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Abstract

Autophagy is a highly conserved catabolic process that mediates degradation of pernicious or dysfunctional cellular
components, such as invasive pathogens, senescent proteins, and organelles. It can promote or suppress tumor
development, so it is a “double-edged sword” in tumors that depends on the cell and tissue types and the stages
of tumor. The epithelial-mesenchymal transition (EMT) is a complex biological trans-differentiation process that
allows epithelial cells to transiently obtain mesenchymal features, including motility and metastatic potential. EMT is
considered as an important contributor to the invasion and metastasis of cancers. Thus, clarifying the crosstalk
between autophagy and EMT will provide novel targets for cancer therapy. It was reported that EMT-related signal
pathways have an impact on autophagy; conversely, autophagy activation can suppress or strengthen EMT by
regulating various signaling pathways. On one hand, autophagy activation provides energy and basic nutrients for
EMT during metastatic spreading, which assists cells to survive in stressful environmental and intracellular
conditions. On the other hand, autophagy, acting as a cancer-suppressive function, is inclined to hinder metastasis
by selectively down-regulating critical transcription factors of EMT in the early phases. Therefore, the inhibition of
EMT by autophagy inhibitors or activators might be a novel strategy that provides thought and enlightenment for
the treatment of cancer. In this article, we discuss in detail the role of autophagy and EMT in the development of
cancers, the regulatory mechanisms between autophagy and EMT, the effects of autophagy inhibition or activation
on EMT, and the potential applications in anticancer therapy.
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Background

Autophagy can be stimulated by intracellular or environ-
mental stresses, including nutrient deprivation, hypoxia,
and damaged organelles. Generally, the complete macro-
autophagic process is divided into the following stages:
induction, vesicle nucleation, vesicle elongation, docking
and fusion, degradation, and recycling. The degraded
and recycled metabolites can provide energy supplies
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and basic nutrients for cells growth [1]. Recent observa-
tions have shown that autophagy can suppress cancer
development by eliminating potentially harmful compo-
nents and mutant DNA and chromosomes or can pro-
mote cancer development by overcoming the stressful
conditions and producing nutrients and adenosine
triphosphate (ATP) to maintain protein synthesis and
other metabolic functions, which depends on the cell/
tissue types and the stages of cancer [2]. Thus, the
effects of autophagy on anticancer treatment remain to
be investigated in depth.

It is well-known that the epithelial-mesenchymal tran-
sition (EMT) is considered to be a major driver of can-
cer exacerbation from initiation to metastasis and plays
a key part in the induction of cancer progression, metas-
tasis, and drug resistance [3, 4]. The process of EMT
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contains adhesion junctions and loss of substrate polar-
ity; acquisition of mesenchymal characteristics, such as
spindle-shaped cell morphology and reorganization of
actin stress fibers; enhancement of movement; and inva-
sion and resistance to apoptosis [5].

As is well known, autophagy and EMT are major bio-
logical processes in the occurrence and development of
cancer, and there is a complex relationship between
autophagy-correlated and EMT-correlated signaling
pathways. In previous studies, it has been found that
EMT-related signaling pathways can trigger or repress
autophagy. Significantly, autophagy is also involved in
the induction and inhibition of EMT. On the one hand,
EMT requires autophagy to support the viability of
potentially metastasis of cancer cells. It has been indi-
cated that an EMT-like phenotype corresponds to a
higher autophagy flux, and the combination of an au-
tophagy inhibitor (chloroquine) with the current thera-
peutic regimen could be more beneficial alongside the
repressed EMT in renal cell carcinoma (RCC) [6]. On
the other hand, a growing body of additional evidence
indicates that autophagy acts to prevent EMT, and the
activation of the autophagy may abate the acquisition of
the EMT phenotype in cancer cells. It has been shown
that induction of autophagy by nutrient deprivation or
mechanistic target of rapamycin (mTOR) pathway inhib-
ition leads to reduced migration and invasion in glio-
blastoma cells. Autophagy impairment determined by
silencing of autophagy-related genes 5 (ATG5), ATG7,
or Beclin-1 results in an increment of cell motility and
invasiveness with the up-regulation of SNAIL and
SLUG, two of the major transcription factors of the
EMT process [7]. Because of the dual effects of autoph-
agy on EMT, inhibiting EMT by targeting autophagy
might be a novel strategy for anticancer therapy.

Some studies have demonstrated the effect of preclin-
ical application of autophagy inhibitors or activators on
anticancer treatment by regulating EMT. Collectively, in
this review, we discuss in detail the role of autophagy
and EMT in the development of cancers, the regulatory
mechanisms between autophagy and EMT, the effects of
autophagy inhibition or activation on EMT, and the
potential applications in anticancer therapy.

The role of autophagy and EMT in the
development of cancer

Autophagy is viewed as type II programmed cell death,
namely, autophagic cell death, stimulated by cellular or en-
vironmental stresses in order to clear senescent organelles,
protein aggregates, and intracellular pathogens through the
formation of autophagosomes, subsequently targeting to
lysosomal digestion, which maintains a steady state for cell
survival by engulfing the metabolic waste, inhibiting the
production of reactive oxygen species (ROS), eliminating
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damaged mitochondria and peroxisomes, and reducing
DNA damage and chromosomal instability.

The macroautophagic process is triggered by the forma-
tion of the Atgl/ULK complex when the induction signals
suppress mammalian target of rapamycin complex 1
(mTORC1). Then, the ULK complex binding to the phos-
phatidylinositol ~ 3-kinase (PI3K) complex (Beclinl—
hVps34—PI3K) establishes a putative mammalian preauto-
phagosomal structure, probably together with vacuole
membrane protein 1 (VMP1) and Atg9, where PI3K
locally generates PI3P. Next, phagophore elongation bases
on the Atg5-Atgl2 and the microtubule-associated light
chain 3 (MAP-LC3/Atg8/LC3) conjugation systems.
Phagophore progressively engulfs a portion of the cyto-
plasm to form the double-membrane autophagosome
after elongation and fusion. Finally, the fusion of an autop-
hagosome with a lysosome triggers the formation of an
autolysosome and degradation of the loads, and the recy-
cles are released back into the cytosol for reuse [8, 9].

Normally, autophagy can prevent cancer initiation by
removing intracellular mutants, damaged mitochondria,
infectious pathogens, and misfolded proteins and inhi-
biting inflammation. However, during the advanced
stages of cancer, autophagy promotes cancer develop-
ment by producing nutrient substances and releasing
ATP, which is beneficial for boosting a variety of bio-
logical metabolisms and satisfies the high demand for
cancer cell proliferation, invasion, and metastasis [10].
Therefore, autophagy might exact the opposite effects
on anticancer treatment in different tissue or develop-
ment stages of cancer [11].

It was reported that autophagy not only can decrease
the apoptosis of isolated cancer cells but also can inhibit
the apoptosis of cancer cells in vivo during metastasis by
regulating the cancer microenvironment, which indicates
that autophagy plays an important role in promoting
cancer metastasis, and the inhibition of autophagy might
be an effective treatment strategy for malignant cancer
[12]. According to current research, autophagy inhib-
ition has been applied to a variety of cancer therapies,
such as glioma, myeloma, breast cancer, rectal cancer,
and prostate cancer [6]. As a “double-edged sword” in
cancer, the regulatory mechanism of autophagy in cancer
is complicated, but the observations about specific mo-
lecular markers of autophagy have attracted great atten-
tion in terms of current anticancer treatment. The
choice of autophagy inhibitors and agonists during treat-
ment deserves to be explored more deeply.

EMT is a dynamic multistep process that involves the
loss of intercellular adhesion, the destruction of the can-
cer basement membrane and extracellular matrix, the
reconstruction of the cytoskeleton, and the enhancement
of cell motility [13, 14], which increased the difficulty of
cancer treatment in clinical. There are three types of
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EMT that are based on the specific biological environ-
ment. Type 1 EMT is mainly related to embryo implant-
ation, development, and organogenesis. Type 2 EMT is
mainly associated with injury repair, tissue regeneration,
and organ fibrosis. Type 3 EMT refers to phenotypic trans-
formation associated with epithelial cell malignancy, which
facilitates metastatic cancer cells to maintain a certain epi-
thelial character while obtaining a mesenchymal pheno-
type, so EMT involving cancer metastasis refers to type 3.

EMT implies a complete transdifferentiation from a
functional epithelial cell into a mesenchymal-like cell,
which occurs along with the inhibition of senescence
and anoikis as well as acquisition of immunosuppression
and cancer stem cell (CSC)-like features, resistance to
anticancer drugs, and apoptosis. These processes involve
multiple signal transduction pathways and complicated
molecular mechanisms [3]. Naturally, EMT is regulated
by exosomes, extracellular matrix, oxygen deficit, and
soluble factors such as hepatocyte growth factor, fibro-
blast growth factor (FGF), and members of transforming
growth factor  (TGF-B) [15]. E-cadherin is essential for
calcium-dependent cell-cell adhesion and signal trans-
duction; its decrease or loss acts as a crucial role in
EMT induction by promoting cell invasive movement
and diffusion [16]. In addition, E-cadherin dysfunction is
reflected by gene mutation, which will result in abnor-
mal protein synthesis and hydrolysis.

During the EMT process, Zinc-finger E-box binding
homeobox 1 (ZEB1) and SNAIL are regarded as the
main EMT transcription factors to initialize and main-
tain the EMT process. ZEB1 is one of the most critical
EMT conversion molecules, as a zinc finger structure of
the DNA binding protein, which can prohibit E-cad gene
expression by binding to E-cad promoter site. Further-
more, ZEB1 expression in human bronchial epithelial
cells directly repressed epithelial splicing regulatory pro-
tein 1 (ESRP1), leading to increased expression of a mes-
enchymal splice variant of CD44 and increment of EMT
in lung cancer [17]. SNAIL is regulated by various
signals from the cancer microenvironment, is a promin-
ent inducer of EMT, strongly repressing E-cadherin
expression [18]. Mechanistically, in cholangiocarcinoma,
atypical protein kinase C-iota (aPKC-1) directly phos-
phorylates specificity protein 1 (Spl) to up-regulate
P-Spl that increased SNAIL expression by promoting
Spl binding to the SNAIL promoter, resulting in EMT
changes and immunosuppression [19].

It has been confirmed that EMT is a crucial step in the
migration of cancer cells, which is controlled by different
signaling transduction pathways and networks, such as
autocrine IL11/IL6-gp130/JAK2/STAT, fibronectin-integrin,
GAS6-Ax1/Tyro3, PDGFR/FGFR/RET, and TGF-B R net-
works [20]. The current therapy strategies and drug devel-
opment can focus on targeting these signal transduction
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pathways. However, there is a biological phenomenon of
cancer cell dormancy when cancer enters into the stage of
aggressive metastasis, which facilitates target cells to escape
chemotherapy and radiotherapy, eventually leading to low
survival rate and high cancer recurrence. Therefore, to find
the best treatment period, further understanding the
specific regulation mechanism between EMT and cancer
metastasis is urgently needed.

Crosstalk between autophagy and EMT

Autophagy is mainly controlled by PI3K/AKT/mTOR,
Beclin-1, p53, and JAK/STAT signaling pathways. These
autophagy-related regulatory pathways have a dramatic
impact on EMT. In the process of EMT, there are
several signaling pathways, including integrin, WNTs,
NF-kB, and TGF-p signaling pathways, that play a cru-
cial role in autophagy. Furthermore, increasing observa-
tions have indicated that the functional interaction
between cytoskeleton and mitochondria is also the
crucial regulatory mechanism in the process of autoph-
agy and EMT.

The PI3K/AKT/mTOR signaling pathway

mTOR is a serine-threonine kinase that controls several
important aspects of mammalian cell function. Changes
in mTOR activity have a dramatic impact on rates of
translation, transcription, protein degradation, cytoskel-
eton dynamics, cell metabolism, and autophagy [21].
However, the upstream and downstream signal transduc-
tion pathways of mTOR are accurately complicated. The
predominant upstream pathway is PI3K/AKT/mTOR
that is significantly regulated by LKB1/adenosine mono-
phosphate—activated protein kinase (AMPK) and Ras
signaling pathways [22-24]. There are two main mTOR
downstream signaling pathways. First, when mTOR is
activated by various stresses, phosphorylated ribosomal
protein S6 (P70S6) will promote mRNA translation,
adhesion of ribosomes, and endoplasmic reticulum, inhi-
biting the delivery of endoplasmic reticulum and the for-
mation of autophagic membrane [25]. Second, mTOR
activity also inhibits the activity of eukaryotic initiation
factor 4E (elF4E)-binding proteins (4E-BPs) by phos-
phorylating 4E-BPs and releasing eIF4E [26]. Signifi-
cantly, autophagy activation by inhibiting the mTOR
pathway attenuates migration and invasion of gallbladder
cancer via EMT inhibition [27]. For example, metformin
can suppress the proliferation, migration, and EMT by
inhibiting mTOR signaling and stimulating autophagy in
thyroid cancer cell lines [28]. Likewise, water stress
proteins (WSP1)-induced autophagy through down-
regulating PI3K/AKT/mTOR pathway could degrade p
catenin and inhibit EMT through increasing E-cadherin
and decreasing N-cadherin, which inhibits cancer migra-
tion [29] (Fig. 1).



Chen et al. Molecular Cancer (2019) 18:101

Page 4 of 19

GSK-38 Growth factor I

B-catenin
y

LKB1/AM PKImTOIﬂ

Smad2/3 I.

TGF-B,NF-kB '

Pl3KIAKTImTOR|

WNT/B-catenin J Snial, Slug, ILK

/mJ

Rac/MEK/ERK Rac1IMKK7IJNKJ

\ l

Snail l ATGS, ATG7J

BNIPIBecIin1J

EMT

1 J

which results in autophagy activation and EMT enhancement

Fig. 1 mTOR signaling pathway regulated autophagy and EMT. PI3K activation is induced by interaction with a growth factor receptor, direct
binding to Ras, also induced by NF-kB and TGF-{3 activation. Activation of the PI3K/AKT signaling pathway blocks autophagy by prohibiting
mTOR. The PI3K/Akt pathway positively regulates WNT/B-catenin through phosphorylating the serine at residue 552 in 3-catenin and the serine at
residue 9 in glycogen synthase kinase 33 (GSK3), which increases intracellular 3-catenin levels that combine with E-cadherin to promote EMT.
Moreover, The PI3K/Akt pathway activity up-regulates nuclear factors SNAIL and SLUG, contributing to EMT activation. GSK-3f directly induces
autophagy by activating LKB1/AMPK and in turn prohibiting the PI3K/AKT/mTOR pathway. It also indirectly triggers autophagy through
promoting the hydrolysis of B-catenin protein. LKB1/AMPK activation plays a critical role in stimulating autophagy via decreasing the ratio of p-
mTOR/mMTOR and p-p70s6k/p70s6k. In addition, LKB1/AMPK hinders EMT by inhibiting Smad2/3 and TGF-{ activity. Ras protein mutation not only
activates the Ras/Rac1/Mkk7/JNK pathway (with JNK in turn binding to Atg5/Atg7) but also induces the Ras/Raf1/MEK1/2/ERK signaling pathway,
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PI3Ks activity can lead to cancer cell migration, adhe-
sion, and malignant transformation, together with deg-
radation of the extracellular matrix, which prohibit
autophagy and enhance EMT by up-regulating SNAIL,
SLUG, integrin-linked kinase (ILK), and WNT/B-catenin
signaling. PI3K is activated by the interaction with a
growth factor receptor or connexin with a phosphory-
lated tyrosine residue, causing a dimer conformational
change. In addition, PI3K activation is induced by direct
binding to Ras or by nuclear transcription factor B
(NF-«B) and TGF-f activation.

Activation of the PI3K/AKT/mTOR signaling pathway
not only blocks autophagy but also plays an important
role in regulating EMT [30]. It has been found that acti-
vation of the PI3BK/AKT/mTOR signaling pathway can
lead to EMT changes in tongue squamous cell carcin-
oma. Interestingly, P13K activation can facilitate the
increment of ILK. ILK is a serine-threonine protein kin-
ase that binds to the p-integrin cytoplasmic domain and
down-regulates E-cadherin, leading to the EMT [31].
Moreover, the PI3K/Akt pathway positively regulates
WNT/B-catenin through phosphorylating the serine at
residue 552 in P-catenin and the serine at residue 9 in
glycogen synthase kinase 3p (GSK3p), which increases
levels of intracellular p-catenin that combines with

E-cadherin to promote EMT [32]. In addition, the PI3K/
AKT/mTOR signaling pathway is induced by growth
factor, contributing to the promotion of cell metastasis
and EMT by up-regulating nuclear factor, SNAIL, and
SLUG and promoting matrix metalloproteinase (MMP)
to degrade the cell matrix, which synergies with other
EMT signaling pathways. For instance, TGEF-f induces
EMT by directly or indirectly activating the PI3K/Akt
signaling pathway [33]. Invasion, migration, and TGF-p-
induced EMT would be suppressed through the inhib-
ition of the PI3K/Akt/mTOR signaling pathway [34].
EMT can also occur with sustained NF-kB activation,
even in the absence of TGE-f [35]. Ras is a key tyrosine
kinase receptor, and activation of the Ras/Akt signal-
ing pathway not only is associated with malignancy in
epithelial cells but also can promote EMT ([32].
Thereby, highly specific, low-toxicity drugs that are
targeted to the EMT-related PI3K/AKT/mTOR path-
way must be developed.

Liver kinase Bl (LKB1) has been thought to act as a
cancer suppressor [36]. AMPK is the energy sensor and
signal transducer and mTOR is a central controller of
cell growth and proliferation [37]. LKB1/AMPK activa-
tion plays a critical role in stimulating autophagy via
decreasing the ratio of p-mTOR/mTOR and p-p70s6k/
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p70s6k and restraining PI3K/Akt/mTOR activity [38]. In
addition, LKB1/AMPK hinders EMT by inhibiting
Smad2/3 and TGF-p activity.

GSK-3p is a multifunctional protein kinase that can
directly induce autophagy by activating LKB1/AMPK
and in turn prohibiting the PI3K/Akt/mTOR pathway
[39]. It also indirectly triggers autophagy through pro-
moting the hydrolysis of B-catenin protein, followed by
LKB1/AMPK activation and mTOR block. Theoretically,
the knockdown of B-catenin can enhance apoptosis and
autophagy through activating the LKB1/AMPK pathway
and suppressing PI3K/Akt/mTOR signaling in head and
neck squamous cell carcinoma [40].

Studies have shown that the LKB1/AMPK/mTORC1
pathway is involved in nesfatin-1/nucleobindin-2
(NUCB-2)-mediated EMT in colon cancer, and ZEB-1 is
critical for regulation of NUCB-2-mediated migration
and invasion [41]. The activation of LKB1/AMPK in-
hibits the migration of TGF-P—stimulated cancer cells
by inhibiting Smad2/3 activity, which suggests that
AMPK may be a target for cancer drug therapy [42].

Ras oncogene is a member of the GTPase gene family.
The Ras signaling pathway induces EMT and has dual
effects on autophagy. Ras promotes autophagy by Racl/
MKkk7/JNK and Ras/Rafl/MEK1/2/ERK signaling path-
way and restrains autophagy by stimulating PI3K/AKT/
mTORC1 pathway. Accumulating research has shown
that the activated Ras protein will trigger multiple down-
stream pathways, causing abnormal cell proliferation
and tumorigenesis.

Ras has dual effects on autophagy. First, Ras protein
mutation does not only activate the Ras/Racl/Mkk7/
JNK pathway (with JNK in turn binding to Atg5/Atg7)
[43], but also induces the Ras/Rafl/MEK1/2/ERK signal-
ing pathway. The latter not only improves the transcrip-
tional expression of BNIP and promotes BNIP-induced
Bcl-2 release from Beclinl but also induces the binding
of Noxa to Mcl-1 and Beclin-1 dissociation from Mcl-1,
which results in autophagy activation [44]. Second, au-
tophagy is inhibited by activating Ras protein, boosting
the Ras/PI3K/AKT/mTORC1 pathway and blocking
ULK1/Atg13/FIP200 complex formation, which is essen-
tial for initiation of autophagy [45]. It is worth noting
that a recent article suggested that activated Ras and
mutant p53 may synergistically regulate autophagy [46].

Further, a report demonstrated that intracellular
PD-L1 prominently activates the EMT process by inter-
acting with H-Ras, which led to Ras/ERK/EMT activa-
tion [47]. It is distinct that the Nogo-B receptor (NgBR)
is a specific receptor of Nogo-B that regulates vascular
remodeling and angiogenesis, which triggers EMT based
on the enhancement of EMT-related proteins and
SNAIL1 protein expression via activation of the Ras/
ERK pathway [48]. What’s more, the TGF-p—activated
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ERK pathway is necessary to mediate EMT in vitro [49].
Although Ras/Raf/MAPK activation alone cannot lead to
prostate cancer initiation, it apparently accelerates pro-
gression caused by phosphatase and tensin homolog
deleted from chromosome ten (PTEN) loss, accompan-
ied by EMT and metastasis [50].

Currently, several PI3K/AKT/mTOR pathway-targeted
drugs have been developed, such as curcumin, FTY720,
and Bufalin [51-53]. However, these drugs need to be
further improved because of the inevitable toxic side
effects. Importantly, the PI3K/AKT/mTOR signaling
pathway plays an irreplaceable role in resistance to radio-
therapy and chemotherapy. The results have shown that
BEZ235 can significantly enhance radiosensitivity by inhi-
biting the PI3K/AKT/mTOR signaling pathway [54, 55]. In
addition, danusertib inhibits the PI3K/AKT/mTOR signal-
ing pathway by inducing the activation of P38 MAPK,
resulting in autophagy activation, which suggests that au-
tophagy has a significant inhibitory effect on EMT [56, 57].

Beclin-1 signaling pathway

Beclin-1 is a homologous gene of the yeast gene Atg6/
Vps30, which binds to VPS34 (Catalytic Subunit of Clas-
sIIIPI3K) to construct a complex for inducing autophagy
and prohibits EMT through down-regulating ZEBI,
WNTI1, and NF-kB. Profoundly, Beclin-1-induced au-
tophagy accelerated EMT by up-regulating vimentin and
Twist expression and decreasing E-cadherin expression
(Fig. 2). It has been used as an independent biomarker
for predicting overall survival and progression-free
survival in patients with gastric and liver cancer [58].

It was reported that the Beclin-1 gene can trigger
autophagy by forming the PI3K complex [59]. A growing
body of research has shown that Beclin-1 knockout mice
are more prone to spontaneous cancers. Clinic studies
have confirmed that the cancer incidence increased after
Beclin-1 was suppressed, such as ovarian, breast, and
prostate cancers [60]. However, it has also been reported
that overexpression of autophagy protein Beclin-1 in
mammalian cells can cause cell death [61].

Current studies have shown that knockdown of
Beclin-1 causes thyroid cancer cells to lose their epithe-
lial properties and acquire mesenchymal characters
consistent with EMT through stabilizing ZEB1 mRNA,
and there is a negative correlation between Beclin-1 and
ZEB1 in thyroid cancer [62]. In a further study, Beclin-1
gene knockout or low expression is involved in the
activation of WNT1 and NF-«B, leading to cancer cell
metastasis, which suggests that the knockout or low ex-
pression of the Beclin-1 gene may promote EMT and
cancerogenesis by activating the WNT1 pathway, result-
ing in poor prognosis [63, 64]. Surprisingly, knockdown
of Beclin-1 by small interfering RNA (siRNA) signifi-
cantly inhibited the autophagy activation induced by
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Fig. 2 Beclin-1 signaling pathway regulated autophagy and EMT. The Beclin-1 gene triggers autophagy by forming the PI3K complex and
prohibiting EMT through down-regulating ZEB1, WNT1, and NF-kB. Additionally, Beclin-1-induced autophagy accelerated EMT by up-regulating
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rapamycin, consequentially suppressing EMT and the
invasiveness of colon cancer cells via promoting vimen-
tin and Twist down-regulation and E-cadherin up-regu-
lation, suggesting that inhibiting Beclin-1-induced
autophagy would an effective anticancer strategy [65].

P53 signaling pathway

P53 is a well-known cancer suppressor protein, which
mediates cancer inhibition mainly through triggering
autophagy dependence on autophagy-related gene ex-
pression and PI3K/AKT/mTOR inhibition and by block-
ing EMT based on decreased expression of ZEB1, ZEB2,
and SNAIL. Interestingly, mutant P53 can trigger EMT
and mitochondrial fission that in turn promote autoph-
agy [46] (Fig. 3).

In the nucleus, P53 can down-regulate PI3K/AKT/
mTOR signaling via interaction with PTEN, which pro-
motes the up-regulation of autophagy. In addition, P53
enhances the expression of autophagy-related genes, in-
cluding Ulk1/2, Atg4, Atg7, and AtglO [66]. Increased
autophagy continually contributes to p53-dependent
apoptosis and cancer suppression. Nevertheless, P53 will
inhibit autophagy in the cytoplasm [67], but the specific
mechanism remains to be illustrated.

Furthermore, P53 can also simultaneously regulate
EMT, and the nucleus P53 can reduce the expression of
ZEB1, ZEB2, and SNAIL by activating the relevant
microRNA, contributing to EMT inhibition [68, 69]. For
instance, in pterygium, inactivation of p53 influences
miR-200a expression, resulting in EMT progress through

up-regulating ZEB1, ZEB2, and SNAIL gene expression
[70]. Mutant P53 can bind to miR-130b promoter and
inhibit its transcription, which induces the expression of
ZEB1, promotes EMT occurrence, and enhances the
ability of cell invasion [71]. Therefore, a targeted therapy
strategy of the mutant p53 gene is likely to achieve ex-
cellent curative effects. In brief, increased stability and
expression of p53 in the nucleus can induce autophagy
and inhibit EMT, which suggests a wonderful strategy
for anticancer therapy.

JAK/STAT signaling pathway

The JAK/STAT signaling pathway has a significant effect
on essential cellular mechanisms such as proliferation,
invasion, survival, inflammation, and immunity via indu-
cing EMT and inhibiting autophagy, and autophagy in-
duction hinders EMT through suppressing JAK/STAT
signaling. It has been demonstrated that JAK/STAT sig-
naling can transmit extracellular signals to the nucleus
by activating receptor tyrosine kinase signaling and tran-
scription activating factor—targeted genes (Fig. 4).

At present, a number of observations about human
solid tumors and hematological malignancies have found
that JAK/STAT signaling pathway activation is closely in-
volved in cancer cell proliferation, adjacent invasion, and
distant metastasis. For example, activation of JAK/STAT
protein stimulated by IL-6 up-regulates MMP-2 and
SNAIL expression, which results in EMT [72, 73]. How-
ever, the JAK2/STAT3 inhibitor WP1066 prevents IL-6—
induced activation of the JAK2/STAT3 pathway and
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Fig. 3 P53 signaling pathway regulated autophagy and EMT. Nucleus P53 promotes the up-regulation of autophagy by down-regulating PI3K/
AKT/mTOR signaling and enhancing the expression of autophagy-related genes, including Ulk1/2, Atg4, Atg7, and Atg10. Nevertheless, P53
inhibits autophagy in the cytoplasm. The nucleus P53 reduced the expression of ZEB1, ZEB2, and SNAIL by activating the expression of miR-200a
and miR-130b, resulting in EMT inhibition. Significantly, mutant P53 triggers EMT and mitochondrial fission that in turn strengthens autophagy

EMT [74]. Furthermore, ovatodiolide can efficiently sup-
press nasopharyngeal cancer development by inducing
apoptosis and inhibiting EMT and is consistent with re-
pression of the JAK/STAT signaling pathway [75].

On the other hand, the extracellular IL-6—mediated JAK/
STAT signaling pathway accelerates the cancer process by
prohibiting autophagy [76]. Recent studies have shown that
esveratrol can induce autophagy and hinder ovarian cancer

IL-6 l_, JAKISTAT “

l \

l Autophagy I
EMT I

Fig. 4 JAK/STAT signaling pathway regulated autophagy and EMT.
Activation of JAK/STAT protein is stimulated by IL-6, leading to the
up-regulation of the expression of MMP-2 and SNAIL and activation
of EMT. On the other hand, the extracellular IL.-6-mediated JAK/STAT
signaling pathway accelerates the cancer process by prohibiting
autophagy. Furthermore, autophagy induction hinders EMT through
suppressing JAK/STAT signaling

cell migration by inhibiting the IL-6—mediated JAK/STAT
signaling pathway. Likewise, quercetin induces autophagy
by inhibiting the STAT3 pathway in primary effusion
lymphoma [77, 78]. Previously, the report has shown that
docetaxel-mediated autophagy significantly ~decreased
castration-resistant prostate cancer (CRPC) cell viability
and metastasis by inhibiting STAT3 [79]. Hence, autophagy
activators might be used to hinder EMT through suppress-
ing JAK/STAT signaling.

The integrin signaling pathway

Integrin-mediated signaling pathways have been found
to control multiple mechanisms, such as cancer cell sur-
vival, proliferation, differentiation, and migration, by
modifying the microenvironment. In brief, the integrin
pathway inhibits autophagy. The integrin-regulated
EMT is mainly mediated by focal adhesion kinase (FAK)
and ILK; both FAK-Src—mediated and ILK-mediated in-
tegrin pathways induce EMT. Furthermore, autophagy
promotes EMT via linking pB-catenin and Smad signaling
dependent on up-regulation of ILK (Fig. 5).

FAK is a linker molecule that aggregates different
signaling proteins. The activation of the integrin-medi-
ated FAK-Src pathway has been shown to inhibit au-
tophagy and promote E-cadherin—dependent collective
cell movement and EMT, leading to cancer develop-
ment. Consequently, knockdown of FAK by siRNA or
inhibition of Src kinase activity by dasatinib could in-
hibit E-cadherin—mediated cell-cell adhesions and EMT
[80]. Epidermal growth factor (EGF) can also induce
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Fig. 5 The integrin signaling pathway regulated autophagy and EMT. FAK-Src-mediated integrin pathway has been shown to inhibit autophagy
and promote EMT. In addition, integrin enhances EMT by stimulating the EGFR-ERK/MAPK signaling pathway. ILK accelerates EMT by activating
the WNT/B-catenin pathway. Similarly, ILK can promote EMT development by transferring -catenin into the nucleus, causing down-regulation of
E-cadherin. Additionally, integrin signaling promotes TGF-31-dependent down-regulation of E-cadherin expression, which is essential for EMT
induction. Furthermore, ILK inhibits autophagy by promoting the phosphorylation of AKT and activating mTOR. By contrast, autophagy stimulates
B-catenin and Smad signaling to enhance ILK expression, resulting in EMT promotion
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EMT in pancreatic cancer cells via stimulating the integ-
rin/EGFR-ERK/MAPK signaling pathway [81].

The overexpression of ILK can promote EMT develop-
ment by transferring -catenin into the nucleus, causing
down-regulation of E-cadherin [82]. In addition, integrin
signaling promotes TGF-B1-dependent down-regulation
of E-cadherin expression, which is essential for EMT in-
duction in RCC. Therefore, the strategies targeted to the
integrin—TGEF-P1 interplay may represent a therapeutic
target in RCC [83]. In addition, ILK acts as a down-
stream regulator of TGF-f, which accelerates EMT by
activating the WNT/B-catenin pathway. Interestingly,
TGEF-B1 and B-streptin potentiate the expression of ILK
through the B-chain protein/Smad?2 signaling pathway in
renal fibrosis cells [84].

Furthermore, ILK inhibits autophagy by promoting the
phosphorylation of AKT and activating mTOR. Knock-
ing down ILK expression increases autophagy and
protects cells from senescence induced by hyperpho-
sphatemia [85]. By contrast, autophagy activity can
stimulate B-catenin and Smad signaling by forming the
p-B-catenin/p-Smad2 complex to enhance ILK expres-
sion, resulting in EMT promotion, indicating that au-
tophagy inhibitors have the great capability to block

EMT and cancer development by repressing [-catenin/
Smad2 ILK activity [84].

WNTs signaling pathway

The WNTs pathway consists of the classical pathway
and nonclassical WNT pathway, which accelerate EMT,
and autophagy can down-regulate EMT by degrading
the Twistl protein and inhibiting WNTs pathway. Re-
duced WNTs signaling is correlated with loss of CSC
viability (Fig. 6).

In the nonclassical WNT pathway, two WNT proteins,
WNT5A and WNT11, facilitate EMT by inducing p38
(MAPK14) phosphorylation [86]. In the classical path-
way, WNT/B-catenin, a typical WNT signaling pathway,
directly leads to HIF-la—induced EMT by combining
with the intracellular domain of E-cadherin, subse-
quently connecting to the actin cytoskeleton and mediat-
ing intercellular adhesion. Here, we have shown that
hypoxia or overexpression of HIF-la promotes EMT
and contributes to metastatic phenotypes. On the one
side, HIF-1a up-regulates the expression of TWIST by
directly binding to the hypoxia-response element in the
TWIST proximal promoter [87]. On the other side,
HIF-1la also results in overexpression of SLUG and
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Fig. 6 WNTs signaling pathway regulated autophagy and EMT. The WNTs pathway consists of the classical pathway and nonclassical WNT
pathway. The classical pathway (WNT/B-catenin signaling pathway) directly leads to HIF-1a activation, which in turn results in overexpression of
SLUG, SNAIL, and TWIST and induction of EMT. The nonclassical WNT pathway mainly contains two WNT proteins, WNT5A and WNT11, which
facilitate EMT by inducing p38 (Mapk14) phosphorylation. Dishevelled (Dvl) is a basic and central component of WNT signaling, and it plays an
important role in both B-catenin-mediated canonical and (-catenin-independent noncanonical WNT signaling. Dvl expression and stability are

autophagy can decrease the stability of TWIST1 protein and hinder EMT

negatively controlled by autophagy in the late stages of cancer development, which in turn inhibits the WNT process. On the other hand,

SNAIL and the formation of EMT [88]. As for
EGF-induced EMT, we focused on transcription repres-
sors of E-cadherin, TWIST, SLUG, and SNAIL; the re-
sults showed that cancers express high levels of TWIST,
which can be further enhanced by EGF [89].

There are cross-points between the WNT signaling
pathway and the TGF-f, PI3K/AKt pathway. One report
proved that osteopontin promotes the progression of he-
patocellular carcinoma (HCC) via stimulating the PI3K/
AKT/Twist signaling pathway, contributing to the en-
hancement of EMT [90]. Similarly, the TGF-p—induced
ERK/MAPK pathway contributes to EMT induction,
since ERK is required for removing cell adherens junc-
tions to increase cell mobility [91].

Recently, we found that autophagy deficiency stabilizes
the TWIST1 protein through accumulation of SQSTM1/
p62. Mechanically, the Twistl degradation is blocked by

the interaction between SQSTM1 and TWIST1 in
autophagosomes and proteasomes. Twistl is a key
downstream regulator of p62, which suggests that tar-
geted p62-mediated TWIST1 stabilization is a promising
therapeutic strategy for cancer prevention and treatment
[92, 93]. In colon cancer cell lines, SNAIL overexpres-
sion increases the expression of the WNT signal target
gene. The mechanism is that the interaction between
SNAIL-N and B-catenin further activates the expression
of the WNT downstream target gene, resulting in posi-
tive feedback of WNT signaling.

In eukaryotic cells, autophagy is a highly conserved
self-digestive process that can produce nutritional sub-
stance, relieve metabolic stresses, and maintain cell sur-
vival. Dishevelled (Dvl) is a basic and central component
of WNT signaling that plays an important role in both
[-catenin—mediated canonical and -catenin—independent
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noncanonical WNT signaling [94]. Dvl expression and sta-
bility are negatively controlled by autophagy in the late
stages of cancer development, which in turn inhibits the
WNT process [95, 96]. In a further study, the WNT sig-
naling antagonist Dapperl was induced by autophagy-ac-
celerated Dvl2 degradation [97], which is mediated by
GABA(A) receptor—associated protein like 1 (GABAR-
APL1), a cancer repressor, and p62 is required for the
interaction of Dvl2 and GABARAPL1. GABARAPLI-me-
diated Dvl2 degradation is blocked when administered
with 3-MA, a specific inhibitor of autophagy [98]. In
addition, GABARAP is a cytoplasmic cadherin-6 (CDH6)
conjugate. CDHS6 is a type 2 cadherin, which drives EMT
[99]. Previous studies have confirmed that the silence of
CDHS6 reverses EMT and reduces thyroid cancer cell me-
tastasis, accompanied by autophagy induction [98, 100].
Therefore, the interplay between the degradation of Dvl,
inhibition of WNT signal, and induction of autophagy
provides a promising approach for anticancer treatment.

NF-kB signaling pathway

NF-kB is another important regulator of EMT. Its acti-
vation has been associated with aggressiveness and the
metastatic potential of carcinomas [101], which inhibits
autophagy by down-regulating Beclin-1 and promotes
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EMT by up-regulating related EMT markers. However,
autophagy could suppress NF-kB signaling to inhibit
EMT by down-regulating MMPs expression (Fig. 7).

In human breast cancer, NF-kB activation increased
transcriptional activation of EMT regulator gene expres-
sion by binding directly to the sites of EMT transcrip-
tion factors, including SNAIL1, SLUG, TWIST1 and
SIP1 promoter, which promotes an aggressive phenotype
of breast cancer cells [102]. Similarly, a study found that
uric acid induces EMT in renal tubular epithelial cells by
the activation of the TLR4/NF-kB signaling pathway
[103]. In addition, NF-xB can regulate SNAIL-induced
and ROS-dependent signaling pathways in response to
MMP-3. The mechanism is that MMP-3 binding to p65
and cRel NF-«B subunits promotes SNAIL transcription.
Specifically, MMPs are involved in several pathways that
induce EMT, which provide a potential treatment for
cancer [104]. Furthermore, tumor necrosis factor—a
(TNF-a)-mediated stability of the SNAIL protein is
strengthened by GSK3p activity, which is dependent on
NF-xB activation [105].

NF-«B can stimulate or hinder autophagy by different
mechanisms. Researchers have shown that NF-kB can
down-regulate autophagy by inhibiting Beclin-1, an initi-
ator of autophagy [106]. Notably, blocking NF-kB can

NF-kB <€
GSK-38, TNF-a
\ 4
Slug, Snail, Beclin1
MMPs Twist, SIP1 ROS
Snail (stabilization)
\ 4
v
Autopha
EMT el
Fig. 7 NF-kB signaling pathway regulated autophagy and EMT. NF-kB activation increased transcriptional activation of EMT regulator genes
expression via binding directly to the sites of EMT transcription factors, including SNAILT, SLUG, TWIST1, and SIP1 promoter. In addition, TNF-o—
mediated stability of SNAIL protein is strengthened by GSK3[ activity, which is dependent on NF-kB activation. Furthermore, NF-kB binding to
MMPs promotes SNAIL transcription. NF-kB can down-regulate autophagy by inhibiting Beclin-1, an initiator of autophagy. However, autophagy
activation suppresses ROS-NF-kB signaling to down-regulate MMPs expression, contributing to EMT inhibition
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significantly inhibit the proliferation of hepatocarcinoma
cells, which is associated with autophagy enhancement
[107]. On the other hand, ROS has an effect on cell
transformation, metastasis, and response to therapy at
different stages of cancer development, which stimulates
NEF-kB—dependent autophagy [105]. Inhibition of ROS-
NF-kB—dependent autophagy could enhance brazilin-in-
duced apoptosis in head and neck squamous cell
carcinoma [108]. However, autophagy activation could
suppress ROS—NF-«B signaling to down-regulate MMP-2
and MMP-9 expression, contributing to EMT inhibition
[109]. Thus, autophagy activators might be used to pro-
hibit NF-kB signaling, consequently repressing EMT and
cancer progression.

TGF-f signaling pathway

TGE-B, secreted by cancer cells and stromal fibroblasts
in the cancer microenvironment, is considered as a pri-
mary inducer of EMT through inducing SNAIL expres-
sion and cooperating with Smad2 and Smad3 and
WNT/B-catenin signaling [110]. In addition, TGF-f trig-
gers autophagy by stimulating expression of mRNA tran-
scripts of several autophagy-related genes. Notably,
autophagy enhances TGF-B1 expression by inducing ac-
tivation of cyclic adenosine monophosphate (cAMP)/
protein kinase A (PKA)/cAMP response element binding
(CREB) signalling, leading to EMT progression (Fig. 8).
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The TGE-p pathway contributes to EMT occurrence
by mediating Smad and non-Smad signal transduction
pathways. Activation of TGF-f/Smad3 in epithelial cells
triggers significant morphological and functional pheno-
typical alterations [111], which indicates that TGF-p/
Smad3-dependent signaling plays a key role in regulat-
ing autophagy-induced EMT [112]. In addition, M2
macrophages also induce EMT through stimulating the
TGF-B/Smad2 signaling pathway [113]. Sometimes
TGEF-B cooperates with synergistic factors to induce
EMT, such as Ras and B-catenin. Once TGF- is stimu-
lated, EMT-related transcription factor STAT3 interacts
with Ras, which induces SNAIL expression and pro-
motes EMT [114, 115]. Profoundly, miR-23a promotes
TGEF-pl-induced EMT and cancer metastasis in breast
cancer cells by directly targeting the cytoplasmic domain
of E-cadherin (CDH1) and activating WNT/p-catenin
signaling [116]. More importantly, TGF-f1 has been
identified as the most effective factor that can independ-
ently induce EMT [117].

Among these, TGF-f has dual effects on cancer occur-
rence and development, which depends on the cell type
and environment [108]. First, TGF-f1 promotes human
carcinoma cell invasion by inducing autophagy, and the
autophagy inhibitor 3-MA could effectively reverse this
process [118]. Second, TGE-B stimulates the expression
of mRNA transcripts of several autophagy-related genes,
such as Beclin-1, Atg5, Atg7, and death-associated
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‘ WNT/B-catenin ‘ ‘ Smad2/3 ‘

CAMP/PKA/CREB

 snail

EMT

.|

Fig. 8 TGF-f signaling pathway regulated autophagy and EMT. Activation of TGF-3/Smad3 in epithelial cells triggers EMT, and the activation of
TGF-B/Smad?2 signaling pathway also stimulates EMT. Moreover, TGF-31 induces EMT and cancer metastasis by directly targeting the cytoplasmic
domain of E-cadherin (CDH1) and activating WNT/-catenin signaling. Sometimes, TGF-3 cooperates with synergistic factors to induce EMT, such
as Ras. Once TGF-B is stimulated, EMT-related transcription factor STAT3 interacts with Ras, which induces SNAIL expression and promotes EMT.
Naturally, TGF-3 can stimulate the expression of mRNA transcripts of several autophagy-related genes, such as Beclin-1, Atg5, Atg7, and death-
associated protein kinase (Dapk), and it induces accumulation of autophagosomes and activation of autophagic flux, which potentiates the
induction of the autophagy. It is worthy that autophagy induces TGF-31 expression and TGF-B1-dependent EMT via triggering cAMP/PKA/CREB
signaling, which relies on autophagy-dependent phosphodiesterase 4A (PDE4A) degradation
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protein kinase (Dapk), and it induces accumulation of
autophagosomes and activation of autophagic flux, which
potentiates the induction of the proapoptotic Bcl-2 family
protein Bim and contributes to Bim-mediated apoptosis in
hematopoietic cells [119, 120]. It is worthy that autophagy
induces TGF-B1-dependent EMT in HCC via triggering
cAMP/PKA/CREB signaling, which relies on autophagy-
dependent phosphodiesterase 4A (PDE4A) degrad-
ation [121]. Hence, further researches could focus on
developing the autophagy inhibitors to down-regulate
PDE4A-activated cAMP/PKA/CREB signaling and
TGEF-B1 induced EMT.

Interplay between cytoskeleton and mitochondria

The cytoskeleton structures are essential for promoting
cell movement and cytoskeleton remodeling, especially
supporting EMT activation. Mitochondria are consider-
ably multifunctional organelles, which prominently me-
diate energy conversion and are crucial regulators of a
number of signaling pathways associated with cancer
progression. In particular, the interaction of mitochon-
dria and cytoskeleton plays a critical role in regulating
autophagy and EMT (Fig. 9).
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Accumulating evidence has indicated that actin cyto-
skeleton remodeling potentially drives EMT, invasion
and metastasis [122]. Mechanically, hypoxia-induced
phosphatidylinositol (4,5) bisphosphate (PIP2) level in-
creased in cancer cells by activating the HIF-1a/RhoA/
ROCK1 signaling pathway supported actin filament
(F-actin) expression and attenuate the binding amounts
of F-actin and capping actin protein of muscle Z-line
alpha subunit 1 (CAPZA1), which in turn enhanced
EMT [123, 124]. In addition, actin dynamics and
membrane-cytoskeleton scaffolds are required for the
early formation of autophagosome in starvation induced
autophagy [125]. It was reported that the colocalization
of actin filaments with important autophagy markers
[126]. Mitochondria are the important energy resource
for multiple biological metabolisms, such as autophagy,
migration and invasiveness. Increased fission and loss of
mitochondrial network have been identified as charac-
teristics of oncogenic transformation and accelerates
EMT and cancer migration [127, 128].

Notably, mitochondrial dynamics provide ATP for
cytoskeleton remodeling to promote EMT during cancer
progression, while autophagy regulates mitochondrial
dynamics by eliminating the damaged mitochondria.

EMT
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Fig. 9 Interplay between cytoskeleton and mitochondria. Cytoskeleton polymerization induced by EMT, which in turn supports mitochondrial
fission that are essential for further sustain EMT process by providing energy supplies, and depolymerization of actin cytoskeleton is sufficient for
reversing EMT phenotype. Massive activation of autophagy induces mitochondrial fusion and the reconstitution of mitochondrial network, which
subsequently reduces the number of available free mitochondria and counteracts EMT. Mitochondrial protein BNIP3 potentially supported
mitochondrial fission and turnover through stimulating mitophagy by directly binding to both mitochondria and the autophagosomal protein
LC3, but also enhanced cytoskeleton polymerization. The interaction between BNIP3 and cadherin-6 (CDH6) drives EMT, restrains autophagy and
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The cytoskeleton is composed of three main types of
polymers: actin filaments, microtubules and intermediate
filaments, which have been associated with mitochon-
drial network properties and various mitochondrial func-
tions [129]. For instance, cytoskeleton polymerization and
remodeling induced by EMT, which in turn supports
mitochondrial fission that are essential for further sustain-
ing cell migration and EMT process by providing energy
supplies, and depolymerization of actin cytoskeleton is
sufficient for reversing EMT phenotype [129, 130].
Further findings have demonstrated that massive activa-
tion of autophagy induces mitochondrial fusion and the
reconstitution of mitochondrial network, which subse-
quently reduces the number of available free mitochondria
and counteracts cell migration and EMT [130]. Recently,
it was reported that the mitochondrial protein, B-cell
lymphoma 2 (BCL-2) interacting protein 3 (BNIP3) in
melanoma potentially supported mitochondrial fission
and turnover through stimulating mitophagy by directly
binding to both mitochondria and the autophagosomal
protein LC3, but also maintained cellular architecture and
enhanced cytoskeleton polymerization [131], which re-
vealed the pro-tumorigenic role of BNIP3 in driving EMT
and melanoma cell’s migration. Indeed, BNIP3-silenced
melanoma cells resulted in re-organization of focal adhe-
sion sites and repressed cell-cell interaction [132].
Profoundly, the interaction between BNIP3 and CDH6
drives EMT, restrains autophagy and promotes mitochon-
drial fission through dynamin-related protein 1 (DRP1)-
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mediated mechanism [99]. Therefore, novel avenues en-
hancing autophagy to suppress mitochondrial fission and
cytoskeleton polymerization have represented a promising
strategy for anticancer therapy by prohibiting EMT.

Regulating EMT by targeting autophagy
Autophagy and EMT act as major biological processes in
the occurrence and development of the cancer. Recent
observations indicate that there is a complex link
between the two processes. On the one hand, cells are
dependent on autophagy activation to survive during the
EMT. On the other hand, autophagy functions as the
tumor-suppressive signal, which hinders the early phases
of metastasis and activation of the EMT [130]. There-
fore, regulating EMT by targeting autophagy is a very
promising strategy for treating cancer (Fig. 10).

It was reported that inhibition of autophagy may pro-
mote EMT through the ROS/heme oxygenase-1 (HO-1)
pathway in ovarian cancer. N-acetylcysteine (NAC; ROS
scavenging agent) and Znpp (HO-1 inhibitor) could im-
pair the migration and invasion through decreasing the
expression of HO-1 and reversing EMT [133]. Another
report showed that an autophagy defect can promote
cancer cell migration and EMT, enhance aerobic glycoly-
sis, and convert cell phenotype toward malignant, which
depends on the activation of the ROS—NF-kB-HIF-1«
pathway. EMT and metastasis will be attenuated when
ROS is cleaned by the antioxidant NAC [134]. What's
more, MMPs could promote EMT in mammary epithelial
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Fig. 10 Regulating EMT by targeting autophagy. The autophagy attenuates EMT by inhibiting the overexpression of SNAIL and SLUG and
activation of ROS-NF-kB-HIF-1a pathway. Moreover, ROS-induced NF-kB activation up-regulates SNAIL and MMPs expression to promote EMT.
Additionally, autophagy accelerates lysosomal- mediated degradation of SNAIL and TWIST, resulting in EMT inhibition. On the other side,
autophagy activation enhances EMT by increasing the expression of HMGB1, metastasis-associated protein oncostatin M and MMP-9, facilitating
EMT markers expression in both RNA and protein levels accompany with promotion of TGF-32/Smad signaling pathway activity, and up-
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Table 1 The translational application of autophagy inhibitors in anticancer therapy by regulating EMT

Autophagy Inhibitors Impair/Enhance  Mechanisms Cancer Types References
EMT

Chloroquine(CQ) Impair Reversing TGF-B-induced EMT Renal cell carcinoma(RCC) [6]

CcQ Impair Down-regulating expression of vimentin and up-regulating  Nasopharyngeal carcinoma [142]
expression of E-cadherin (NPQ)

CQ or 3-methyladenine  Impair Inhibiting TGF-B1/Smad3-induced EMT Bladder cancer. [143]

(3-MA)

3-MA Enhance Attenuating inhibitive effects of miR-16 mimics on Non-small cell lung carcinoma  [144]
TGF-B1-induced EMT (NSCLQ)

3-MA Enhance Abolishing the sinomenine hydrochloride (SH) -mediated Glioblastoma [145]

inhibition of vimentin, Snail and Slug expression

cells, which are stimulated by ROS-induced NF-«kB-
dependent activation of SNAIL [104]. In addition, Myriam
Catalano et al. demonstrated that Beclin-1 silence and
ATG7 down-regulation could enhance the EMT process
by overexpression of SNAIL and SLUG in glioblastoma
cells, and cell migration and invasion would be attenuated
when autophagy is induced upon starvation and treatment
with mTOR inhibitors [7]. Moreover, studies about breast
and colon cancers have described that the death effector
domain-containing DNA-binding protein (DEDD) not
only significantly represses EMT by inducing autoph-
agy through direct interaction with the class III PI-3
kinase (PI3KC3)/Beclin-1 but also promotes the
autophagy-mediated lysosomal degradation of SNAIL
and TWIST [135, 136]. Accordingly, autophagy exerts
pro-survival functions by prohibiting EMT, and au-
tophagy activators represent a potential strategy for
therapeutic interventions.

However, autophagy helps cancer cells to survive in
stressful environmental and intrinsic conditions and also
exerts pro-death functions via heightening EMT, which

depends on cell types and the stages of cancer [137]. For
instance, high mobility group box 1 (HMGB1) induces
EMT in association with increased autophagy through
increasing the expression of discoidin domain receptor 1
(DDR1) and decreasing the phosphorylation of mTOR
[138]. Moreover, autophagy is critical for activation of
TGEF-B/Smad3—dependent signaling, leading to EMT
and cancer cell invasion in HCC [112]. Besides,
TGF-Bl-induced autophagy promotes EMT based on
up-regulation of ILK by linking (-catenin and Smad
signaling [84]. Significantly, Li et al. found that neutro-
phil autophagy activity can increase the expression of
metastasis-associated protein oncostatin M and MMP-9
and contribute to cancer cell metastasis in HCC [139].
In the late development of cancer progression, cell mo-
tility and migration capacity is weakened by inhibiting
autophagy-related genes, and cell invasion is restored by
the activation of autophagy-related genes [140]. It is
acknowledged that TGF-B2 could up-regulate autophagy
and facilitate EMT marker expression in both RNA and
protein levels accompanied by Smad signaling pathway

Table 2 The translational application of autophagy activators in anticancer therapy by regulating EMT

Autophagy Activators Impair/ Mechanisms Cancer Types References
Enhance
EMT
Rapamycin Impair Prohibiting TGF-B-induced EMT Gallbladder cancer [27]
(GBO)
Rapamycin Impair Inhibiting depletion of FBXW7-induced EMT Colon cancer [146]
and stem cell-like behavior
Rapamycin Impair Prohibiting TGF-B-induced EMT A cell culture model of [147]
TGF-B-induced EMT
Brusatol Impair Decreasing expression of N-cadherin, Vimentin Hepatocellular [148]
and up-regulating expression of E-cadherin carcinoma (HCC)
Combination of P38 inhibitor Impair Inhibiting EMT markers expression Ovarian cancer [149]
SB202190 and JUN inhibitor SP600125
Alisertib (ALS, MLN8237) Impair Regulating E-cadherin suppressor with the Osteosarcoma (OS) [150]
involvement of Sirt1
mTORC inhibitor AZD2014 Impair Down-regulating the expression of Snail and MMP2 Hepatocellular [151]
carcinoma (HCC)
Metformin Impair Inhibit mTOR pathway and regulate expression of Thyroid cancer [28]

the EMT-related markers E-cadherin, N-cadherin, and Snail.
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activity. A further study observed that proinflammatory
cytokines such as TNF-aq, it can down-regulate autoph-
agy and increase ROS levels, thus antagonizing TGF-B2—
induced EMT, which suggests that autophagy plays a
prometastatic role in facilitating EMT by regulating ROS
levels and TNF-a can inhibit EMT by suppressing
autophagy [141]. Consequently, these findings may
provide novel avenues for therapeutic research by hin-
dering autophagy, which may be beneficial to patients
with cancer.

Cancer treatment has been complicated, which is mainly
associated with autophagy and EMT. Therefore, inhibition
of EMT by controlling autophagy must be beneficial for
cancer treatment. However, the relevant therapeutic mea-
sures must depend on tissue/cell types (epithelial cell or
interstitial cells) and the stages of cancer development
(early or advanced); thus, the choice of inductors or inhib-
itors of autophagy need to be further analyzed.

Conclusion

Cell autophagy and EMT, which play indispensable and
significant roles in the occurrence and development of
cancer, bring great challenges to anticancer treatment.
Based on the complicated link between autophagy and
EMT, therapeutic avenues targeting autophagy have
attracted lots of attention by hindering EMT and further
suppressing cancer development. Hence, future studies
should focus on profoundly exploring the regulation
mechanisms between autophagy and EMT at the
molecular and genetic levels. In addition, the discovery
of various transcription factors that induce EMT and
new EMT markers is urgently needed, as they will be
beneficial for further understanding the mechanism of
EMT and obtaining effective anticancer treatment strat-
egies by blocking metastasis. It has been reported that
autophagy has dual effects on EMT depending on the
contextual need of cancer cells during metastases.
Currently, autophagy inhibitors, such as chloroquine
and 3-methyladenine, and autophagy activators, such as
rapamycin, have translational applications in anticancer
therapy by regulating EMT (Tables 1 and 2). However,
there are few observations about the clinical application
of autophagy regulators because of the inevitable side
effects, such as high cytotoxicity and low specificity.
Therefore, we should try our best to discover more
potential and accurate approaches to stimulate or block
autophagy, subsequently suppressing EMT and controlling
cancer development, which might be a more promising
approach for anticancer therapy when combined with
other anticancer strategies.
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