with CQ pro-
motes anti-tumor effects, increases long-term survival,
decreases toxicity associated with vascular leakage, and
enhances immune cell proliferation and infiltration in
the liver and spleen [132, 133].

-12

IL-12 is important for immune responses and anti-
tumor activity. It can induce autophagy through AKT/
mTOR/STATS3 signaling pathways via decreasing the ex-
pressions of p-AKT, p-mTOR, and p-STAT3 and inhibit
hepatoma cell growth. However, the induction of au-
tophagy attenuated the growth-inhibitory effect of IL-12
on hepatoma cells, indicating that restraining autophagy
by inhibitors or silencing Beclinl could enhance IL-12-
mediated anti-tumor effects. Furthermore, in human breast
cancer cells, IL-12 induces autophagy through inhibiting
AMPK and activating the PI3K/Akt signaling pathway
[134]. IL-12 is produced by activated inflammatory
cells, therefore, autophagy decreases the release of IL-12
by inhibiting inflammation.
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II-10

IL-10 inhibits autophagy by activating the JAK/STAT3
and PI3K/Akt/mTORC1 pathways [135]. The PI3K path-
way promotes phosphorylation of p70S6K through the ac-
tivation of Akt and mTORCI [136]. A study has indicated
that IL-10 inhibits angiotensin II-induced pathological au-
tophagy by activating PI3K/Akt/mTORC1 signaling and
promoting Bcl2-Beclinl interaction that could attenuate
the anti-apoptosis effect; however, pharmacological or
molecular inhibitors of Akt and mTORCI signaling can
weaken IL-10-inhibited Ang II-induced autophagy [137].
Furthermore, IL-4 and IL-13 signaling also activate PI3K
signaling to activate mTORCI1 in macrophage cells, and
Th2 cytokines IL-4, IL-13 and IL-10 exert autophagy in-
hibition in most environments [124]. During monocytes—
DCs differentiation and DCs survival, cytoprotective
autophagy responses are essential for counteracting IL-
10-triggered apoptosis, but IL-10 can strongly inhibit
starvation-induced autophagy and decrease Bcl-2 levels,
which indicates increased levels of Beclin-1, LC3, and
mature autophagosomes and results in restricting DCs
growth. IL-10 not only kills nascent antigen-presenting
DCs but also specifically skews the growth of DCs to-
ward non-antigen-presenting monocytes—macrophages,
and the autophagy inhibitor 3-methyladenine(3-MA)
restricted DCs differentiation by prompting apoptosis
[138]. Celastrol has been reported to ameliorate colitis
in IL-10 deficient mice, which has clearly confirmed
that celastrol up-regulated the autophagy of colon tis-
sue in IL-10-/- mice by inhibiting the PI3K/Akt/
mTOR signaling pathway. This could be a therapeutic
target for Crohn’s disease [139]. Autophagy is likely to
have dual effects on IL-10 production, but the mecha-
nisms require further exploration [140, 141].

TNF-a

TNF-a inhibited autophagy via disrupting the autophagic
flux by decreasing lysosomal acidification, but it was re-
ported that the increased amount of LC3-II protein level,
associated with the increased of P62 protein level, without
altering P62 mRNA levels. TNF-a is shown to induce
apoptosis or necrosis in various types of cells, results have
revealed a novel effect of TNF-a on DA neuron dysfunc-
tion and subsequent neuroinflammation-induced neuron
degeneration in Parkinson’s disease [142]. Inhibition of au-
tophagy and promotion of lysosomal proteolysis accelerate
TNF-a-induced death by increasing oxidative stress and
toxicity because LPS-induced TNF-a mRNA expression
is further significantly enhanced by pretreatment with
Bafilomycin Al, implying autophagy plays an inhibitory
role in the expression of TNF-a. Autophagy causes the
inhibition of p38MAPK phosphorylation and TRAF6
expression, which are required for the expression of
TNE-« [143, 144].
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TGF-B

In immune evasion, TGF-p exerts suppressive effects dir-
ectly on effector cells (including cytotoxic cells) and indir-
ectly promotes the differentiation of regulatory T cells. In
the tumor immunosuppressive microenvironment, TGF-f
can inhibit NK cells to diminish targeted cell lysis and
IFN-y production. However, NK cells in the tumor micro-
environment may restore their activity by TGF-f blockade
with anti-TGF- antibodies and small molecule inhibitors
of TGF-pB signaling [145]. Furthermore, inhibition of au-
tophagy increases mature TGF- protein levels without in-
ducing TGF-p mRNA expression, indicating that the
increase of mature TGF-f protein levels is a result of de-
creased degradation rather than increased synthesis [146].
Blocking TGEF- in the co-culture diminishes targeted cells
autophagy in a dose-dependent manner, indicating that
TGEF-B might be responsible for autophagy induction [87,
145]. Recently, TGF- has been demonstrated to activate
autophagy in certain HCC and breast cancer cells, which
undergo cell cycle arrest and apoptosis in response to
TGE-P. In those malignant cells, TGF-p stimulates the
expression of mRNA transcripts of several autophagy-
related genes, such as Beclinl, Atg5, Atg7, and death-
associated protein kinase (Dapk), and induces accumu-
lation of autophagosomes and activation of autophagic
flux. Up regulation of these genes is regulated by the
Smad and non-Smad signal transduction pathways, in-
cluding ERK, JNK, p38MAPK, and PI3K. Meanwhile,
autophagy potentiates the induction of the proapopto-
tic Bcl-2 family protein Bim and contributes to Bim-
mediated apoptosis in hematopoietic cells. TGF-p could
also induce directly proapoptotic genes, Bim and Bmf,
in a p38 MAPK and Smads-dependent manner, indicat-
ing a functional link between autophagy and apoptosis
(147, 148].

1I-23

Inhibitor of autophagy, such as 3-MA as a PI3K in-
hibitor, can block autophagic degradation of proteins
and enhance LPS-induced secretion of IL-23. More-
over, knockdown of either Beclinl or Atg7 enhances
secretion of IL-23 at the transcriptional level. In au-
tophagy-deficient cells, IL-23 secretion is directly
regulated by IL-1 signaling and is dependent on the
generation of ROS because ROS promoted activation
of the inflammasomes, and the secretion of IL-1 and
IL-1R1 is known to activate the NF-kB pathway, then
stimulate the production of IL-23 as well as TNF-«
[119]. The expression levels of IL-23 and IL-23R are
enlarged in Hashimoto’s thyroiditis disease, which
contributes to autophagy suppression and ROS accu-
mulation by inducing AKT/mTOR/NE-kB signaling
activation [149].
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The relationship between autophagy and tumor
immune tolerance

Immunotherapeutic strategies aimed at boosting antitu-
mor immunity are promising candidates for the treat-
ment of tumors. However, the clinical outcomes of these
immunotherapeutic strategies have been less effective
than anticipated. Immune tolerance to these tumors is
still a major impediment in cancer immunotherapy. As
immunologic tolerance molecules, Indoleamine 2,3 diox-
ygenase(IDO), CTLA-4 and PD-1 can regulate tumor
immune tolerance through autophagy pathways. There-
fore, understanding the relationship between autophagy
and tumor immune tolerance is important for develop-
ing tumor immunotherapy strategies.

IDO

IDO is produced by tumor cells, tumor-associated MDSCs
and TAMs. It is thought to potently suppress cytotoxic T
cell responses and inflammatory dendritic cell maturation,
magnify tolerogenic APCs, and promote the generation of
Tregs from naive CD4 + T cells, thereby inhibiting effect-
ive anti-tumor immunity, driving immunologic tolerance,
and promoting the development of tumor. Autophagy can
inhibit the inflammation-mediated expression IDO pro-
duction by suppressing inflammation [150-152]. General
control nonderepressible 2 (GCN2) can be triggered by
IDO-mediated tryptophan (Trp) deficiency, which is rec-
ognized as an important effector of the IDO pathway,
resulting in auto-phosphorylation and activation of kinase
activity that inhibits the translation initiation factor 2a
(eIF2a), blocking protein synthesis and arresting cell
growth. GCN2 is essential for inflammatory carcinogen-
esis [153]. When autophagy is induced by IDO or GCN2,
it protect organisms from fatal inflammation disease;
therefore, IDO1-GCN2-autophagy signals may be a com-
mon circuit induced in human inflammatory disease,
which could be potentially targeted for therapeutic benefit
[154]. Furthermore, IDO inhibits a tryptophan sufficiency
signal, resulting in the inhibition of mTOR, leading to au-
tophagy via LC3 production, and translational blockade
via s6K inactivation. Tryptophan and the experimental
agent 1-methyl-D-tryptophan (D-1MT, as a mimetic of
Trp) functionally reverse the effects of IDO on mTOR
and autophagy in the sufficiency pathway, but do not
affect GCN2 [153, 155].

PD-1

PD-1 acts as a T-cell inhibitory checkpoint molecule and
suppresses anti-tumor immunity by developing a T-cell
tolerance, inhibiting T cell proliferation, and hindering
the recognition of tumor cells via interaction with
PD-L1 on the surface of tumor cells. PD-L1/PD-1 en-
gagement can induce autophagy in nearby T-cells due to
the deprivation of nutrients [156]. Sigmal inhibitor has
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been identified to induce degradation of PD-L1 and sup-
press the functional interaction of PD-1 and PD-L1 in a
co-culture of T-cells and tumor cells via autophagy.
Therefore, we believe that Sigmal modulators can ameli-
orate the tumor immune microenvironment by acting
on PD-L1/PD-1 blockade [157]. Recent reports have
shown that blocking the PD-L1/PD-1 axis via anti-PD1
or anti-PD-L1 antibodies can trigger autophagy in tumor
cells and be an attractive tumor immunotherapy when
coupled with autophagy inhibitors [158]. Although clin-
ical trials focus on blocking the PD-L1/PD-1 conjuga-
tion, there also exist severe consequences in the absence
of PD1. For instance, Mycobacterium tuberculosis-in-
fected PD-1-/- mice exhibit dramatically lower antigen-
specific immune response. The numbers of T cells and B
cells are reduced due to the increased numbers of Tregs
and mesenchymal stem cells, and antigen-specific T cells
may be defective. Moreover, because of their inability to
proliferate, the capacity of these cells to consume cyto-
kines is reduced, which results in enhanced Thl, Th2,
and Th17 cytokines. In addition, Mycobacterium tuber-
culosis-infected PD-1-/- macrophages do not undergo
autophagy to sustain homeostasis, which is proven by
decreased autophagy-induced LC3f [159] (Fig. 6).

CTLA-4

As an immune tolerance checkpoint, CTLA-4 is an ef-
fective therapeutic target in tumor patients. It was con-
firmed that in human melanomas, the expression of the
key autophagosome component LC3-f and other autoph-
agy activators are available to suppress primary resistance
to CTLA-4 blockade through decreasing MAGE-A pro-
tein levels and blocking the MAGE-TRIM28 complex,
which indicates that autophagy induction can improve
anti-CTLA-4 curative effects [160]. Nevertheless, autoph-
agy activation by 4-week rapamycin or other mTORC1 in-
hibitors treatment restore the expression of CTLA-4 as
well as suppressor function and expands CD4 + CD25 +
FOXP3+ Tregs in SLE patients [161]. Importantly, CTLA4
engagement significantly enhances activation of the PI3K/
Akt/mTOR pathway and induces FoxO1 translocates to
the nucleus, which in turn inhibits autophagy by con-
straining the transcription of LC-3 and the formation of
autophagosomes [97].

In conclusion, IDO is thought to potently inhibit ef-
fective anti-tumor immunity, drive immunologic toler-
ance and promote the development of tumor. IDO
triggers autophagy by inhibiting a tryptophan sufficiency
signal, resulting in the inhibition of mTOR, and autoph-
agy can inhibit the inflammation-mediated expression
IDO production by suppressing inflammation. PD-1 acts
as a T-cell inhibitory checkpoint molecule and suppresses
anti-tumor immunity by developing a T-cell tolerance, inhi-
biting T cells proliferation, and hindering the recognition of
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Fig. 6 The relationship between autophagy and tumor immune
tolerance. IDO is thought to potently inhibit effective anti-tumor
immunity, drive immunologic tolerance and promote the development
of tumor by suppressing cytotoxic T cell responses and inflammatory
dendritic cell maturation, magnifying tolerogenic APCs and Tregs
generation. IDO triggers autophagy by inhibiting a tryptophan
sufficiency signal, resulting in the inhibition of mTOR, and autophagy
can inhibit the inflammation-mediated expression DO production by
suppressing inflammation. CTLA-4 is an effective therapeutic target in
tumor patients. Autophagy induction can improve anti-CTLA-4 curative
effects, autophagy activation can restore the expression of CTLA-4
as well as suppressor function, CTLA4 engagement inhibits autophagy
by constraining the transcription of LC-3f3 and the formation of
autophagosomes. PD-1 acts as a T-cell inhibitory checkpoint molecule
and suppresses anti-tumor immunity by developing a T-cell tolerance,
inhibiting T cells proliferation, and hindering the recognition of tumor
cells via interaction with PD-L1 on the surface of tumor cells, and
tumor cell-intrinsic PD-L1 can suppress autophagy by activating
mTORCI1 signaling and inhibiting mTORC2 signaling

tumor cells via interaction with PD-L1 on the surface of
tumor cells, and tumor cell-intrinsic PD-L1 can suppress
autophagy by activating mTORCI signaling and inhibiting
mTORC2 signaling. CTLA4, as an immune tolerance
checkpoint, its engagement significantly prohibits au-
tophagy by enhancing activation of the PI3K/Akt/
mTOR pathway and promoting the translocation of
FoxO1 from the nucleus, and autophagy activation can
enhance CTLA-4 expression and restore the suppressor
function. Therefore, autophagy is regulated by a series
of tumor immune tolerance molecules and it also plays
a key role in regulating tumor immune tolerance (Fig. 6).
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The applications of autophagy for tumor
immunotherapy

The immune system plays a dominant role in tumor
treatment by identifying and killing tumor cells during
different stages of tumor development. Accumulating
studies show that autophagy could up-regulate and
down-regulate the immune response by influencing cells
and the release of cytokines, which has provided targets
and enlightenment for tumor immunotherapy [44]. As a
new generation of anti-tumor therapeutics, tumor im-
munotherapy plays a predominant role in suppressing
tumor development and will continue to progress. So
far, antibody targeting therapy synergy with autophagy
has been frequently reported. For instance, in ovarian
cancer models, MORAB-003 (farletuzumab), a human-
ized monoclonal antibody against folate receptor alpha
(FRa), has displayed a notable anti-tumor effect through
antibody-dependent cellular cytotoxicity by sustaining
late-stage autophagy, and when protein and organelle
turnover overwhelm the capacity of the cell, which contrib-
utes to type II programmed cell death or autophagic death
[162, 163]. In addition, CD73 enzymes play a pivotal role in
generating an immunosuppressed and pro-angiogenic
niche to support tumor development. Pharmacological
blockade of CD73 with MEDI9447 (an Anti-CD73 Ab)
increases antigen presentation and autophagy, resulting
in enhanced lymphocyte activation and a greater release
of proinflammatory Th1 cytokines [164, 165].

Autophagy enhances the effects of immunotherapy

Recently, therapies aiming at autophagy to enhance the
immune responses and anti-tumor effects of immuno-
therapy have become the prospective strategies, with en-
hanced angtigen presentation and higher sensitivity to
CTLs [65]. Radiotherapy and chemotherapy might pro-
voke autophagy; therefore, combining immunotherapy
with radiotherapy or chemotherapy produces better treat-
ment effects. Radiation or chemotherapy-induced au-
tophagy has been reported to redistribute mannose-6-
phopsphate receptor (MPR) with its ligands to the
autophagosomes via clathrin-coated vesicles. Low pH in
autophagosomes leads to the release of the MPR cargo.
Empty MPRs are transported back to the tumor cell sur-
face. Receptors bind to granzyme B (GrzB, one such ligand
of MPR) produced by activated CTLs, which renders
tumor cells more susceptible to CTLs killing and potenti-
ates the effect of immunotherapy [166, 167]. In addition,
autophagy plays a role in antigen processing for MHCI
and MHCII presentation. The semisynthetic vitamin E de-
rivative alpha-tocopheryloxyacetic acid (a-TEA) can stimu-
late autophagy to strengthen MHCI cross-presentation of
tumor antigens to antigen-special CD8+ T cells, which is
viewed as an adjuvant strategy to improve immunotherapy
by reinforcing anti-tumor immune responses [62, 63]. In
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Fig. 7 The applications of autophagy for tumor immunotherapy. There is a complicated interaction between autophagy and immune system.

Autophagy can enhance immune response by ensuring the inhibitory action of CTL, B cell, Mg, NKT and DC on tumor cells and the release of

immunoreactive cytokines, like IL-1, IL-2, IL-6, IL-12, IL-23, TNF-a and IFN-y, resulting in enhanced anti-tumor immunotherapy effects and repressed

tumor development. In addition, autophagy can also reduce immune response by recruiting immunosuppressive Tregs and promoting IL-10 and TGF-
B3 production, contributing to attenuated anti-tumor immunotherapy effects and accelerated tumor development
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Table 1 The application of autophagy activators in tumor therapy

Autophagy Activators Tumor Types Autophagy-Modulating Mechanism Research Types

2-Methoxyestradiol Osteosarcoma Induce RNA-dependent protein kinase Preclinical
(PKR)-dependent autophagy [179]

Neferine Neuroblastoma Down-regulate focal adhesion kinase (FAK) Preclinical
and Beclin1-mediated autophagy [180]

Honokiol Prostate cancer Induce ROS-dependent autophagy [181] Preclinical

ADIPOQ/adiponectin Breast cancer Stimulate STK11/LKB1-AMPK-ULKT-mediated Preclinical
autophagy [182]

2-amino-nicotinonitrile Gastric tumors Activate EGFR-mediated RAS-RAF1-MAP2K- Preclinical

compound MAPK1/3 signaling pathway [183]

MIR506 Pancreatic cancer Mediate STAT3-BCL2-BECN1 signaling Preclinical
pathway [184]

Shikonin Liver cancer Promote the accumulation of reactive Preclinical
oxygen species and phospho-ERK [185]

Salidroside Colorectal cancer Suppress the PI3K/Akt/mTOR signaling Preclinical
pathways [186]

AZDB055 Head and neck squamous Blocking mTORC1T and mTORC2 activation Preclinical

cell carcinoma (HNSCC) and inducing JNK activity [187]
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Table 2 The application of autophagy inhibitors in tumor therapy
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Autophagy-Modulating Mechanism Research Types

Autophagy Inhibitors Tumor Types
Quercetin Cervical cancer
Chloroquine Bladder cancer
SB202190 Colorectal Cancer
Elaiophylin Ovarian cancer
Peiminine Glioblastoma
Uo126 Pancreatic Cancer

Inhibit LC-3 and beclin-1 activation [188] Preclinical
Prohibit lysosomal functions and Preclinical
autophagy [189]

Cause cell cycle arrest and autophagic Preclinical
cell death [190]

Block autophagic flux by attenuating Preclinical
lysosomal cathepsin activity [191]

Inhibit autophagy by inhibiting Preclinical
AMPK-ULKT pathways [192]

Induce apoptosis after autophagy Preclinical

inhibition [193]

atherosclerotic lesions, oxidized low-density lipoprotein
(OxLDL) induces the phosphorylation of spleen tyrosine
kinase (SYK), and activated SYK induces autophagy by en-
hancing ROS production and MAPK8/9 activity, which in
turn results in the release of BECN1 from a BECN1-BCL2
complex and autophagosome formation. Moreover, SYK
augments OxLDL-induced autophagy and MHCII expres-
sion in macrophages. The OxLDL-induced and SYK-
mediated autophagy facilitates surface expression of
MHCII and CD4+ T cells activation; thereby, SYK may en-
hance anti-tumor immunotherapy effects via a autophagy-
mediated adaptive immune responses [168]. In recent
studies, DCs-based vaccines have shown promising thera-
peutic effects in promoting tumor immunotherapy by
boosting antigen presentation. For example, lactosylated
N-Alkyl polyethylenimine coated superparamagnetic iron
oxide (SPIO) nanoparticles-induced autophagy can en-
hance the vaccine functions of DCs by inducing DCs mat-
uration [169]. Furthermore, Shikonin-induced autophagy
can directly contribute to damage-associated molecular
patterns (DAMPs) upregulation and DCs activation, DCs
vaccine preparations need the pretreatment of CQ, which
will enhance the anti-metastatic effect of shikonin [170].
Importantly, studies have found that DRibble-loaded DCs
efficiently induce cross-reactive and antigen-specific T
cells generation by enhancing DCs cross-presenting anti-
gens on up-regulating MHC-I expression, the formation
of DRibble is induced by short-lived proteins (SLiPs) and
depends on ubiquitinated proteins and the SQSTM1/p62,
both of which co-localize with LC3, and p62 is necessary
for the delivery of ubiquitinated proteins to autophago-
somes [171, 172]. Additionally, autophagy can also improve
the efficacy of DNA vaccines by synthetizing intracellular

vaccine-encoded tumor antigen [173]. SQSTM1/p62 is
related to autophagy and can be chosen as a novel can-
cer antigen. Researchers have observed anti-tumor and
anti-metastatic activity of p62-encoding DNA vaccines,
which is a promising strategy for tumor immunother-
apy [174].

Autophagy attenuates the effects of immunotherapy

However, it has been reported that hypoxia-induced au-
tophagy has attenuated the effects of immunotherapy by
impairing CTLs-mediated tumor cell lysis associated
with the hypoxia-dependent phosphorylation of STAT3
(pSTAT3). Activated STAT3 promotes tumor cell sur-
vival, proliferation, angiogenesis/metastasis and immune
escape. The first mechanism is that the HIF-la-
dependent intrinsic signaling pathway is activated, which
phosphorylates Src kinase in the Tyr416 residue (pSrc),
leading to STAT3 phosphorylation of the Tyr705 residue.
The second is that HIF-1a induces autophagy by upreg-
ulating BNIP3/BNIP3L expression and dissociating the
BECNI1-BCL2 complex, which results in degradation of
the SQSTM1/p62 protein that transfers pSTAT3 to the
UPS for accumulation in cells. When autophagy is
blocked, p62 is accumulated and in turn accelerates the
delivery of pSTATS3 to the UPS for selective degradation
[175, 176]. Hypoxia-induced autophagy also degrades
NK-derived GrzB and impairs NK-mediated killing, as
accumulated HIF-2a transfers to the nucleus and induces
the expression of the autophagy sensor ITPR1, leading to
the impairment of NK-mediated killing and decreased im-
munotherapy effects [156, 165]. Many studies indicate that
autophagy inhibition in tumors can be viewed as an ap-
proach to improve anti-tumor immunotherapies. HDIL-2

Table 3 The application of autophagy inhibitors in tumor immunotherapy

Autophagy Inhibitors Tumor Types

Autophagy-Modulating Mechanism

Research Types

Chloroquine Renal cell carcinoma

Improve HDIL-2-mediated anti-tumor Preclinical
immunity by enhancing DCs, T-cells and NK cells [177]
Significantly enhance IL-24-induced apoptosis [178] Preclinical

3-methyladenine (3-MA) Oral squamous cell Carcinomas
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Table 4 The translational application of autophagy inhibitors/ activators in tumor therapy

Drug Names Autophagy Combination Treatment Tumor Types Phase of
Inhibitors/Activators Clinical Trials

Hydroxychloroquine (HCQ) Inhibitor Docetaxel Metastatic Prostate Cancer Phase2

HCQ Inhibitor Gemcitabine and Docetaxel Recurrent or Refractory Phase2
Osteosarcoma

HCQ Inhibitor Dabrafenib and Trametinib Melanoma Phase2

HCQ Inhibitor Sirolimus or Vorinostat Advanced Cancer Phasel

HCQ Inhibitor Ixabepilone Breast Cancer Phase2

HCQ Inhibitor Mitoxantrone and Etoposid Relapsed Acute Myelogenous Phasel
Leukemia

cQ Inhibitor Radiotherapy with daily Glioblastoma (GBM) Phasel

temozolomide
aspirin (ASA) Activator Metformin (MET) Colorectal Cancer Phase2

* The data originated from: https://clinicaltrials.gov

alone has been found to be an efficient immunotherapy
method in an advanced murine metastatic liver tumor
model. IL-2 inhibits tumor growth by enhancing immune
cell proliferation and infiltration in the liver and spleen;
however, the anti-tumor effects of HDIL-2 immunother-
apy were significantly heightened when coupled with ad-
ministration of autophagy inhibitor CQ [132]. Similarly, in
renal cell carcinoma, CQ is also used to improve HDIL-
2-mediated anti-tumor immunity by enhancing DCs,
T-cells and NK cells and limiting ATP production through
inhibition of oxidative phosphorylation and promotion of
apoptosis [177]. Another selective PI3K inhibitor, 3-MA
acts on Vps34 and PI3Ky and significantly enhances IL-
24-induced apoptosis in oral squamous cellcarcinomas
(OSCC), which demonstrates the combination of autoph-
agy inhibitors and IL-24 is a promising approach for
tumor immunotherapy [178].

Conclusion

Autophagy is required for the maintenance of metabolic
and genetic homeostasis in eukaryotic organisms, which
is involved with various ATG protein complexes regu-
lated by several signaling pathways. Autophagy plays a
dual role in tumor cell growth, which is dependent on
the properties of the tumor and cell types. Therefore,
when and how autophagy can be pro-survival and pro-
death should be carefully interpreted in the future. In
the tumor microenvironment, autophagy is an important
regulator of immune responses by sustaining homeosta-
sis, activation, and biological functions of immune cells.
However, the autophagy-mediated regulation of the im-
mune system might strengthen or attenuate the effects
of immunotherapy (Fig. 7). Therefore, whether we should
try to enhance or inhibit autophagy in anti-tumor immuno-
therapy remains to be explored. Many studies have demon-
strated that the optimal combination of autophagy-based
inducer or inhibitor with various therapeutic strategies, in-
cluding chemotherapy, radiotherapy, immunotherapy, and

gene therapy may be a more efficient approach by eli-
citing tumor cell death. Furthermore, many findings
confirmed that both autophagy activators and inhibitors
are being preclinical studies and potential to cure vari-
ous tumors in the future (Tables 1 and 2). Nevertheless,
only a few autophagy inhibitive agents are being applied
to strengthen the anti-tumor effects of immunotherapy
in preclinical studies (Table 3). Even though, studies
about the application of autophagy inhibitors or en-
hancers alone in clinical treatment have not yet been
published, importantly, several clinical trials have been
shown that autophagy inhibitors hydroxychloroqui-
ne(HCQ) and CQ, autophagy activators aspirin (ASA)
combined with other antineoplastic drugs significantly
improve the therapeutic effect in tumors (Table 4). In
the future, efforts should be focused on how to regulate
autophagy to strengthen innate and adaptive immune
responses and overcome anti-tumor immune resistance
in immunotherapy for tumors.
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