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Abstract

pathways.

Cells respond to hypoxia by shifting cellular processes from general housekeeping functions to activating
specialized hypoxia-response pathways. Oxygen plays an important role in generating ATP to maintain a productive
rate of protein synthesis in normoxia. In hypoxia, the rate of the canonical protein synthesis pathway is significantly
slowed and impaired due to limited ATP availability, necessitating an alternative mechanism to mediate protein
synthesis and facilitate adaptation. Hypoxia adaptation is largely mediated by hypoxia-inducible factors (HIFs). While
HIFs are well known for their transcriptional functions, they also play imperative roles in translation to mediate
hypoxic protein synthesis. Such adaptations to hypoxia are often hyperactive in solid tumors, contributing to the
expression of cancer hallmarks, including treatment resistance. The current literature on protein synthesis in hypoxia
is reviewed here, inclusive of hypoxia-specific mRNA selection to translation termination. Current HIF targeting
therapies are also discussed as are the opportunities involved with targeting hypoxia specific protein synthesis
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Introduction

Hypoxia is vaguely defined as the decrease in oxygen
availability below normal tissue levels. Due to varying
oxygen tensions in different tissues, what constitutes low
oxygen conditions also varies [1, 2]. There are generally
two types of hypoxia: acute and chronic. Acute hypoxia
is a rapid and transient decrease in pO, that may be
caused by an obstruction of the airways, acute hemor-
rhaging or abrupt cardiorespiratory failure. If the stress
is not alleviated, acute hypoxia can cause damage to
those systems, contributing to the development of
chronic hypoxia. Chronic hypoxia occurs when oxygen
supply is limited for long periods of time. Chronic hyp-
oxia is seen in solid tumors, where oxygen consumption
outweighs oxygen influx [3]. Due to unstable homeosta-
sis in solid tumors, cells can quickly cycle between
normoxic and hypoxic states, adding another layer of
microenvironmental complexity in cancer [4].

A core characteristic of the tumor microenvironment,
hypoxia is present in all solid tumors and has been pro-
posed to also influence liquid cancers [3, 5-8]. Although
tumors are vascularized, rapid angiogenesis results in
the formation of an ineffective and leaky vascular
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network often containing dead ends [9]. While the exter-
ior cells of the tumor mass are more likely to receive
sufficient oxygen, the core of the tumor lacks oxygen
and generally displays areas of severe chronic hypoxia
[10]. Hypoxic regions are not limited to the tumor core,
and can occur throughout the mass even in close prox-
imity to what histologically appears to be a functional
blood vessel, suggesting that demand-to-supply imbal-
ance contributes to hypoxic microenvironments [10].

Hypoxic tumor cells can survive due to changes in
cellular processes partially mediated by the accumulation
and activity of hypoxia-inducible factors (HIFs). Data
support the hypothesis that chemotherapy and radiation
resistance seen in cancers are at least partially due to in-
creased HIF activity [11-14]. Hence, tumorigenesis may
be inhibited by blocking HIF activity in these hypoxic
cells, making HIFs an attractive target for treating some
cancers [15-19]. HIFs are well-known as transcription
factors. However, their role in mRNA-to-protein transla-
tion is also imperative to cell survival since the canonical
protein synthesis pathway is impaired in hypoxia.

As one of the most energy-consuming processes in the
cell, translation requires enormous amounts of ATP syn-
thesized in healthy cells [20]. Cells metabolize glucose to
generate ATP, a process that requires oxygen. Therefore,
low oxygen supply results in decreased rate of global
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mRNA-to-protein translation in the cell due to decreased
ATP availability. Because the canonical translation path-
ways require large amounts of ATP generated in the pres-
ence of oxygen, hypoxia limits this translation pathway,
thus necessitating an alternative translation pathway to
efficiently synthesize proteins in hypoxic environments
[21, 22]. HIFs are major regulators of the alternative
hypoxia-induced translation pathway activation.

Hypoxia-inducible factors

HIFs are a family of proteins that mediate cellular adap-
tation to hypoxia. Heterodimeric HIF transcription fac-
tors consist of HIFx and HIFP subunits. The HIFa
subunits are cytosolic, constitutively synthesized and
tightly regulated. The HIFB subunit (aryl hydrocarbon
receptor nuclear translocator (ARNT)), is a constitu-
tively active DNA binding protein that remains in the
nucleus.

The HIFa family of proteins is comprised of three sub-
types: HIFla, HIF2a and HIF3a. HIFla is ubiquitously
expressed at low, basal levels in all tissues in healthy
individuals in normoxia. HIFla expression increases
with transient, acute hypoxia exposure in most tissues
and decreases to basal levels after reaching its maximum
expression [23, 24]. HIF2a and HIF3« expressions are
more tissue specific. HIF2« is preferentially expressed in
organs that experience greater hypoxia, such as the
pancreas, liver and kidneys [25, 26]. HIF2a increases
expression with prolonged, chronic hypoxia exposure,
suggesting that HIF1la and HIF2a subtypes play different
roles in cellular adaptation to acute and chronic hypoxia
[23, 24]. HIF3u« is preferentially expressed in the heart,
lungs, cerebellum and eyes and has been found to inhibit
HIFla and HIF2a activity [27]. The role of HIF3« in
hypoxic physiology remains to be elucidated. HIFa ex-
pression increases with continuous exposure to hypoxia
and the duration of exposure to reach maximal HIF
expression depends on the tissue type [23].

Structurally, HIF1a and HIF2a are highly homologous,
containing the same motifs and domains. They both
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contain basic-helix-loop-helix (PHLH) and Per-Arnt-Sim
(PAS) domains, which are required for DNA-binding
and heterodimerization with ARNT in response to hyp-
oxia, respectively [28]. HIFla and HIF2a also contain
transcriptional activation domains at the N-terminus
(N-TAD) and the C-terminus (C-TAD) that are required
to activate transcription of hypoxia-inducible genes and
are subject to regulation by hydroxylation in normoxia
[17]. The most differences in structure of the two iso-
forms are within the N-TAD region. The N-TAD is
responsible for recognizing transcriptional target genes
and due to the differences found in the N-TAD between
HIFla and HIF2q, these proteins may target sets of
different genes [29]. These two subtypes also contain an
oxygen-dependent degradation domain (ODDD), required
for regulation by oxygen-dependent proteins that degrade
the HIFs in normoxia [30-32].

HIF3a is structurally similar to HIF1a and HIF2a as it
contains bHLH-PAS domains, ODD domains and
N-TAD, as seen in Fig. 1. Unlike HIFla and HIF2a,
however, HIF3a lacks the C-TAD, which plays a role in
HIF stabilization and transcription activation in HIFla
and HIF2a. The absence of C-TAD in HIF3a suggests a
secondary function independent of its transcriptional ac-
tivity [17, 33]. Also indicative of a secondary function,
HIF3a contains a unique leucine zipper domain, which
may facilitate DNA binding and protein-protein interac-
tions. HIF3« is subject to extensive alternative splicing
that yields at least six different splice variants that may
target different genes or have functions that are entirely
independent from transcription [34]. Some of these
splice variants, especially HIF304, negatively regulate the
transcriptional roles of HIF1a and HIF2a by direct bind-
ing [35]. Different splice variants of HIF1la that lack the
ODDD and TAD have also been found, although the
functions of these variants have yet to be elucidated [36].

Like the HIF«a subunits, the ARNT subunit contains
bHLH and PAS domains. However, it does not contain
the N-TAD region or the ODD domain, suggesting its
oxygen-independent expression. ARNT is a nuclear

HIF1la \ | bHLH ‘ ‘ PAS | oDDD ‘ N-TAD | | C-TAD ’ |

HIF2a \ ‘ bHLH } | PAS } oDDD | N-TAD | ’ C-TAD H

HIF3a \ | bHLH ‘ ‘ PAS | oDDD } N-TAD | | Leu-Zipper ||

ARNT \ | bHLH ‘ ‘ PAS | C-TAD | |
Fig. 1 Hypoxia-Inducible Factors structural schematic. bHLH: basic helix-loop-helix; PAS: Per-Arnt-Sim (period circadian protein, aryl hydrocarbon
receptor nuclear translocator protein, single-minded protein) domain; ODDD: oxygen-dependent degradation domain; N-TAD: N-terminus
transcriptional activation domain; C-TAD: C-terminus transcriptional activation domain; Leu-Zipper: leucine-zipper domain
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translocator involved in many different cellular processes
that aid protein translocation from the cytosol or the
nuclear membrane into the nucleus. Hence, ARNT is
ubiquitously and constitutively expressed. It is involved
in cancer progression, chemotherapy resistance, wound
healing and immune response pathophysiology [37-40].

HIFs are mostly known for their function as transcrip-
tion factors, altering the transcriptome to mediate cellu-
lar response to hypoxia. Generally, HIF transcriptional
target genes stimulate cell survival, metabolism, angio-
genesis, metastasis and pH regulation in adaptation to
low oxygen and increased intracellular acidity. Target
genes include EPO, VEGE GLUT-1, OCT4, CXCR4 and
LDH, among a plethora of others [41, 42]. Despite the
structural and sequence homology between HIFla and
HIF2q, these two proteins target distinct genes for tran-
scription, as well as some overlapping genes. The role of
HIF3a in transcription is not as well elucidated as its
counterparts. HIF3a appears to be a negative regulator
of gene expression in hypoxia by preventing HIFla me-
diated transcription activation [35, 43]. HIF3a reduces
HIF1 and HIF2a activity by competing for HIF1B sub-
unit binding [43]. HIF3a also activates transcription of
genes that are not targeted by HIF1a or HIF2q, such as
LC3C, REDDI and SQRDL [44].

HIF regulation

HIFla and HIF2a are well characterized in their roles as
transcription factors [41]. In hypoxia, HIFa subunits ac-
cumulate and translocate to the nucleus where it dimer-
izes with ARNT. The HIF/ARNT heterodimer recruits
p300/CBP, forming a complex that binds to the hypoxia
response elements (HRE) in promoter regions to activate
target gene transcription [17, 41]. To prevent increased
HIF activity in normoxia, HIFs are tightly regulated by
different pathways and enzymes. HIFs undergo proline
hydroxylation, ubiquitination, SUMOylation,
S-nitrosylation, asparagine hydroxylation and phosphor-
ylation to promote HIF degradation.

One of the major HIF regulatory proteins is HIF-prolyl
hydroxylase 2 (HIF-PH2) that belongs to the prolyl hy-
droxylase domain enzyme (PHD) family. PHDs are a
major oxygen-sensing protein family that, upon binding
to oxygen, hydroxylates different target protein to initi-
ate a cellular response. HIF-PHD hydroxylates HIFs at
proline residues (pro*** and pro®** in HIFla, pro*’> and
pro®*! in HIF2a, pro** in HIF3a) in the HIF ODDD
[45-48]. These modifications facilitate the recruitment
of von Hippel-Lindau ubiquitin ligase complex (pVHL-
E3 ligase complex) that ubiquitinates HIFa, promoting
proteasomal degradation [46].

HIFla is also subject to SUMOylation, which ultim-
ately stabilizes the protein and enhances its transcrip-
tional activity. HIF1a is SUMOylated at residues lys**®
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and lys*”” in the ODD domain and may modulate other

post-translational modifications, such as ubiquitination,
to increase stability and activity in vitro and in vivo [49, 50].
A SUMO moiety is transferred from the El-activating
enzyme to the E2-conjugation enzyme, particularly
Ubc9, which then carries the SUMO moiety to the
target protein [51]. SUMO E3-ligase enzymes then
mediate the final transfer of the SUMO from the
E2-conjugation enzymes to the HIFla lysine residues.
While the SUMOylation of HIFla increases its transcrip-
tional activity, HIF1p is also SUMOylated at lys**> which
decreases HIFla transcriptional activity [52]. While it is
generally accepted that SUMOylation in hypoxia leads to
HIFla stabilization and increased transcriptional activity,
there are studies that demonstrate increased HIF1a deg-
radation after SUMOylation, making the underlying biol-
ogy unclear [53]. SUMOylation also has an important role
in promoting HIF2a transcriptional activity. Hypoxia asso-
ciated factor (HAF), a HIF1a-E3 ligase, is SUMOylated
under hypoxic conditions and binds to the DNA upstream
of the HRE in the promoter region of HIF2« target genes.
This binding promotes HIF2a binding to the HRE, activat-
ing its transcriptional activity [54].

As hypoxic exposure progresses, nitric oxide (NO) levels
also increase, leading to HIFa S-nitrosylation. HIFla is
S-nitrosylated at cysteine residues cys®®® and cys®®.
S-nitrosylation at cys®*, which lies within the ODD
domain of HIF1a, increases the stability of the protein and
impairs degradation by blocking prolyl hydroxylation and
preventing ubiquitination. S-nitrosylation of residue cys*®
promotes HIFla binding to transcriptional co-factors,
such as p300 and CBDP, ultimately enhancing its transcrip-
tional activity [55-57].

Additionally, HIFa transcriptional activity is inhibited
in normoxia by an asparagine hydroxylase, factor-inhi-
biting hypoxia-inducible factor (FIH). FIH catalyzes
HIFa (asp®®®) hydroxylation in the C-TAD, the binding
sites of co-transactivators p300/CBP that promote tran-
scription of HIF target genes [58]. Hydroxylation of
C-TAD prevents p300/CBP co-activators from binding
to HIFs, ultimately blocking hypoxia-response element
promoter binding [59, 60]. Because HIF-PHD and FIH
use oxygen as co-substrates to hydroxylate HIFs,
hydroxylation cannot occur in hypoxia, causing HIF
stabilization and accumulation. HIFs can translocate to
the nucleus to initiate transcription or can remain in the
cytoplasm to initiate translation of hypoxia-responsive
proteins (Fig. 2) [3, 61]. Ineffective or faltered HIF regu-
lation by PHDs or FIH may lead to cancer [62-65].

HIFla is also regulated by cyclin-dependent kinase 2
(Cdk2) cell-cycle regulator protein. Cdk2 phosphorylates
ser®® of HIFla in normoxia, inhibiting proteasomal deg-
radation and activating lysosomal degradation [59]. Initiat-
ing lysosomal degradation as opposed to proteasomal
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Fig. 2 HIF regulation in normoxia and hypoxia. HIFa: hypoxia-inducible factor alpha; PHD: prolyl hydroxylase domain enzyme; FIH: factor
inhibiting HIF; Cdk2: Cyclin dependent kinase 2; O2: oxygen molecule; ARNT: aryl hydrocarbon receptor nuclear translocator; HRE: hypoxia
response element; p300: protein 300; CBP: CREB-binding protein; RBM4: RNA-binding motif protein 4; elF4E2: eukaryotic initiation factor 4E2; OH:
hydroxyl group; P: phosphate group; mRNA: messenger RNA; Ub: ubiquitin
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degradation ensures a secondary mechanism of HIF regu-
lation in normoxia. In hypoxia, Cdk2 is inhibited, allowing
HIFla to accumulate to initiate cellular responses. An-
other cell cycle regulator protein Cdkl also phosphory-
lates HIF1la ser®® to promote lysosomal degradation in
normoxia. In hypoxia, accumulated HIFla bind to and
sequester Cdkl, inhibiting the lysosomal degradation
pathway [59, 66].

In addition to these methods of HIFa regulation by
other proteins, non-coding RNAs also play an important
role in mediating cellular response to hypoxia. One of
the most well-elucidated non-coding RNAs in hypoxia
are micro-RNA-429 (miRNA-429) and micro-RNA-210
(miRNA-210), which has been shown to create a nega-
tive feedback look with HIFla [67, 68]. These two miR-
NAs have been shown to directly bind to the 3" UTR of
the HIFla gene, ultimately decreasing the expression of
HIFla. Interestingly, these miRNAs are also the target
genes of HIFla, creating a negative feedback look of
HIFla expression in hypoxia. HIFs are also regulated by
hypoxia-responsive long non-coding RNA (HRL) [69, 70].
HRLs have a variety of functions in hypoxic cancers as
they have been associated with increased tumorigenesis,
ionizing radiation therapy resistance and metastasis
[69-71]. HRLs are transcriptional targets of HIFs and
unlike miRNAs, HRLs create a positive feedback by sta-
bilizing HIFs by disrupting the HIF-VHL interaction,
thus resulting in HIF accumulation [72].

mRNA-to-protein translation and hypoxia
Hypoxia significantly alters general cellular processes
that maintain housekeeping functions. While transcrip-
tion and transcriptomic changes in hypoxia are relatively
well elucidated, that of translation is less well-known as
much of it remained a mystery until 2012. Uniacke et al.
discovered the mechanism of protein synthesis in hyp-
oxia that is directly mediated by HIF2a. This discovery
opened doors to further understanding the mechanisms
and regulations of translation in hypoxia.
mRNA-to-protein translation consists of three steps
driven by eukaryotic translation factors: initiation by
initiation factors (elFs), elongation by elongation factors
(eEFs) and termination by release factors (eRFs). Trans-
lation factors that promote each step are generally active
in normoxia though some are inactive in hypoxia. Cells
adapt to these hypoxia-induced changes by activating
alternative transcription pathways and protein synthesis
machinery to continue to synthesize proteins necessary
to promote cell survival in low energy and low oxygen
environments.

Hypoxia specific mRNA translation

Hypoxic protein synthesis is geared towards adaptation
that is initiated through mechanisms of mRNA selection
for translation. There are several proposed mechanisms
that contribute to mRNA selectivity in hypoxia:
upstream open-reading frame (UWORF)-mediated mRNA
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regulation, endoplasmic reticulum-mediated mRNA selec-
tion, IRES-dependent translation initiation and the pres-
ence of ribosomal hypoxia-response elements (rHRE) in
the mRNA recognized by the hypoxic translation machin-
ery [73-77].

uOREFs are short sequences that lie within the 5" UTR
region upstream of the protein coding sequence start
codon, also called the main open-reading frame (mORF).
The uOREF is an essential cis-acting translation regulatory
component that interacts with proteins that promote
mOREF translation or interacts directly with the ribosome,
ultimately preventing mORF translation [78, 79]. Some
40-50% of all human mRNA transcripts contain at least
one uORF that regulates mORF translation [78]. uORF
regulation can decrease protein expression by 30 to 80%
of its expression in normoxia [80]. In hypoxia, uORFs
regulate HIF-mediated gene expression changes by allow-
ing the scanning ribosome to bypass the uORF start
codon, uAUG, allowing for mAUG recognition and mORF
translation [81]. Translation of some mRNAs, such as
EPO, GADD34 and VEGE, rely on the presence of uORFs
to activate translation distinctly in hypoxia and not as
significantly in normoxia [77, 81-83].

Another mechanism that results in selective mRNA
translation in hypoxia is the partitioning and recruit-
ment of mRNAs to the endoplasmic reticulum (ER) [77].
Many mRNAs transcribed in hypoxia contain highly
conserved 5" and 3" UTR elements that promote mRNA
localization to the ER, where translation takes place [73,
74, 77]. Signal recognition particles (SRPs) recognize and
bind to sequences in the conserved untranslated region
(UTR) of mRNA to deliver it to the SRP-binding
proteins present in the ER membrane [84]. Genes that
localize to the ER in hypoxia for translation include
VEGE, HIFI and P4HA1 [77]. The localization of specific
mRNA, including HIF target genes, to the ER in response
to hypoxia further contributes to hypoxia-specific prote-
omic adaptations.

Selective hypoxia-responsive mRNA translation also
occurs by the direct binding of the ribosome to internal
ribosome entry sites (IRES). IRES are short sequences at
the mRNA 5'UTR that promote ribosome recruitment
without cap-binding translation initiation machinery
[85, 86]. IRES vary in sequence among different genes
and are also proposed to fold into secondary structures
that promote ribosomal recruitment and binding [87].
IRES are mainly found in viral mRNA though some
eukaryotic genes also harbor this sequence for selective
translation initiation in response to stress, including hyp-
oxia. Some genes known to utilize IRES-dependent trans-
lation in hypoxia include VEGF [88], human fibroblast
growth factors (FGF) [89], insulin-like growth factors
(IGFs) [90], elF4G [91], platelet-derived growth factors
(PDGF) [92] and proto-oncogene C-MYC [87, 93, 94].
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While IRES-mediated protein synthesis is active and may
partially explain the specificity of mRNA translated in
hypoxia, IRES-mediated protein synthesis accounts for
less than 1% of the level of cap-binding dependent
mRNA-to-protein translation in hypoxia, a prevalence
that is likely too low for cell survival [94]. Hence,
IRES-mediated mRNA-to-protein translation is not suffi-
cient to account for all translated proteins in hypoxia and
an alternate pathway must exist.

While these mechanisms of mRNA selection for trans-
lation do not change in hypoxia compared to normoxia,
genes containing uORFs or IRES regions in the mRNA
rely on hypoxia for translation initiation. They are
crucial to contributing to proteomic changes that medi-
ate cellular response to hypoxia by selecting mRNA for
translation initiation.

Translation initiation

In normoxia, mRNA-to-protein translation initiation is a
concerted process involving mRNA activation by
eukaryotic initiation factors (elFs) and pre-initiation
complex (PIC) recruitment. PIC consists of the 40S
small ribosome subunit and an initiation tRNA charged
with methionine (met-tRNA;) that recognizes the AUG
start codon in the mRNA. PIC formation is catalyzed by
elF1, elF1A, eIF2, eIF3 and elF5. elF1 and eIF1A are re-
sponsible for inducing an “open” conformational change
to the 40S ribosome subunit to prevent the met-tRNA;
from binding to the A-site and promote its binding to
the P-site [95]. elF2 is a GTPase that forms a ternary
complex with the met-tRNA; and GTP [96]. elF2 con-
sists of three subunits, elF2a, elF2p and elF2y [96].
elF2a contains a regulatory region in which ser®' phos-
phorylation regulates function. eIF2y binds to GTP and
hydrolyses the nucleotide to GDP. eIF2p mediates the
exchange of GDP for a new GTP, promoting ternary
complex formation and interacts with other initiation
factors and the mRNA. elF2 is active when elF2a is not
phosphorylated at ser®’, as is the case in normoxia. In
hypoxia, elF2a is phosphorylated by kinases such as
protein kinase R (PKR)-like endoplasmic reticulum
kinase (PERK) [96].

PERK is an endoplasmic reticular kinase that “moni-
tors” cell homeostasis by sensing ER stress and
stress-induced protein unfolding in the ER, initiating the
unfolded protein response (UPR) in cells. When acti-
vated, PERK ultimately inhibits global mRNA-to-protein
translation [97]. While inactive in normoxia, PERK is
hyperphosphorylated in hypoxia, which phosphorylates
elF2a. Phosphorylated elF2a inhibits elF2 GTPase func-
tion and prevents the ternary complex formation and
recruitment of met-tRNA,; to the 40S ribosome and 43S
PIC formation [96, 97]. PERK activation in the UPR
pathway promotes preferential translation of mRNA that
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encode stress-responsive factors to restore cellular
homeostasis [98]. This ultimately inhibits mRNA cap-
binding in mRNA-to-protein translation initiation, pro-
moting energy conservation and redirection of the
energy conserved in cells to increase expression of cell
survival genes. Interestingly, a rapid increase of elF2a
phosphorylation occurs in acute hypoxia but is reversed
in prolonged hypoxia exposures [99]. e[F2a may slowly
be de-phosphorylated and may become active in chronic
hypoxia to mediate long-term adaptation and survival in
hypoxia.

In parallel to PIC formation in normoxia, the mRNA
translation is activated by eIF4E binding. eIF4E is a pro-
tein in the eIlF4F complex that recognizes and binds to
the 7-methyl-guanine cap structure at the 5" end of the
mRNA [100]. The elF4F complex also consists of el[F4A
and elF4G proteins which remove mRNA secondary
structures to allow for more conducive PIC binding to
the 5’ end of the mRNA. eIF4G also binds to a poly-(A)
binding protein (PABP), which associates with the 3’
poly-adenylated mRNA tail end. This was initially
thought to cause the mRNA to fold into a loop structure
[101-103]. However, recent research show that few
mRNAs actually form this “closed-loop structure”; ra-
ther, mRNA bound to the elF4F complex and not PABP
form the loop structure, while mRNA bound to PABP,
which consist of most mRNAs, do not [104, 105]. Fur-
ther elucidation regarding the use of the “closed-loop
structure” of mRNA in translation will be necessary. The
elFAF complex recruits the pre-assembled PIC to the 5’
end of the mRNA, forming the 48S ribosome-mRNA
complex [106]. PIC scans the mRNA from the 5’ end to
the 3’ end until the met-tRNA; identifies and binds to
the AUG start codon. Met-tRNA; binding to the start
codon causes elF2 hydroxylation, which releases elF pro-
teins from the 48S complex and promotes the binding of
the 60S large ribosome subunit to initiate translation
elongation [107].

Cap-dependent translation initiation is regulated by
mammalian target of rapamycin (mTOR) [108, 109].
mTOR is a protein kinase that phosphorylates target
protein serine/threonine residues to ultimately promote
cellular growth, proliferation and survival [109]. One
mTOR complex 1 (mTORC1) target protein is the
mRNA-to-protein translation repressor 4E binding
protein (4E-BP), which sequesters eIF4E upon activation.
4E-BP phosphorylation by mTORC1 in normoxia allows
elF4E to bind to other initiation factors to begin protein
synthesis [108]. While the mTORC1 pathway may be
overactive in cancers, leading to dysregulated cell cycles
and proliferation, hypoxia inhibits mTOR activity via
REDD1 and AMPK activation [110, 111]. mTORC1
inhibition in hypoxia leads to the de-phosphorylation
and activation of 4E-BP to continually sequester elF4E
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[108, 109]. Hence, mTORC1 inactivation in hypoxia
inhibits eIF4E at the translation initiation step. This has
the effect of decreasing global mRNA-to-protein transla-
tion rate.

However, cells must continue to generate proteins that
promote survival and adaptation under hypoxic stress.
With the inhibition of mTORCI1-mediated canonical
translation mechanisms, cells activate alternative transla-
tion pathways that first begin with selective mRNA
recruitment and translation initiation.

To provide insight into this seeming paradox of active
mRNA-to-protein synthesis in hypoxia, Uniacke et al. dis-
covered that HIF2a not only functions as a transcription
factor in hypoxia, but also functions as a cap-dependent
translation initiation factor in the absence of oxygen
(Fig. 3) [22]. Hypoxia promotes the formation of a transla-
tion initiation complex that includes HIF2a, RNA-binding
protein RBM4 and eIF4E2 [22]. The complex is assembled
at the 3’'UTR of the mRNA by recognition of a hypoxia re-
sponse element (rHRE), identified as the sequence CG(G).
RBM4 is first recruited to the rHRE, followed by HIF2«a
and elF4E2, a homolog of elF4E. The RBM4/HIF2«/
elF4E2 complex on the 3’'UTR then interacts with the
mRNA 5'cap [22].The complex binds to other initiation
factors, namely e[F4A and elF4G3, forming the elF4F"
complex, which recruits ribosomes for translation [22,
112]. Cells appear to form the eIF4F" complex only for
hypoxic translation initiation; when RBM4, HIF2a or
elF4E2 are knocked down, the hypoxic cells are less viable.
However, when one of those factors are inhibited in nor-
moxic cells, no changes in global protein synthesis were
observed [22, 112]. The discovery that hypoxic cells utilize
a separate cap-dependent, oxygen-independent translation
initiation mechanism has implications for hypoxic-specific
cancer therapies.

Three different classes of mRNA appear in the hypoxia
framework: class I consists of genes that are downregu-
lated in hypoxia compared to normoxia; class II genes are
oxygen-independently expressed genes and are not af-
fected by hypoxia; and class III consists of genes that are
upregulated in hypoxia [75]. Class III genes may be prefer-
entially expressed in hypoxia due to the presence of the
rHRE region in the mRNA that recruits the el[F4F" com-
plex to initiate cap-dependent translation [75]. Because
only select gene mRNA transcripts contain the rHRE
element, its role in recruiting the eIF4F" complex to initi-
ate translation significantly contributes to the specificity of
protein expression in hypoxia. e[F4F" complex may medi-
ate a major pathway for hypoxic protein synthesis pathway
analogous to the normoxic eIF4F complex.

Translation elongation
In normoxia, protein elongation is mediated by eukaryotic
elongation factors (EFs). To begin the elongation step of
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response element

mRNA-to-protein translation, eEF1A, a GTPase, binds to
a GTP and an amino acid-bound tRNA (charged tRNA).
This complex moves into the “A” site of the ribosome
while the “P” site is occupied by the met-tRNA; from the
translation initiation step. If the charged tRNA anticodon
in the “A” site matches the codon on the mRNA, eEF1A
hydrolyzes the GTP and departs the complex, allowing
the peptide bond to form between the charged tRNA in
the “P” site and the incoming amino acid-tRNA in the “A”
site. Upon peptide bond formation, the tRNA in the “A”
site with the growing peptide bond will move to the “P”
site. This movement is mediated by another elongation

factor eEF2, a GTPase that translocate the tRNA from the
“A” site to the subsequent position in the ribosome upon
GTP hydrolysis. When the tRNA is in the correct “P” site,
eEF?2 releases from the “A” site of the ribosome, leaving it
vacant for the next tRNA to match the following codon
on the mRNA. In this process, eEF2 appears to be the only
protein differentially regulated in hypoxia.

The rate of mRNA-to-protein translation elongation is
regulated by eEF2 kinase (eEF2K). eEF2K is a unique
calcium/calmodulin-binding kinase that regulates eEF2.
eEF2K, when activated, phosphorylates and inhibits eEF2
activity thus inhibiting protein elongation when the cell
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is under stress [113]. The decreased rate of translation
elongation may be imperative for cell survival since it
allows cells to conserve energy and redirect the limited
energy. In hypoxia, eEF2K is activated and phosphorylates
eEF2, decreasing protein elongation rates [113, 114].

eEF2K activity is regulated by the binding of calcium/
calmodulin complex and by proline hydroxylation.
Under cell stress, the interaction between eEF2K and
calcium/calmodulin facilitates eEF2K(thr>*®) autophos-
phorylation. The activated eEF2K then phosphorylates
eEF2(thr*®), inactivating the elongation factor and inhi-
biting translation elongation. It was initially believed that
mTORC1 was the sole regulator of eEF2K in hypoxia
that resulted in translation elongation downregulation
[114]. However, eEF2K is also regulated by prolyl
hydroxylation by prolyl hydroxylase 2 (PH2), a member
of the PHD enzyme family [113]. In normoxia, PH2 uses
oxygen as a co-substrate to hydroxylate eEF2K(pro”®),
preventing protein activation. This allows for eEF2 to re-
main unphosphorylated allowing translation elongation.
In hypoxia, however, PH2 activity in eEF2K regulation is
impaired due to the lack of oxygen co-substrate, allow-
ing eEF2K to bind to calcium/calmodulin and leading to
eEF2 phosphorylation and inactivation, decreasing the
rate of global protein synthesis [113, 115-119].

It is well established that global mRNA-to-protein
translation elongation rates are significantly decreased
due to eEF2 inhibition by eEF2K activation in hypoxia
[22]. However, the mechanism in which translation
elongation occurs in hypoxia despite eEF2 inhibition re-
mains unknown. It will be interesting to find out how
hypoxic cells accomplish translation elongation when
the mechanism is eventually discovered.

Translation termination

mRNA-to-protein translation is terminated by release
factors 1 and 3 (eRF1 and eRF3). eRF1 is a structural
homolog of tRNAs, consisting of a codon binding site
that recognizes the three stop codons: UAA, UGA and
UAG. At the end of translation elongation, the ribosome
shifts down the mRNA to the stop codon. An incoming
eRF1 enters the A site and binds to the stop codon,
promoting the recruitment of eRF3, a GTPase that
binds to eRF1. eRF3 then hydrolyzes the end of the
polypeptide chain protruding from the P site. This
hydrolysis releases the newly synthesized protein from
the ribosome and allows dissociation of the ribosome
and mRNA complex [120].

The rate of translation termination is controlled by
posttranslational modifications of eRF1. eRF1 contains a
highly conserved Asparagine-Isoleucine-Lysine-Serine
(NIKS) sequence at the N-terminus that is hydroxylated
by an oxygenase Jumonji domain-containing 4 (Jmjd4)
[121, 122]. eRF1 hydroxylation is required for optimal
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translation termination rates in normoxia. In hypoxia,
eRF1 hydroxylation is decreased, inhibiting stop codon
recognition by eRF1 and promoting more incidents of
readthrough [121, 123]. Ribosomal readthrough has been
observed in response to oxygen and glucose deprivation,
resulting in the translation of target protein isoforms
[124]. While the functions of these protein isoforms
translated in hypoxia are largely unknown, subunits or
domains that contribute to hypoxic protein regulation
and activation may exist in the additional protein
sequence that confer differential regulation in hypoxia.

HIF inhibitors as potential therapeutics

Modulating HIF activity is an area of interest in many
different diseases including anemia, ischemia and cancer.
In treating anemia and ischemia, increased HIF activity
is favorable and patients are administered PHD inhibi-
tors or HIF stabilizers, such as vadadustat, to increase
HIF expression [125, 126]. Vadadustat is an investiga-
tional drug in Phase III trials to treat anemia. It that
works by increasing HIF activity and consequently in-
creasing erythropoietin and red blood cell production
[127]. While HIFs play an integral role in cell survival
under hypoxic stress, their dysregulation may result in
cancer development and progression. In healthy cells,
HIFla expression is generally higher than HIF2a expres-
sion, except for in the pancreas, liver and kidneys.
However, this relatively conserved HIFla-to-HIF2a ex-
pression ratio is significantly higher or lower in many
malignant solid tumors that express either more HIFla
or HIF2a than in normoxia. This imbalance is indicative
of poor prognosis in patients [25, 26]. Targeting HIFs in
cancers has been a growing area of interest that has
entered the realm of clinical trials in the past decade,
with some therapies showing potential, but none having
yet received regulatory approval.

One major HIFla-targeting small molecule inhibitor,
PX-478, has demonstrated potent antitumorigenic ef-
fects [128]. It was found to significantly decrease HIFla
mRNA and protein levels by blocking its transcription
and translation [128]. Furthermore, PX-478 treated cells
have decreased rates of HIF1a de-ubiquitination, resulting
in higher HIFla degradation [128]. HIFla target gene
expression also decreased. In another study, PX-478
re-sensitized prostate carcinoma cells to radiation therapy
[129]. PX-478 has undergone Phase I clinical trials for the
treatment of advanced solid tumors or lymphomas and
considering the positive results, the drug remains of inter-
est for further evaluation as a cancer therapeutic [130].

Hypoxia-activated prodrugs are currently in develop-
ment for clinical use. The benefit of hypoxia-activated
prodrugs is the selectivity in targeting hypoxic cancer
cells. One such prodrug is Evofosfamide (TH-302) has
been proven to be especially effective in targeting cancer
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cells. Evofosfamide is a 2-nitroimidazole prodrug that
undergoes a single electron reduction, resulting in a rad-
ical anion prodrug that immediately reacts with oxygen
present in the environment [131]. This reaction reverts
the anion prodrug back to the original state of Evofosfa-
mide. In hypoxia, there is no oxygen molecules to interact
with the anion prodrug, resulting in the fragmentation of
the anion prodrug that results in the active alkylating cyto-
toxic agent [131]. This agent crosslinks DNA thus inhibit-
ing replication. Due to the highly selective and potent
effect of this drug on hypoxic cells, it has been used in
Phase II clinical trials in combination with Bortezomib, a
standard chemotherapeutic, in targeting hypoxic cancers
in patients with relapsed myeloma [132]. The results show
that the treatment combination was well tolerated in
patients with modest efficacy [132].

While prodrugs may seem promising, the use of small
molecules to target hypoxic cancer cells nevertheless ap-
pears to be effective. For example, the use of topotecan
and other topoisomerase I inhibitors have been used to
treat cancers in the clinic. The effect that topotecan has
on hypoxia has been studied in clinical trials [133]. In
2011, the inhibitory effects of topotecan on HIFla activ-
ity were evaluated in 22 patients [133]. Topotecan in-
hibits HIF1a by a mechanism independent of its role in
DNA replication [133-135]. However, results showed no
exclusive correlation between HIF target gene expression
and topotecan treatment in patient cancer cells. While
HIF expression and activity decreased in patients treated
with topotecan, the expression of the HIF target gene
VEGF was unchanged [133]. The results of this study
did not suggest topotecan as a HIF-targeting cancer
therapeutic due to its short plasma half-life of ~ 3 h, lack
of HIF specificity and high toxicity [133, 136].

In 2016, the idea of using a nanoparticle conjugate
CRLX101 with the administration of an anti-angiogenesis
antibody bevacizumab to target hypoxic cancer cells was
explored in a Phase I clinical trial [137]. The CRLX101
nanoparticle-drug conjugate is infused with a topotecan
analog camptothecin, another topoisomerase I inhibitor.
Camptothecin decreases HIF protein transcription, effect-
ively decreasing its activity in hypoxic cells [137]. The
reasons for using nanoparticle-drug conjugate to deliver
camptothecin is two-fold. First, nanoparticles appear to
preferentially aggregate into tumor cells, allowing for in-
creased specificity in targeting cancer cells [137]. Second,
the nanoparticle conjugate allows for a slow release of the
infused camptothecin, significantly increasing the half-life
of the drug [137]. Camptothecin also displays less toxicity
compared to topotecan and is better tolerated by patients.
The nanoparticle-drug conjugate CRLX101 is currently in
several preclinical studies and Phase I and Phase II clinical
trials for the treatment of gastroesophageal cancer, ad-
vanced renal cell carcinoma and breast cancer [138—141].
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The effect that camptothecin has on hypoxic protein
synthesis has not yet been studied.

There are also compounds that specifically target
HIF2a activity, such as PT2385 and PT2399. PT2385
and PT2399 are both small-molecule antagonists that
block the dimerization of HIF2a with ARNT by directly
binding to the PAS domain of HIF2a, inhibiting the
transcription of HIF2« target genes [142, 143]. The role
of these small molecule inhibitors on HIF2a-mediated
translation remain unreported. When tumor xenografts
were treated with PT2385 in mice, HIF2a target gene
expression significantly decreased in vitro and in vivo
and HIF2a mRNA and protein expression levels also
decreased in vivo. As a result, PT2385 treated tumor xe-
nografts showed tumor regression, reduced angiogenesis,
lower rates of cell proliferation and increased apoptosis.
Based on the promising in vitro and in vivo studies,
PT2385 was the first HIF2«a antagonist to enter clinical
trials and is currently in Phase II. While HIF2«a tran-
scriptional activity and expression levels is inhibited by
PT2385, the effect of the drug on HIF2a translational
role in hypoxia remains to be studied.

Another method of targeting hypoxic cancer cells is by
inhibiting eIF4E2 activity. eIF4E2 is active only in hyp-
oxia and complexes with HIF2a/RBM4 to initiate the
first step of hypoxic translation [112]. By inhibiting
elF4E2, and consequently inhibiting hypoxic protein syn-
thesis, cancer cells can be distinctively targeted from
healthy cells by inhibiting the hypoxic protein synthesis
pathway. Evidence suggests that eI[F4E2 suppression sig-
nificantly slows or even reverses cancer growth [112].
While an eIF4E2 targeting drug has immense potential
as a cancer therapy, there has been difficulty finding a
compound that can distinctively target eIF4E2 over
elF4E. There are currently therapies targeting elF4E,
such as the use of antisense oligonucleotides and small
molecule inhibitors that block eIF4E complexing with
elF4G [144-146]. However, because these targeting
methods cannot effectively distinguish eIF4E2 from
elF4E, healthy cells that utilize the cap-dependent trans-
lation initiation will also become the target of these ther-
apies. Therefore, there is still a need to identify a cancer
therapy that specifically targets eIF4E2 to inhibit protein
synthesis in hypoxic cancer cells.

Targeting HIFs specifically in cancer cells may present
an insurmountable challenge. Although a major hall-
mark in cancers, HIFs also have important roles in
normal physiology and function of different tissues, such
as normal kidney and liver which utilize hypoxia and the
activation of HIF pathways to maintain homeostasis.
Targeting HIFs, therefore, may inevitably lead to intoler-
ably severe side effects. Furthermore, many HIF inhibi-
tors target both HIF1a and HIF2a or are mechanistically
aimed at inhibiting HIF transcriptional activity [22].
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Developing a HIF2a-mediated translation specific inhibi-
tor holds some potential to differentiate from currently
available inhibitors. However, the lack of useful com-
pounds targeting HIF2a-mediated translation makes it
difficult to answers these questions.

Summary

Cell stress initiated by a hypoxic environment necessitates
intricate orchestration and reorganization of cellular
homeostasis in order to adapt and survive such a harsh
insult. While it is well known that the transcriptional land-
scape of the cell is changed, it is becoming clearer that
hypoxic protein synthesis is also fine-tuned by oxygen-
dependent proteins, such as HIFs and PHDs. Targeting
hypoxic translational activity holds significant potential
for the treatment of cancer, perhaps even more than tar-
geting transcriptional activity due to the unique machinery
cells use in protein synthesis for hypoxia adaptation.
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