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Abstract

Surgical resection is an important avenue for cancer treatment, which, in most cases, can effectively alleviate the
patient symptoms. However, accumulating evidence has documented that surgical resection potentially enhances
metastatic seeding of tumor cells. In this review, we revisit the literature on surgical stress, and outline the
mechanisms by which surgical stress, including ischemia/reperfusion injury, activation of sympathetic nervous
system, inflammation, systemically hypercoagulable state, immune suppression and effects of anesthetic agents,
promotes tumor metastasis. We also propose preventive strategies or resolution of tumor metastasis caused by
surgical stress.
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Introduction
Surgical resection remains to be a mainstay of cancer treat-
ment. However, cancer recurs in many patients after a short
time. For example, 25% to 30% of colorectal cancer patients
who do not have visible evidence of metastasis during diag-
nosis are detected to develop metastasis within 5 years [1].
Evidence from animal and clinical trials has demonstrated
that surgery-induced stress is a powerful factor promoting
malignant cancer growth [2]. Surgery-induced stress is a sys-
temic effect, involving inflammation, ischemia-reperfusion
injury (IRI), sympathetic nervous system activation, and in-
creased cytokine release, altogether significantly increasing
cancer recurrence risk (Fig. 1).
Cells of a tumor can disseminate in peripheral blood as cir-

culating tumor cells (CTCs), or migrate to the bone marrow
or lymph nodes as disseminated tumor cells (DTCs), capable
of surviving chemotherapy and initiating tumor regrowth [3].
The systemic body response to surgery may provide an en-
vironment favorable for tumor metastasis, induced by a

protracted period of immunosuppression and upregulation
of adhesion molecules (Fig. 2). Clinical trials have detected
increased CTCs and DTCs in many cancer types, includ-
ing gastric [4], lung [5], breast [6], hepatocellular [7], and
colorectal [8] cancers. When tumor cells disseminate to a
new environment, they may remain dormant for several
years or even several decades rather than regrow immedi-
ately [9]. One recent study in breast cancer patients dem-
onstrates such dormant cells awakening after surgery,
initiating metastasis [10].
In this review, we will summarize previous research, dis-

cuss the possible effects of surgical stress on cancer pro-
gression, and analyze the responsible mechanisms. We will
also present the available therapeutics that can prevent or
mitigate surgical stress to improve patient outcomes.

Surgery-induced cancer cell dissemination
Tumor cells have been known to disseminate into the vascu-
lar and lymphatic system, migrating to distant organs and
initiating tumor regrowth and recurrence [3]. Clinical evi-
dence has detected CTCs in the blood and DTCs in the
bone marrow and lymph nodes; their population is an im-
portant indicator for diagnosis, prognosis, and therapeutic re-
sponse in hepatocellular, breast, brain, and esophageal
cancers [11–15]. CTC numbers increase following surgery
for gastric [4], lung [5], breast [6], hepatocellular [7] and
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colorectal [8] cancers, and are associated with poor survival.
DTCs found in sentinel lymph nodes have been noted to
quadruple on average after breast cancer surgery [16]. Sur-
gery promotes tumor cell migration in a complex
fashion involving inflammatory factors, catechol-
amines, and pro-metastatic enzymes. Of note, after

‘curative’ surgery, disseminated cancer cells exhibit
extreme genomic heterogeneity before initiating me-
tastasis. This heterogeneity decreases later, and is induced
by selected clonal expansion [17]. This phenomenon indi-
cates that disseminated cells have not yet acquired all the
key hallmarks of fully malignant cells.

Fig. 1 Factors that promote cancer recurrence after surgery and the interactions between them

Fig. 2 The interactions between tumor cells and the tumor microenvironment during different stages of cancer metastasis
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Ischemia/reperfusion injury (IRI)
Ischemia/reperfusion injury (IRI) often occurs in sur-
geries involving hepatocellular carcinoma (HCC) and
liver transplantation [18, 19]. In a clinical trial of 103
liver transplant patients with HCC, IRI was associated
with tumor recurrence, and extended ischemic duration
exacerbated HCC recurrence risk [19]. Many signaling
pathways affecting protein expression change after IRI.
For instance, IRI enhances the expression of TLR9, a pro-
moter of NF-κb and ICAM-1 [20]. The CD95/CD95L
pathway, usually regarded as a pathway inducing cell
death, promotes tumor cell proliferation by signaling axis
such as KRAS. In the liver, the CD95/CD95L pathway is
upregulated in many cell types during IRI, resulting in the
apoptosis of hepatocytes and infiltrating cytotoxic lym-
phocytes, contributing to tumor progression [21].
IRI also modifies the secretome (e.g lipocalin2, Angptl4) of

tumor cells [22, 23]. Hypoxia and inflammation could upreg-
ulate lipocalin2 (LCN2) in many cancers, promoting tumor
cell survival, proliferation, and metastasis by inducing EMT
(epithelial-mesenchymal transition) and eliminating the iron
ion [22, 24]. In addition, IRI affects the tumor microenviron-
ment, cultivating a better “soil” for tumor growth, migration,
and adhesion. The chemokine CXCL10 secreted by mono-
cytes, endothelial cells, and fibroblasts has a lethal effect
upon tumor cells [25]. However, the endothelial progenitor
cell (EPC) is mobilized by CXCL10/CXCR3 signaling after
small liver grafts, promoting angiogenesis and tumor growth
[26]. Matrix metallopeptidase 9 (MMP-9) is unregulated
after IRI and promotes micrometastasis of colorectal carcin-
oma, and may represent a therapeutic target against IRI -in-
duced tumor growth and metastasis [27, 28]. IRI also
increases E-selectin, present in the endothelium, which is
critical for tumor cell adhesion, and has been shown to me-
diate liver metastasis of pancreatic cancer [29]. Additionally,
IRI contributes to tumor metastasis by its effects upon neu-
trophils, detailed later in this review [30].

Sympathetic nervous system activation
The autonomic nervous system primarily regulates the
body’s unconscious physiologic functions. The sympa-
thetic nervous system stimulates the body’s fight-or-flight
response, modifying blood flow and cytokine secretion
[31, 32]. Sympathetic nervous system activation remains
one of the most overt pathophysiological responses to sur-
gical stress, in turn sharply increasing circulating catechol-
amines [33]. Tissue trauma during surgery, hypothermia,
patient anxiety, metabolic derangements, and fasting all
may be perioperative triggers [34].
Increase of circulating catecholamine (including adren-

aline and noradrenaline) levels activates β-adrenoceptors
(βAR). Activation of βAR directly affects tumor cells and in-
directly remodels the tumor microenvironment [32, 35–37].
βAR activation increases metastasis in breast, lung, and

colon cancer models, and accelerates growth in mammary
tumors [38]. In addition, βAR activation also structurally
changes tumor cells. Initial tumor cells have a defined shape
and deformability. βAR activation increases the frequency of
invadopodia-positive tumor cells and the number of invado-
podia per cell [39]. Invadopodia are specialized actin-rich
structures that facilitate invasion through the basement
membrane and surrounding stroma [40]. The formation
of invadopodia increases tumor cell invasiveness through
the three-dimensional extracellular matrix, enhancing
development of metastasis and cancer recurrence. In
mammary tumors, βAR activation is associated with accel-
erated tumor growth [41]. In a colon carcinoma cell line,
catecholamines induce in vitro locomotion in a β2-
adrenoceptor-dependent fashion [42].
The communication between tumor cells and the micro-

environment drives tumor progression [43]. Production of
several pro-metastatic factors is increased in the tumor
microenvironment, including matrix metalloproteinase 9
(MMP9), vascular endothelial growth factor (VEGF), IL-8,
and IL-6 [44, 45]. These cytokines, increased by the auto-
nomic nervous system activation, stimulate tumor growth by
triggering inflammatory responses and promoting angiogen-
esis [46]. After βAR activation, inflammation-dependent
mechanisms remodel tumor-associated lymphatic and blood
vasculature, which in turn promote in vivo tumor cell dis-
semination [36]. Also, accumulating evidence has suggested
that catecholamines have a stronger effect upon the immune
system than glucocorticoids, and activation of the sympa-
thetic nervous system suppresses natural killer cell response
to tumor cells [47, 48].

Inflammation
Surgery induces inflammation by many means, including
direct wound formation [49] and infection, resulting in
the release of many inflammatory mediators and the re-
cruitment of numerous immune cell types, particularly
monocytes and neutrophils [50]. Factors such as IL-1,
TNF-α, VEGF, and matrix metalloproteinases (MMPs),
secreted by recruited macrophages and neutrophils, all
contribute to tumor progression [50, 51]. Produced by cy-
clooxygenase, prostaglandin E2 (PGE2) modulates various
physiologic and pathologic activities, such as cell prolifera-
tion and angiogenesis [52, 53]. PGE2 promotes neoplastic
progression in various malignancies. In lung cancer, PGE2
promotes metastasis by increasing MMP9 mRNA expres-
sion and inhibiting E-cadherin mRNA expression [54].
PGE2 also induces an immunosuppressive response, in-
cluding increasing cancer-promoting regulatory T (Treg)
cells, reducing the activated CD8+ T cell population, and
altering the cytokines secreted by T helper cells [55, 56].
In breast cancer, PGE2 plays a key role in the “dormant-
to-proliferative” transition when tumor cells disseminate
to the bone microenvironment [57]. This may explain the
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clinical observations that inhibiting cyclooxygenase-2
(COX-2) mediates antineoplastic effects in some prostate
or lung cancer patients [58, 59].
While the complement system was once regarded as an

effective anti-cancer defense, significant work in recent
years has identified that complement elements may pro-
mote tumor growth during chronic inflammation [60] via
multiple mechanisms, such as enhancing the stemness of
cancer stem cells [61], promoting angiogenesis [62, 63],
and reducing anti-tumor immunity [64–66]. Surgery-
induced inflammation activates the complement system,
contributing to tumor recurrence. Increased levels of C3a
and terminal complement complex (TCC) are observed on
the second postoperative day of thoracoabdominal esopha-
gectomy [67], a phenomenon exhibited in patients sub-
jected to major abdominal surgery [68]. Tibial fracture
surgery performed in a mouse model increases C3 levels
and C3a receptor expression in hippocampal astrocytes
and microglia postoperation [69]. Therefore, targeting the
complement system may be an effective strategy mitigating
surgical stress for cancer patients.

Hypercoagulable state
In the normal state, few circulating tumor cells successfully
colonize in new sites due to the lack of extracellular matrix
support, and damage by shear stress or the immune surveil-
lance [70]. Blood of a hypercoagulable state protects tumor
cells from the above risks [71–73]. Surgery induces the re-
lease of pro-inflammatory cytokines such as IL-1, IL-6, and
TNF, which increase the production of fibrinogen [71]. Be-
sides, surgery promotes fibrin and platelet clots around
tumor cells, which act as a coat of protection against detec-
tion and attack by NK cells [72, 74] and mediate tumor cell
adherence to endothelial cells, releasing proangiogenic and
mitogenic factors [74]. Trials demonstrate that anticoagu-
lants can damage the fibrin/platelet coat, reduce tumor me-
tastasis, and may significantly decrease metastatic disease
after cancer surgery [72].
Platelets are crucial for hemostasis and wound healing.

However, platelets contribute to tumor metastasis [75] and
may be associated with decreased survival [76, 77]. A recent
study demonstrates that platelets are increased in the peri-
operative period, and is associated with poor cancer out-
comes [78]. Many mechanisms exist by which platelets are
protective of tumor cells, such as cloaking tumor cells to
avoid NK cell detection, promoting the arrest of tumor cells
to endothelial cells, enhancing the development of secondary
lesions and mediating angiogenesis [75, 79, 80].

Immune suppressive state
Tumor cells can be protected from attack by establishing
immune suppression, a long considered critical step in both
tumor formation and progression [81]. Surgery provides
numerous factors (inflammation, blood transfusion, and

anesthetic agents) further buttressing a systemic immuno-
suppressive state. The immunosuppressive state after sur-
gery can span for about two weeks [82, 83], peaking day 3
postoperative [2]. In this section, we will revisit the im-
munosuppressive effects of surgery, by analysis of the four
main involved immune cell types.

Regulatory T cells
Evidence supports a role for Treg cells in the establish-
ment of immunosuppression within the primary tumor,
as well as tumor cell dissemination and metastasis. In-
creased Treg cell population has been detected in mul-
tiple cancers, correlated with poor prognosis [84–87]. It
was reported that Treg cells are markedly increased
postoperatively, accompanied by decreased T helper cells
and cytotoxic T cells. These factors benefit survival of
neoplastic cells to varying degrees, depending upon the
operative procedures performed [82, 87–89]. By unclear
mechanisms, modifying T cell populations may therefore
prevent cancer recurrence [90]. Hypersecretion of corti-
sol and overproduction of immunosuppressive acidic
proteins are observed systemically after surgery [82], and
may be responsible for the differential modification of T
cell subpopulations.

Myeloid-derived suppressor cells (MDSCs)
Accumulating evidence has demonstrated that number of
myeloid-derived suppressor cells (MDSCs) after surgery corre-
lates with cancer recurrence and indicates a poor prognosis
[91–93]. Particularly, CD11b+CD33+HLA-DR- MDSCs signifi-
cantly increase in lung cancer patients after thoracotomy, and
are more efficient in secreting MMP-9, promoting angiogen-
esis and tumor growth than MDSCs isolated before surgical
operation in allograft tumor model [94]. MDSCs regulate
tumor progression through various ways, including participat-
ing in the formation of premetastatic niches, promoting angio-
genesis and tumor cell invasion [95]. Phosphodiesterase-5
inhibitors, such as sildenafil, could hamper the functions of
surgery-derived MDSCs through downregulating the expres-
sion of arginase 1 (ARG1), IL4Ra and reactive oxygen species
(ROS), enabling NK cell tumoricidal activity and reducing
postoperative disease recurrence [96].

NK cells
Surgery alters the function of NK cells, cytotoxic lympho-
cytes that scavenge malignant cells. In the perioperative
period, natural killer cell cytotoxicity (NKC) and NK cell
IFNγ secretion are both profoundly suppressed [97, 98],
which might be directly induced by catecholamine, gluco-
corticoid (CORT), and prostaglandin (PG) [99, 100]. Surgi-
cal stress affects immune cytotoxicity by directly exerting
“toxic” effects upon NK cells, which impair programmed
tumor lysis in sarcoma and solid tumor patients [101]. As
mentioned above, surgery also promotes the cloaking
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fibrin/platelet coat around tumor cells, impairing NK cell-
mediated tumor clearance [72].

Neutrophils
Protecting the body from foreign pathogens, neutrophils
neutralize harmful microorganisms, and are also the main
mediator of inflammation. However, neutrophils have been
demonstrated to promote tumor cell metastasis both in
vitro and in vivo [102, 103]. Neutrophils escort “hitchhiker”
CTCs to the whole body by multiple mechanisms [3]. They
can interact with CTCs and form the circulating tumor
cell-white blood cell (CTC–WBC) cluster, driving cell cycle
progression systemically, expanding the CTC metastatic
potential [104]. Surgery induces systemic inflammation, ac-
tivating neutrophils, thereby providing favorable migration
conditions for CTC [105].
During microorganism invasion, neutrophils can re-

lease neutrophils extracellular traps (NETs) into the
extracellular space for invader capture [106]. NETs play
a positive role in innate immunity, clearing bacteria and
fungi. However, NETs can trigger HMGB1 (High mobil-
ity group box 1) release, activating TLR9-dependent
pathways in cancer cells, thereby promoting tumor cell
adhesion, proliferation, migration, and invasion after sur-
gical stress [107]. Metastatic dormancy has long compli-
cated breast cancer treatment. NETs awaken dormant
cancer cells in mice during inflammation, and promote
the development after surgery, in the setting of increased
neutrophils. As inflammation is a significant character of
surgery and IRI, NETs may be implicated in surgical stress
induced cancer cell dormancy revival [10, 108, 109]. It
should be noted that not all effects upon the immune sys-
tem are caused by surgery-induced trauma. In our next
section, we discuss the anesthetic techniques reported to
promote tumor growth and metastasis by reducing NK
cell activity and abundance [110].

Anesthetic agent effects
The effects of anesthetic agents upon tumor cells have
been documented since the early 1980s [111]. Most
anesthetic (inhaled or intravenous alike) agents contrib-
ute to tumor recurrence by directly impacting tumor cell
signaling pathways or by indirectly impacting neuroen-
docrine and immune function [112].

Inhalational anesthetics
Some inhalational anesthetics accelerate tumor progression.
Isoflurane is a classic inhaled halogenated hydrocarbon
anesthetic used for general anesthesia that inhibits activated
potassium channel conduction [113]. Renal cell carcinoma
cells (RCC4) proliferate and migrate more rapidly when ex-
posed to 2% isoflurane in vitro [114]. Furthermore, isoflur-
ane induces increased expression of hypoxia-inducing
factors 1 and 2 (HIF1, HIF2), sequentially promoting tumor

recurrence by stimulating cellular protection or primary
pathogenesis of residual cells [112]. Th1:Th2 ratio [115]
and NK cell activity [116] are both altered after isoflurane
exposure, resulting in increased tumor cell migration [117].
Nitrous oxide acts upon a wide range of receptors [118,

119], and is associated with accelerated progression of lung
and liver metastasis in mouse models. It has the strongest
liver metastatic stimulation of any anesthetic studied [110,
120]. Such effects of volatile anesthesia has been recognized
in clinical studies, which document markedly reduced over-
all survival of patients subjected to cancer surgery, even
after controlling for comorbidity risk and the presence of
metastatic disease [121]. This suggests limiting use of inha-
lational anesthetics in the setting of cancer surgery.

Intravenous anesthetics
Some intravenous anesthetics have been demonstrated to
contribute to tumor growth and metastasis, albeit via un-
clear mechanisms. Ketamine is an intravenous anesthetic
which induces a trance-like state while providing pain relief,
sedation, and amnesia [122] by blockade of the NMDA re-
ceptor, an ionotropic glutamate receptor [123]. Ketamine
reduces the activity of NK cells, and more than doubles the
survival and metastasis rate of lung tumors [124]. Increased
lung tumor retention was reported after exposure to a vola-
tile anesthetic (halothane) or intravenous agents (ketamine
and thiopental) before intravenous inoculation with
MADB106 breast cancer cells in rats [112].
Thiopental sodium is a highly oleophilic intravenous

barbiturate anesthetic acting upon the GABAA receptor
channel [125]. Thiopental significantly reduced NK cell
activity and increased survival of MADB106 lung tumor
cells or the probability of lung metastasis [124]. Thio-
pental sodium inhibits the cascade reaction of NF-κB ac-
tivation signal by modifying IκB kinase activity, in which
the thio-group at the position of barbiturate molecule
C2 plays a key role [126].
Propofol, a short-acting intravenous anesthetic of alkyl

acids, has anti-cancer effects. Propofol inhibits the capacity
of cancer cells for migration and invasion by impairing
translation of mRNA and modulating the GTPase RhoA
[127, 128]. The conjugation of propofol - DHA or propofol
- EPA can significantly inhibit the adhesion (15-30%) and
migration (about 50%) of breast cancer cells, and induce
apoptosis (about 40%) [129]. A retrospective study from a
UK group reported a 5% improved overall survival at 5
years in 2607 patients (after propensity score matching) ex-
posed to propofol-based intravenous anesthesia compared
to volatile anesthesia. Multivariate analysis by cancer type
reveals that improved survival was predominantly observed
in gastrointestinal and urological cancer subtypes [121].
Additionally, the method of anesthetic administration

impacts cancer recurrence. Regional anesthesia (RA) refers
to local anesthetic administration blocking transmission of
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nociceptive stimuli during tissue injury [112]. RA reduces
the recurrence rate of breast cancer, prostate cancer, ovar-
ian cancer, melanoma, and localized colon cancer, and im-
proves overall survival rate [130]. Epidural anesthesia
reduces the recurrence rate after radical prostatectomy by
57% after accounting for known prognostic factors [131].

Therapy by pharmaceutical agents
Many pharmaceutical agents have been developed to miti-
gate surgical stress-induced tumor progression (Table 1).
Clinical studies investigating propranolol and metoprolol
demonstrate that β-blockers, which are a classical anti-
hypertensive class of drugs, significantly inhibit tumor
progression [132, 133]. In a clinical trial of 185 high-grade
epithelial ovarian carcinoma patients, the overall survival
(OS) of patients given β blockers after surgery was signifi-
cantly increased compared to the control group after pri-
mary cytoreductive surgery [134]. In another trial,
perioperative β-blockade significantly inhibits recurrence
and metastasis of triple-negative breast cancer [135]. Pa-
tients undergoing radical mastectomy surgery exhibit in-
creased levels of circulating epinephrine, norepinephrine,
PGE 2, peripheral FOXP3 mRNA, and Treg populations;
daily propranolol (60 mg) decreased Treg elevation,
underlining surgery-induced catecholamines promotion of
Tregs [136, 137]. Propranolol also inhibits thromboxane
synthesis and reduces platelet aggregation, further con-
tributing to its anti- metastatic properties [154]. More
clinical trials assessing the effects of β-blockers upon on-
cologic outcomes during the perioperative period in pa-
tients with breast, ovarian, colorectal, or skin (melanoma)
cancers remain ongoing [155].
Non-steroidal anti-inflammatory drugs (NSAIDs), which

inhibit cyclooxygenase 1 or 2 (COX-1 or COX-2), are widely

used clinically for anti-inflammatory or analgesic effect.
NSAIDs effectively inhibit surgery-induced systemic inflam-
mation, eliminating suppression of NK cell populations, pre-
venting tumor growth and metastasis [10, 156, 157].
However, the effects of NSAIDs are very limited. For ex-
ample, many reports demonstrate that celecoxib, a COX2
specific inhibitor, did not significantly affect apoptosis in
prostate, breast cancer, and cervical intraepithelial neoplasia
[158–161], and may only prevent colorectal adenomas [138].
Parecoxib, another COX2 inhibitor, is similarly temporally
limited. Although parecoxib is an excellent analgesic in hepa-
tocellular carcinoma [162] and has immunoprotective effect
against cervical cancer [139], IL-6, IL-8, and TNF-α produc-
tion is unaffected in patients receiving parecoxib 24 hours
after colorectal surgery [163]. In a trial of 154 women be-
tween the ages of 25 and 65 undergoing a modified radical
mastectomy for primary breast cancer, a single treatment of
parecoxib did not prevent Treg elevation; propranolol plus
parecoxib treatment exhibited no additive or synergistic ef-
fects compared to propranolol treatment alone [136].
Recently, rapid developments of immunotherapy have

given it clinical applications. Many immunotherapy drugs
inhibit surgery-induced suppression of immune cells. Toll-
like receptors (TLR), which play a crucial role in activating
the innate immune system, are expressed on the mem-
branes of leukocytes and even some non-immune cells
[164]. Both TLR4 agonist GLA-SE and TLR9 agonist
CpG-C oligodeoxynucleotides significantly decrease can-
cer metastasis by increasing NK cell cytotoxicity during
the perioperative period in a mouse model without ad-
verse effects [142, 143]. Vaccines, the classic immune acti-
vators, have also been tried in combination with surgery.
Perioperative treatment with influenza vaccination re-
versed surgery-induced dysfunction in natural killer cells

Table 1 Therapeutic regimens to prevent cancer recurrence after surgery

Drug Description Perioperative
anti-tumor mechanism

Examples Reference

β-adrenoceptor antagonists
(β-blockers)

Inhibitor of β-adrenoceptors; used to treat
heart failure, tachycardia, and hypertension

Blockade of stress-induced
catecholamine release

Propranolol, Metoprolol [132–137]

NSAIDs Inhibitor of cyclo-oxygenase; use to reduce
pain, fever, inflammation, and prevent
blood clots

Inhibition of COX-2 Aspirin, Meloxicam,
Celecoxib, Parecoxib

[10, 138–141]

PDE-5 inhibitors Inhibitor of PDE-5, conventionally used to
treat erectile dysfunction

Downregulation of ARG1,
IL4Ra and ROS expression

Sildenafil, Tadalafil [96]

Immunostimulants Many diseases such as malignancy will
stimulate the immune system

Activation of immune cells
(e.g. NK cells)

Toll-like receptor agonists,
vaccines, checkpoint inhibitors

[142–148]

Statins Lipid-lowering medications Inhibition of HMG-CoA
reductase or cholesterol
synthesis

Fluvastatin [149]

Anticoagulants Inhibit thrombosis Inhibit formation of fibrin
and platelet clots

Aspirin, heparin, warfarin [72, 150–152]

Bevacizumab Inhibits angiogenesis Inhibits VEGF Bevacizumab [153]

Abbrevations: NSAIDs, nonsteroidal anti-inflammatory drugs; COX-2, Cyclooxygenase 2; NK, natural killer; HMG-CoA, β-Hydroxy β-methylglutaryl-CoA; VEGF, Vascular
endothelial growth factor; PDE-5, Phosphodiesterase-5; ARG1, Arginase 1; ROS, reactive oxygen species
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and reduced postoperative metastatic disease in the mouse
[144]. In another trial, oncolytic Newcastle Disease Virus
(NDV) was employed to infect multiple autologous tumor
cell types ex vivo. Postoperative injection of this OV modi-
fied tumor vaccine significantly enhanced survival in vacci-
nated patients compared to unvaccinated cohorts [145–147].
Checkpoint inhibitors against PD-1 mitigate postoperative
T-cell dysfunction. In combination with prostaglandin inhib-
itors, these agents restore postoperative T-cell function com-
pletely, indicating the potential of immunotherapy in surgical
stress and tumor therapy [148].
Statins, a class of agents commonly used to control

hyperlipidemia, have pleiotropic effects including anti-
inflammatory, antioxidative, and vasodilatatory effects, im-
proving endothelial function, stabilizing atherosclerotic
plaques, and ultimately have anti-tumor effects, albeit via
imprecisely understood mechanisms [149]. The anti-
metastatic properties of anticoagulation agents have been
demonstrated in various animal models [72, 150, 151].
Antithrombotics such as aspirin, heparin, and warfarin
have clinically been demonstrated to improve cancer pa-
tient survival [152], supporting their important application
to prevent metastasis during surgery. Perioperative admin-
istration of bevacizumab improved survival in a clinical
trial of 223 patients following lung metastasectomy for
colorectal cancer [153].

Conclusions
Surgery remains a common and important treatment for
patients with solid tumors. However, despite advanced
technology, new procedures, and advanced equipment
availability, surgery might not significantly improve every
cancer patient’s condition. In this review, we have dis-
cussed various etiologies of poor outcome in patients hav-
ing undergone surgical stress during tumor removal.
Innovative therapeutic solutions are in development to
improve outcomes after cancer-related surgical proce-
dures. Rigorous future evaluation of the efficacy and feasi-
bility of these therapeutic avenues in cancer patients post
operatively are warranted.
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