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Abstract

Emerging evidence has revealed significant roles for small nucleolar RNAs (snoRNAs) in tumorigenesis. However, the
genetic and pharmacogenomic landscape of snoRNAs has not been characterized. Using the genotype and
snoRNA expression data from The Cancer Genome Atlas, we characterized the effects of genetic variants on
snoRNAs across 29 cancer types and further linked related alleles with patient survival as well as genome-wide
association study risk loci. Furthermore, we characterized the impact of snoRNA expression on drug response in
patients to facilitate the clinical utility of snoRNAs in cancer. We also developed a user-friendly data resource, GPSno
(http://hanlab.uth.edu/GPSno), with multiple modules for researchers to visualize, browse, and download multi-
dimensional data. Our study provides a comprehensive genetic and pharmacogenomic landscape of snoRNAs,
which will shed light on future clinical considerations for the development of snoRNA-based targeted therapies.

Keywords: Small nucleolar RNA, Genetic variants, Pharmacogenomics, Cancer

Main text
Small nucleolar RNAs (snoRNAs) are a group of regula-
tory RNAs that mainly reside in the nucleolus and post-
transcriptionally modify ribosomal RNA (rRNA) and
small nuclear RNA (snRNA). Emerging evidence has
demonstrated significant roles of snoRNAs in cancer [1].
For example, deletion of SNORD50A/B may cooperate
with oncogenic KRAS mutations in cancer to drive Ras-
MAPK hyperactivation [2]. Overexpression of SNORD46
has been shown to promote cancer cell growth, migra-
tion, and invasion [3]. Recent studies characterized the
expression landscape and copy number variations of

snoRNAs in large numbers of cancer patients [2, 3]. It
remains challenging to further understand the functional
roles of snoRNAs in cancer. For example, it is unclear
whether genetic variants will affect the expression level
of snoRNAs, and whether the alterations of snoRNAs
are associated with drug response in patients.
In this study, we investigated the effects of genetic var-

iants on snoRNA expression and characterized the ef-
fects of snoRNA expression on drug response. To
facilitate broad access of these data for the biomedical
research community, we developed a user-friendly data-
base, GPSno. We expect this study to have a significant
clinical impact on the future development of snoRNA-
based targeted therapies.

Results and discussions
Impact of genetic variants on snoRNA expression
To comprehensively characterize the impact of genetic
variants on snoRNA expression across different cancer
types, we performed snoRNA expression quantitative
trait loci (QTL) analysis [4] across 29 cancer types with
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at least 50 patients having both genotype data and
snoRNA expression data in The Cancer Genome Atlas
(TCGA) (additional file: Fig. S1A and Table S1). A total
of 9449 tumor samples were included, with the sample
size of each cancer type ranging from 56 in uterine car-
cinosarcoma (UCS) to 1073 in breast invasive carcinoma
(BRCA) (Fig.1a). After imputation and quality control
for the genotype data, we obtained a median of 4,358,
817 SNPs for each cancer type. There were on average
435 snoRNAs (reads per kilobase per million reads
[RPKM] ≥1) for each cancer type (additional file: Table
S2). For analysis of proximal genetic regulation of snoR-
NAs (SNP within 1Mb from the snoRNA location), a
total of 69,557 significant SNP–snoRNA pairs in 29 can-
cer types were identified at a per-tissue false discovery
rate (FDR) < 0.05 (Fig. 1a), which corresponded to a me-
dian P-value < 8.34 × 10− 9. The number of cis-snoQTLs
ranged from 227 in UCS to 5067 in thyroid carcinoma
(THCA), with a median of 2184 cis-snoQTLs per cancer
type (Fig. 1a; additional file: Table S2). For example, in
pancreatic adenocarcinoma (PAAD), rs6483262 alleles
demonstrated significant effects on regulating the ex-
pression of SNORA25 (P-value = 1.48 × 10− 39) (Fig. 1b).
To be noted, SNORA25 was reported as a promising
biomarker for the early detection of pancreatic cancer
[5]. We also examined the relative location distribution
of cis-snoQTLs in regard to paired snoRNAs, and found
that cis-snoQTLs were preferentially located in proxim-
ity to paired snoRNAs (Fig. 1c). For analysis of the re-
mote genetic regulation of snoRNAs (SNP beyond 1Mb
from the snoRNA location), a total of 34,151 SNP–
snoRNA pairs in 29 cancer types were identified at a
per-tissue FDR < 0.05 (Fig. 1a), which corresponded to a
median P-value < 7.40 × 10− 15. The number of trans-
snoQTLs ranged from 0 in adrenocortical carcinoma
(ACC) to 1525 in THCA, with a median of 821 trans-
snoQTLs per cancer type (Fig. 1a; additional file: Table
S2). For example, rs8069739 alleles showed remote regu-
lation of the expression of U8 in lung adenocarcinoma
(LUAD) (Fig. 1d). It was reported that U8 depletion trig-
gers a remarkably potent p53-dependent anti-tumor
stress response in lung adenocarcinoma [6]. The num-
bers of cis-snoQTLs and trans-snoQTLs were both sig-
nificantly correlated with the number of samples
(Spearman’s correlation, cis-snoQTL: Rs = 0.92, P-
value = 3.48 × 10− 12; trans-snoQTL: Rs = 0.87, P-value =
6.52 × 10− 10) (additional file: Fig. S1B). This suggests
that the effects of some SNPs may be underestimated

due to insufficient sample size in certain cancer types,
and this could be improved with additional patient sam-
ples in the future.
To investigate the clinical relevance of these genetic

variants associated with snoRNA expression, we identi-
fied 475 SNP alleles that correlated with patients’ overall
survival times in different cancer types with FDR < 0.05.
For instance, kidney renal clear cell carcinoma (KIRC)
patients carrying the homozygous rs1694419 AA had
worse overall survival than those carrying the heterozy-
gous Aa and the homozygote aa (log-rank test, P-value =
1.14 × 10− 4) (Fig. 1e). Patients carrying the homozygous
rs1694419 AA had significantly higher expression level
of SNORD45B than patients carrying the heterozygous
Aa and the homozygous aa in 26 out of 29 (89.7%) can-
cer types, including KIRC (P-value = 3.93 × 10− 34, add-
itional file: Fig. S2A). SNORD45B was significantly
upregulated in KIRC tumor tissues compared to adjacent
normal tissues (Student’s t-test, P-value = 0.011; add-
itional file: Fig. S2B), and KIRC patients with higher ex-
pression of SNORD45B also had worse overall survival
than those with lower expression of SNORD45B (log-
rank test, P-value = 0.0041; additional file: Fig. S2C).
Taken together, our results demonstrated the effects of
snoQTLs on patients’ survival through regulating the ex-
pression of snoRNAs.
To identify genome-wide association study (GWAS)-

related snoQTLs, 28,345 trait/disease-related SNPs were
extracted from the GWAS catalog, and 1,167,961 SNPs
were obtained that were located in the GWAS linkage
disequilibrium (LD) regions. We identified 29,795
snoQTL–snoRNA pairs in which the snoQTLs over-
lapped with known disease/trait-associated loci in differ-
ent cancer types. For example, the Testicular Cancer
Consortium found that rs60180747 is significantly asso-
ciated with testicular germ cell tumor (TGCT) risk (odds
ratio [OR] = 1.23; P = 1.10 × 10− 10) [7]. The SNP marker
rs60180747 marks a 261 kb haploblock on 15q22.31 that
contains several genes, including TIPIN, MAP 2 K1,
DIS3L, SNAPC5, RPL4 and ZWILCH (Fig. 1f), and
rs60180747 is located in the intron of gene TIPIN.
However, this risk allele is not correlated with any
protein-coding genes in 15q22.31 in TGCT patients [8].
We further examined nearby SNPs, and observed that
rs12905354, which is in LD with rs60180747 (LD r2 =
1.0), significantly correlated with the expression of
SNORD18A (additional file: Fig. S3) rather than protein-
coding genes located in this risk locus. These findings

(See figure on previous page.)
Fig. 1 Summary of pan-cancer snoQTL analysis. a Numbers of samples included and numbers of snoQTLs identified in different cancer types. b
Association between cis-snoQTL rs6483262 alleles and SNORA25 levels in PAAD. c Relative location distribution of cis-snoQTLs in regard to their
paired snoRNAs. d Association between trans-snoQTL rs8069739 alleles and U8 levels in LUAD. e Kaplan–Meier plot displaying the association
between rs1694419 genotypes and overall survival times of KIRC patients. f snoQTL rs12905354 located in TCGT GWAS locus
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suggest that SNORD18A may be a causal target in this
TGCT GWAS loci.

Pharmacogenomic landscape of snoRNAs across different
cancer types
To understand the effects of snoRNA expression on
drug response, we performed an integrative analysis to
assess the associations between the variance of snoRNA
expression and the response to anticancer drugs in
TCGA patients. We acquired imputed drug response
data of TCGA patients from a previous study [9]. Eight-
een cancer types in TCGA with at least 50 patients hav-
ing both imputed drug response data and snoRNA
expression data were included for drug response ana-
lysis. We identified 16,393 significantly correlated
snoRNA–drug response pairs at FDR < 0.05 from 18
cancer types, ranging from 0 in esophageal carcinoma
(ESCA) to 7226 in TGCT, with a median of 113
snoRNA–drug pairs per cancer type (Fig. 2a). The num-
ber of snoRNA–drug pairs did not correlate with the
number of samples (Spearman’s correlation, P-value =
0.75). The snoRNAs (390 box C/D snoRNAs, 184 box
H/ACA snoRNAs, and 27 scaRNAs) had extensive im-
pact on patients’ responses to drugs within various drug
target pathways across different cancer types. Among
these drug target pathways, drugs related to the cyto-
skeleton pathway showed the largest number of drug–
snoRNA pairs (Fig. 2b). We further used Fisher’s exact
test to evaluate the enrichment of each drug target path-
way in 10 cancer types with at least 100 significantly cor-
related snoRNA–drug response pairs identified, and
found that the cytoskeleton pathway was significantly
enriched in 5 cancer types (P-value < 0.05; Fig. 2c).
Taking prostate adenocarcinoma (PRAD) as an ex-

ample, the response to 29 anti-cancer drugs significantly
correlated with the levels of at least five snoRNAs (Fig.
2d). Intriguingly, various snoRNAs showed great
consistency in having either a positive or negative effect
on the response to one certain drug, which was likely
due to the high correlation among the expression of
these snoRNAs in each cancer type (additional file: Fig.
S4). In patients with PAAD, the expression level of
SNORA23 was highly associated with the response to
the drug axitinib (R = − 0.37, P-value = 0.93 × 10− 3; Fig.
2e). SNORA23 has been shown to promote tumor
growth and metastasis in pancreatic cancer [10]. There-
fore, the expression level of SNORA23 may need to be
considered in future clinical trials for axitinib. These

results suggest that appreciable levels of snoRNAs could
contribute to response to drug therapy. Future experi-
ments are necessary to validate the effects of drug re-
sponse for these snoRNAs.

A comprehensive data resource to explore the genetic
impacts and pharmacogenomic landscape of snoRNAs in
cancer
We developed a user-friendly data portal, GPSno
(https://hanlab.uth.edu/GPSno/), to facilitate visualizing,
searching and browsing of data by the biomedical re-
search community. GPSno contains five main modules:
cis-snoQTLs, trans-snoQTLs, survival-snoQTLs,
GWAS-snoQTLs, and drug response (Fig. 3a). Several
entryways are provided for querying, and each supports
user-defined filters such as cancer type, SNP ID, and
snoRNA ID. Users can enter different pages to search
SNPs or snoRNAs of interest. We also provide a search
section for users to query the data based on cancer type,
SNP ID, or snoRNA (Fig. 3b). Querying on the cis/trans-
snoQTL page, a table with SNP ID, SNP genomic pos-
ition, SNP alleles, snoRNA ID, snoRNA position, beta
value (effect size of SNP on gene expression), and P-
value of snoQTL will be returned (Fig. 3c). For each rec-
ord, a vector diagram of a boxplot is provided to display
the association between SNP genotypes and snoRNA
levels. Querying on the survival-snoQTL page, details
with SNP ID, SNP genomic position, SNP alleles, log-
rank test P-value and median survival times of different
genotypes will be displayed. A vector diagram of the
Kaplan–Meier plot is embedded in each record to dis-
play the association between snoQTL and overall sur-
vival times. Querying on the GWAS-snoQTLs page will
return the SNP information, snoRNA information and
related GWAS traits. Querying on the drug response
page will return the snoRNA and related drug informa-
tion, and a diagram is also provided to display the asso-
ciation between snoRNA levels and drug response. To
facilitate researchers studying different cancer types, we
also designed a cancer-type-specific module for querying
results (Fig. 3d). Tables of querying results can be down-
loaded in XLSX format, and figures of results can be
downloaded as a PDF. The document page includes an
introduction, construction pipeline, and interpretation
guidance for the database. This database is a valuable re-
source and will be of great interest to the research com-
munity, which will provide a unique resource to select
candidate snoRNAs for future experiments.

(See figure on previous page.)
Fig. 2 Pharmacogenomic landscape of snoRNAs. a Sample size included and significant snoRNA–drug pairs identified. b Association between
snoRNA expression and imputed drug response. c Enrichment of various drug target pathways of significant snoRNA–drug response pairs. d
Significantly correlated snoRNA–drug response pairs identified in PRAD. Drugs significantly associated with at least 5 snoRNAs are shown in the
plot. e Association between SNORA23 expression and response to the drug axitinib in PAAD patients
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Fig. 3 Web design and querying of GPSno. a Five main modules in GPSno. b General search section for querying. c Example of resulting list after
querying on the cis/trans-snoQTL page. d Specific modules for querying results by cancer type
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Conclusions
In light of the significance of snoRNAs in oncogenesis,
we systematically investigated the impact of genetic vari-
ants and the pharmacogenomic landscape of snoRNAs
in multiple cancer types from TCGA. We also developed
GPSno as the first comprehensive data resource for the
genetic and pharmacogenomic landscape of snoRNAs.
Our study will shed light on future clinical consider-
ations for the development of snoRNA-based targeted
therapies.
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