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Immunotherapy (I0) has revolutionized the therapy landscape of non-small cell lung cancer (NSCLC), significantly
prolonging the overall survival (OS) of advanced stage patients. Over the recent years IO therapy has been broadly
integrated into the first-line setting of non-oncogene driven NSCLC, either in combination with chemotherapy, or
expression as monotherapy. Still, a significant proportion of patients suffer from
disease progression. A better understanding of resistance mechanisms depicts a central goal to avoid or overcome

We here review major cellular and molecular pathways within the tumor microenvironment (TME) that may impact
the evolution of 10 resistance. We summarize upcoming treatment options after 10 resistance including novel 1O
targets (e.g. RIG-I, STING) as well as interesting combinational approaches such as IO combined with anti-
angiogenic agents or metabolic targets (e.g. IDO-1, adenosine signaling, arginase). By discussing the fundamental
mode of action of 10 within the TME, we aim to understand and manage 1O resistance and to seed new ideas for
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Background
Immunotherapy (IO) and particularly immune check-
point inhibitors (ICI), including programmed death re-
ceptor 1 (PD-1) and PD-ligand 1 (PD-L1) inhibitors
have revolutionized the treatment landscape of non-
small cell lung cancer (NSCLC). Previously unantici-
pated long-term responses in advanced stage disease
have been accomplished, with a 5 year overall survival
(OS) of 20% in unselected and up to 40% in PD-L1hieh
expressing patients [1].

Despite the striking clinical improvements, the majority
of patients eventually fails to respond to ICI therapy due to
the evolution of primary or secondary resistance.
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Prospective clinical studies to demonstrate treatment strat-
egies following progression on IO therapy are still lacking.

Various IO resistance mechanisms have been character-
ized, involving tumor cell intrinsic as well as environmen-
tal resistance patterns. The tumor microenvironment
(TME) plays a critical role by influencing both extrinsic
and intrinsic resistance pathways. A better understanding
of the heterogenous TME will set stage for further opti-
mizing strategies and guide new avenues in future 10
treatment stratification.

This review discusses the multitude of novel preclinical
and clinical treatment approaches that aim to overcome
IO resistance in NSCLC. The complexity of cellular and
molecular alterations within the immunosuppressive TME
build the fundament for designing rational and synergistic
combination therapies that lower the risk of resistance
and prolong benefit from IO therapy.
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Immunopathology of NSCLC and evolution of 10
resistance

IO resistance mechanisms result from the constantly
evolving interactions between cancer cells and the sur-
rounding cell populations within the TME, including im-
mune cells, cancer-associated fibroblasts (CAF) and
tumor endothelial cells (TEC) (Fig. 1). The following
section recapitulates the basic characteristics of the im-
munogenic TME, particularly focusing on IO response-
or resistance-mediating mechanisms and biomarkers.

Immune checkpoints

Immune checkpoints (IC) play a central role in negative
regulation of T cell reactivity and their inhibition via mono-
clonal antibodies can unleash T cell-triggered antitumor

Page 2 of 15

immune responses. The best studied IC are PD-1 and cyto-
toxic T lymphocyte antigen 4 (CTLA-4). PD-1 is broadly
expressed on CD8" T lymphocytes, regulatory T cells (Treg)
and natural killer (NK) cells and modulates T cell activity via
interaction with its ligand (PD-L1) in the TME (Fig. 2).
CTLA-4 is expressed on CD8" and CD4" T lymphocytes
and Treg and regulates early naive T cell activation in sec-
ondary lymphoid organs [3, 4]. Other IC are constantly being
discovered and under investigation for their clinical utility as
druggable IC (e.g. TIM-3, LAG-3 or TIGIT).

Lymphocytes of the tumor microenvironment

T lymphocytes

Tumor infiltrating T lymphocytes (TIL) play a major
role in antitumor immune responses within the TME
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Fig. 1 Overview of the cellular TME composition and major molecular pathways associated with 10 sensitivity (left) and resistance (right). 10
sensitivity is depicted by an immunogenic TME, comprising the activation of effector immune cells (e.g. tumor infiltrating lymphocytes (TIL),
dendritic cells (CD) and natural killer cells (NK)). Naive T cells undergo activation and priming in close association to B cells within tertiary
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lymphoid structures (TLS). T effector cells transmigrate to the stromal TME compartment via high endothelial venules (HEV), tightly regulated by
immunomodulatory tumor endothelial cells (TEC; not illustrated) in the HEV endothelium. Cancer cell intrinsic molecular pathways that enhance
TME immunogenicity involve interferon type | (IFN I) expression, which is, amongst other stressors, induced by cytosolic RIG-I or by an activated
STING pathway. |O sensitivity is enhanced in a TME with high PD-L1 expression by cancer and immune cells. High neo-antigen expression by
cancer cells as result of high tumor mutational burden (TMB), e.g. induced by PARP inhibition, enhances TME immunogenicity and 10 sensitivity.
IO resistance is marked by an immunosuppressive TME and includes, on a cellular basis, infiltration of T regulatory cells (Treg) and myeloid
derived suppressor cells (MDSC) as well as M2 macrophages (not shown). CD73 and, thus, adenosine expression by cancer cells or fibroblasts
leads to inhibition of TIL and promotion of Treg; CD73 upregulation associates with cancer immune evasion. Also, up-regulation of alternative
immune checkpoints e.g. LAG-3 and TIM-1 by immune cells enhances IO resistance. Cancer associated fibroblasts (CAF) depict both
immunosuppressive and immunostimulatory functions, e.g. via chemokine release. Upregulation of the chemokine receptor CCR-4 is associated
with 10 resistance. Vascular endothelial growth factor (VEGF) gets ubiquitously expressed in the TME (not illustrated, see Fig. 2). It has
immunosuppressive functions by inhibiting effector immune cells (e.g. TIL, NK, DC), upregulating inhibitory immune checkpoints (e.g. PD-L1) and
by promoting Treg and MDSC. Tumor growth promoting neo-angiogenesis (not illustrated) is driven by hypoxia and, thus, VEGF expression
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Fig. 2 The gene expression heterogeneity of the NSCLC TME, illustrated by gene expression in stromal and cancer cells. 52.698 single cells from 4
non-malignant and 15 tumor samples of five patients were analyzed. (a-f) tSNE plots of the 52.698 cells, with (@) clusters color-coded according
to the associated class of cell types, or with (b-f) cells colored according to the expression of the indicated marker gene, illustrating the
heterogeneity of gene expression by the various cell types within the TME. Gene expression is shown ranging from grey to red (low to high). (e)
CD274 is the gene alias for PD-L1. (f) NTE5 is the gene alias for CD73. (g) Expression levels of selected genes (gene alias in brackets), involved in
immunomodulation in tumors shown separately for each cell type based on single cell RNA sequencing. Expression levels in cancer cells are
shown separately for each patient, while the subtypes of T cells, innate immune cells, endothelial cells and fibroblasts represent pooled patient
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[5]. The phenotype of T cell infiltration varies strongly
between different tumors in terms of quantity and distri-
bution and is associated with IO efficacy. Classifying tu-
mors based on the cytotoxic T cell infiltration
phenotype might help to rationally guide treatment
stratification [5].

Tertiary lymphoid structures

In chronically inflamed areas such as tumors, B and T
lymphocytes are frequently organized in ectopic lymph-
oid aggregates, so-called tertiary lymphoid structures
(TLS), where they convert to effector cells upon antigen
presentation. The cellular organization ranges from sim-
ple lymphocyte clusters (immature TLS) to highly so-
phisticated structures (mature TLS) [6, 7]. High
endothelial venules (HEVs) are found nearby and pro-
mote lymphocyte extravasation [8]. TLS display a surro-
gate marker of prompt immune responses that actively
modulate anticancer immunity [7]. High TLS density as-
sociates with a favorable prognosis in many cancer types,
including NSCLC [9] and TLS may also enhance IO effi-
cacy [6]. Preclinical studies demonstrated beneficial

effects of therapeutic TLS neogenesis on anti-cancer im-
mune responses [10-12].

B lymphocytes

Tumor infiltrating B cells harbor both immunostimula-
tory [13] and immunosuppressive [14] functions and
their effect on IO efficacy is increasingly appreciated. Es-
pecially those B cells located in mature TLS may exhibit
immunostimulatory functions by closely interacting with
local T cells, thereby enhancing anti-cancer immunity.
This hypothesis is indirectly supported by the observa-
tion that intra-tumoral B cells are linked to a favorable
IO response [7, 15, 16].

Tumor Mutational Burden (TMB)

Somatic mutations in the cancer genome, such as in
DNA repair genes including mismatch repair (MMR),
homologous recombination (HR) or polymerase epsilon
(POLE) increase tumor mutational and neoantigen bur-
den, which has been linked to greater TIL density and
enhanced ICI efficacy [17—19]. This observation is clinic-
ally underscored as mutagen-driven cancer types (e.g.
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melanoma, NSCLC) typically show high initial ICI re-
sponses [17]. Moreover, components of the major histo-
compatibility complex I (MHC I) such as B2M are often
downregulated (Fig. 2), hence curbing neo-epitope pres-
entation to T cells [20]. Antigen presentation pathways
can also be inactivated through mutations (e.g. B2M is
mutated or deleted in about 5% of lung cancers) [21]
and also other pathway members are inactivated [22].
Importantly, IO may increase the frequency of such mu-
tations [19, 23, 24] suggesting an active immune-editing
of cells failing to present neo-epitopes.

Concerning TMB as predictive biomarker of ICI re-
sponse, clinical trials report divergent results, possibly
due to technical issues with TMB assessment (e.g. use of
inhomogenous cut-off values) [25]. On the one hand,
high TMB was the strongest variable linked to benefit of
combined PD-1 plus CTLA-4 blockade in NSCLC and
TMB was independent of PD-L1 expression [26]. Ac-
cordingly, pembrolizumab was recently FDA-approved
in TMBM#" advanced solid cancers (=10 mutations/
megabase) in response to results from KEYNOTE-158.
In contrast, in the complex multi-arm CheckMate227
trial testing ipilimumab plus nivolumab versus chemo-
therapy or nivolumab plus chemotherapy in NSCLC,
neither TMB nor PD-L1 expression could segregate
therapy responsiveness [27]. Concerning CTLA4-specific
biomarkers, different genomic signatures were correlated
with enhanced clinical outcome [28, 29], however none
have been translated into clinical practice yet.

PD-L1 expression in the TME

Cancer cells can overexpress PD-L1 upon type I inter-
feron (IFN I) stimulation [30] to evade cytotoxic im-
mune responses. Immune cells, including Treg, myeloid-
derived suppressor cells (MDSC), dendritic cells (DC)
and TEC can similarly upregulate PD-L1 upon inflam-
matory signals (especially by IFNs) fostering an im-
munosuppressive TME [31]. Interestingly, myeloid cells
show markedly higher PD-L1 expression than cancer
cells or lymphocytes (Fig. 2) and especially extra-
tumoral PD-L1 expressing myeloid cells, e.g. in tumor
draining lymph nodes, might be essential for ICI re-
sponse [31]. A preclinical study demonstrated that mye-
loid progenitors that accumulate during cancer-driven
emergency myelopoiesis (in bone marrow, spleen and
tumor site) show both PD-L1 and particularly prominent
PD-1 expression. Selective deletion of myeloid-specific
PD-1 by targeting the Pdcdl gene effectively suppressed
tumor growth in several tumor models by mediating an-
titumor immunity (enhanced T effector memory cells)
despite preserved T cell-specific PD-1 expression. These
data underline the important role of myeloid-intrinsic
effects in regulating anti-tumor immunity [32].
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Clearly, PD-L1 expression is necessary to achieve ad-
equate responses to PD-1/PD-L1 blockade and numerous
studies associated high tumor cell PD-L1 expression with
better outcomes to anti-PD-1/PD-L1 monotherapy in
NSCLC. Controversially, some patients with very low or
even absent PD-L1 expression show durable responses
[33], an observation currently lacking a mechanistic ex-
planation see 2.4.1. Besides cancer cells, also PD-L1 posi-
tive immune cells may exert a predictive value. In the
Impower110 trial, presence of PD-L1 positive TIL signifi-
cantly associated with enhanced OS in patients treated
with atezolizumab [34]. These results are in line with
other tumor entities (e.g. bladder and breast cancer).

PD-L1 is not yet a robust biomarker

So far, clinical trials considered tumor PD-L1 expression
as the most robust and reproducible biomarker, and
clinical NSCLC guidelines are based on this. However,
PD-L1 immunohistochemistry (IHC) has several limita-
tions (e.g. biopsies from primary versus metastatic le-
sions, different detection antibodies and cut-offs,
staining procedures) and this may contribute to the
above-mentioned controversial observations. Moreover,
the TME is highly heterogenous and a single core biopsy
only depicts one spatial tumor component, hence some
patients may be PD-L1 negative in one biopsy and PD-
L1 positive in other tumor areas. This also explains
quantification errors in tissue-based biomarkers. One
approach to resolve the limitation of spatial resolution
involves PET-based PD-L1 imaging with zirconium-89-
labeled atezolizumab. Interestingly, pre-treatment tumor
PET signal was shown to better correlate with clinical
treatment responses than IHC or RNA-sequencing based
predictive biomarker-detection [35].

Tumor-associated macrophages

Tumor-associated macrophages (TAM) are an abundant
cell type within the TME and despite growing research,
their role in cancer progression remains ambiguous.
Along a functional scale, TAM polarize to either M1 or
M2 phenotypes in response to environmental cues, in-
cluding metabolic changes (e.g. cyclic hypoxia, nitric
oxide) [36, 37]. The classically activated M1 phenotype is
stimulated upon type 1 T helper cell (Th1)-produced IFN-
y or Toll-like receptor (TLR) ligands such as microbiota-
derived lipopolysaccharide (LPS) and is characterized by
phagocytic, cytotoxic and antigen-presenting functions
and secretion of pro-inflammatory cytokines (e.g. TNFa,
IL-1B, IL-6) [36, 38]. Alternatively, the M2 phenotype ex-
pands in response to Th2-derived IL-4 and IL-13 [39], but
cancer cell-derived macrophage-colony stimulating factor
(M-CSF) also promotes M2 polarization by binding CSF1
receptor (CSF1-R). M2 macrophages express anti-
inflammatory cytokines (e.g. IL-10, CCL22, CCL18) and
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low levels of IL-12, thereby exerting anti-inflammatory,
angiogenic and pro-tumoral effects [36]. Impeding M2
polarization to promote anti-tumor immune responses
has gained clinical interest (e.g. CSF1 inhibition) and also
preclinical studies of genetic TAM reprogramming are
promising [40, 41].

Cancer-associated fibroblasts

Cancer associated fibroblasts (CAF) constitute one of
the most prominent, yet highly heterogenous compo-
nents of the TME. They express a variety of molecular
markers, e.g. a-SMA, S100A4, FAP, PDGFRa/f, none of
which, however, is unique for the fibroblast lineage. Next
to immune cells CAFs have emerged as important medi-
ators of the complex stroma-tumor interactions, pro-
moting local immunosuppression and orchestrating
immune cell trafficking [42]. CAFs may express PD-L1
(e.g. upon IFN-y) (Fig. 2) but may also promote PD-L1
expression on tumor cells via cytokine secretion (e.g.
CXCL5, CXCL2) [43]. Further knowledge on CAF func-
tionality might unveil insights in IO sensitivity.

Tumor endothelial cells

Tumor endothelial cells (TEC) have immunomodulatory
functions by controlling immune cell transmigration,
lymphocyte activation and function. They hold a “senti-
nel” role in detecting foreign antigens as antigen (cross)-
presenting cells, though this has been studied extensively
in non-malignant inflammation and less in TEC [44, 45].
TEC are strategically positioned at the blood—TME
interface, serving as “immune gatekeepers” by control-
ling immune cell trafficking. In NSCLC, TEC may ex-
press PD-L1 (Fig. 2) and downregulate inflammatory
pathways (e.g. antigen presentation, chemotaxis, immune
cell homing) [2]. On the single cell level, Goveia et al.
identified distinct lung TEC subpopulations carrying the
transcriptome signature of HEVs and semi-professional
APCs, suggesting a role in tumor immune surveillance.
Specific TEC subtypes were associated with prognosis
and response to anti-angiogenic therapy [46].

Resistance mechanisms

It remains to be answered why some patients attain sus-
tained durable IO therapy response while others evolve
primary or secondary resistance. The mode of action is
definitely multifactorial and includes intrinsic (e.g. cell
signaling, immune recognition, gene expression, DNA
damage response) and extrinsic (e.g. T cell activation,
neo-angiogenesis) mechanisms [47]. The following sec-
tions briefly address relevant resistance mechanisms,
many of which are already used as targets of novel thera-
peutic strategies as to overcome resistance (see Fig. 1).
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Intrinsic cancer cell resistance: immunogenicity
Neo-antigen burden of cancer cells markedly determines
tumor immunogenicity, which enhances ICI efficacy.
Hence, low tumor immunogenicity may cause primary
IO resistance. Immune-cancer cell interactions can pro-
mote the evolution of low-immunogenic and low-
antigenic tumor subclones, a process named immuno-
editing [48]. Genetic instability due to impaired DNA re-
pair can enhance tumor immunogenicity, which is the
target of later discussed PARP inhibitors [47].

Intrinsic T cell resistance: Inmuno-adaption

In response to PD-1/PD-L1/CTLA-4 inhibition, T cells
can upregulate alternative ICs, including T cell immuno-
globin mucin-3 (TIM-3) or lymphocyte activation gene 3
(LAG-3), as adaptive resistance mechanism [49, 50]. Co-
expression of multiple ICs associates with severe T cell
exhaustion, consequently leading to IO resistance [51].

Extrinsic resistance: Treg and MDSCs

An immunosuppressive TME facilitates tumor cell growth
and tumor infiltrating Treg and MDSC are key players in
sustaining this immunosuppression [52]. IO efficacy has
been linked to lower Treg and MDSC infiltration in pre-
clinical studies [53—55]. Moreover, Indoleamine 2,3-dioxy-
genase (IDO) represents an important promotor of Treg
and MDSC proliferation/activation [56].

Extrinsic resistance: the chemokine milieu

Chemokines mediate immune cell recruitment into the
TME and directly impact cancer and endothelial cells to
regulate tumor cell proliferation, neo-angiogenesis and
hence cancer progression. Multiple chemokines (four
major subgroups CC, CXC, CX3C, C) have been identi-
fied with multi-faceted roles, acting both pro- or anti-
cancerogenic in different tumor entities. Their impact
on IO resistance and efficacy remains unclear [57].

Extrinsic resistance: VEGF

Vascular endothelial growth factor (VEGF) expression
within the TME is heterogenous (Fig. 2) and mainly
hypoxia-driven. VEGF is the key driver of tumor neo-
angiogenesis but also exerts immunosuppressive effects
[58]. Accordingly, anti-PD-1 non-responders showed
higher VEGF levels compared to responders, suggesting a
potential role of VEGF in IO resistance [59]. This at least
partly explains potential additive and even synergistic ef-
fects of anti-VEGF and 1O strategies, as described later.

Future 10 treatment strategies

The treatment landscape of non-oncogene driven NSCLC
has changed dramatically in recent years and IO is an im-
portant cornerstone of front- and later-line therapies (we
refer to the latest ESMO and ASCO guidelines [60, 61]).



Horvath et al. Molecular Cancer (2020) 19:141

Yet, IO resistance occurs frequently, thus stressing the
need for better therapy allocation based on predictive bio-
markers. The cellular and molecular heterogeneity of the
TME sets the stage for innovative prediction models in
diagnostics and depicts a pivotal target of many tailored
therapy approaches that aim to overcome IO resistance.
Multiple clinical trials in different cancer types are
based on an exploding number of preclinical studies
using novel IO combinations or targeted therapies. The
following section will discuss the background, mode of
action and clinical update of the most relevant up-
coming treatment options in [O-refractory NSCLC.

10 combination or re-challenge

IC co-inhibition, by expanding the anti-PD-1 or PD-L1
backbone with a second ICI has been one of the first
strategies to overcome IO resistance and most clinical
experience has been gathered with combinational
CTLA-4 inhibitor. The observed synergistic effect of
PD-1/CTLA-4 inhibitors likely depends on the distinct
patterns of PD-1 and CTLA4 in immune activation, as
PD1 blockade inhibits peripheral and CTLA4-blockade
central tolerance see 2.1, 3.

Clinical experience of 10 combination

The combination of CTLA-4 and PD-1 inhibitors is ef-
fective in melanoma [62] and renal cell carcinoma
(RCC) [63] patients, having led to to FDA approval. In
NSCLC, CheckMate227 demonstrated a prolonged OS
benefit for first-line ipilimumab plus nivolumab in
advanced-stage disease (median OS 17.1 vs. 13.9 months
with chemotherapy, 2-year OS of 40% vs. 32.8% (HR
0.79, 97.72% CI 0.65-0.96; P =0.007)), independent of
TMB or PD-L1 expression. Intriguingly, the OS effect
was most prominent in PD-L1'°" patients. Treatment-
related serious adverse events (AE) of any grade were
more frequent with ipilimumab plus nivolumab than
with chemotherapy (24.5% vs. 13.9%) [27].

Recent results from the phase II CITYSCAPE trial
showed a significant PFS and ORR benefit for the first-
line combination of the TIGIT-inhibitor see 3.1.4 tirago-
lumab plus atezolizumab compared to atezolizumab
monotherapy in PD-L1 positive metastatic NSCLC pa-
tients. Particularly, a meaningful ORR improvement was
seen in PD-L1™&" (TPS>50%) expressing patients
(55.2% vs 17.2%) [64], while toxicity was not aggravated.

These data emphasize the potency of IO combination,
but optimal patient selection criteria are still lacking.

10 re-challenge

In recent years, the dogma of disease progression being
synonymous for drug resistance has been questioned
[65], therefore re-challenging IO after progression dis-
plays a possible strategy.
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Retrospective studies have investigated 10 re-challenge
in a small number of NSCLC patients with clinical bene-
fit in only a minority of them [66—69]. Recently, a retro-
spective study including 10.452 NSCLC patients
demonstrated the effectiveness of nivolumab retreatment
after either treatment interruption or interim chemo-
therapy. OS in the retreatment situation significantly
correlated with duration of initial IO exposure, which
may be due to a time-dependent consolidation of an im-
mune memory. The median OS for IO retreatment was
above 12 months, which compares favorably with OS
during initial nivolumab treatment or with standard
third-line chemotherapy in advanced NSCLC [70].
Moreover, the phase III KEYNOTE-024 trial demon-
strated the feasibility of a second course pembrolizumab
in 10 NSCLC patients who had progressed after comple-
tion of 2 year pembrolizumab monotherapy, with an ob-
jective response rate (ORR) in 7/10 patients [71].

The question of dual ICI following IO progression has
currently been investigated in two RCC studies. A small
retrospective study (n =17) could not show a substantial
benefit of nivolumab plus ipilimumab after progression
on first-line nivolumab [72]. Contrarily, the phase II
TITAN trial (n=207) showed a significant ORR benefit
for the “immunotherapeutic boost” with 2—4 cycles of
nivolumab plus ipilimumab in the first-line as compared
to nivolumab monotherapy [73].

10 beyond progression

The discussion of continuing IO therapy beyond pro-
gression originates from the observation of initial pseu-
doprogression preceding objective response. However,
pseudoprogression is rare (less than 10% of NSCLC pa-
tients) and hence IO continuation should only be con-
sidered in patients with clinical benefit and lack of
severe AE [74]. Some NSCLC patients treated with ICI
might present with dissociated response, where some
tumor areas progress while others regress. Similarly to
oligometastatic disease, a concomitant local treatment
approach (radiotherapy, surgery) of the resistant clones
could be discussed as possible option [75].

Alternative immune checkpoints: LAG-3, TIM-3 and TIGIT
Apart from PD-1/PD-L1/CTLA-4, other inhibitory IC
regulate T cell response and might influence IO resist-
ance mechanism. Blocking these additional IC has
proven highly efficient in preclinical and clinical studies
as monotherapy or in combination with PD-1/PD-L1 in-
hibitors. The following IC have been investigated:
Lymphocyte activation gene 3 (LAG-3 or CD223) is
expressed on various immune cells (Fig. 2). LAG-3 posi-
tive T cells bind to ligands such as FGL1 expressed by
cancer cells [76], which inhibits activation and cytokine
secretion via indirectly blocking of TCR signaling [77].
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Studies showed significant co-expression of LAG-3 and
PD-1 on TILs [78, 79], with PD-1 marking a range of ex-
haustion phenotypes in T cells, from mild to anergic,
while LAG-3 predominantly marks severely exhausted
PD-1 positive CD8" T cells. Hence, LAG-3 synergizes
with other IC, particularly PD-1, and dual IC blockage
with an anti-LAG3 antibody (e.g. IMP321, relatlimab)
plus a PD-1/PD-L1 inhibitor has revealed promising pre-
clinical results in different tumor entities and numerous
clinical phase I/II trials are currently ongoing [77]. A
melanoma study (NCT01968109) presented preliminary
efficacy of relatlimab plus nivolumab in LAG-3 positive
tumors after progression on PD-1/PD-L1 inhibitors.
Further phase I/II studies in NSCLC are ongoing as up-
front IO combination or in the resistance situation
(NCT02750514, NCT02817633).

Similar to LAG-3, the T cell immunoglobulin mucin-3
(TIM-3) negatively regulates T cell activation (Fig. 2).
Even though TIM-3 biology is context-dependent, TIM-
3 acts as an IC in severely exhausted CD8" T cells. Here,
TIM-3 ligands such as galectin-9, HMGB1 or
CEACAM-1, expressed by cancer cells, activate TIM-3
and promote T cell anergy [80, 81]. Based on positive
preclinical results for anti-TIM-3 antibodies, several
clinical trials are ongoing, testing anti-TIM-3 monother-
apy or in combination with PD-1/PD-L1 inhibitors [82]:
Preliminary results from the phase I Amber trial
(NCT02817633) testing anti-TIM3 antibody TSR-022 in
combination with a PD-1 inhibitor showed increased
clinical activity in anti-PD-1 refractory NSCLC and mel-
anoma. A phase I trial (NCT03099109) investigating
anti-TIM3 antibody LY3321367 monotherapy showed
preliminary anti-tumor activity and a phase I trial
(NCT03708328) investigates a bi-specific antibody targeting
TIM-3 and PD-1 in advanced or metastatic solid tumors.

Lastly, T cell immunoglobulin (Ig) and immunorecep-
tor tyrosine-based inhibitory motif (ITIM) domains
(TIGIT) is a lymphocyte-specific transmembrane glyco-
protein receptor (Fig. 2). As a co-inhibitory receptor, it
exerts direct immunosuppressive effects on these cells
through binding to CD155 (and with less affinity
CD112) on APC or target cells. TIGIT is weakly
expressed in naive cells but can be rapidly induced in re-
sponse to inflammatory stimuli [83]. It has been shown
to impact many steps of the cancer immunity cycle
(reviewed in [83]) and TIGIT inhibition can enhance
anti-tumor T cell responses (CITYSCAPE trial), as dis-
cussed in later.

10 combined with Anti-Angiogenic Drugs (AAD)
Background and rationale for the combination

VEGF is the key promoter of hypoxia-driven neo-
angiogenesis in the TME and also serves as important
immunosuppressive molecule. Furthermore, VEGF
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inhibition has the ability to normalize tumor vasculature
and restore chaotic blood flow, thus reducing tumor
hypoxia and facilitating immune cell infiltration [84].
These mechanisms depict the functional basis of syner-
gistic AAD and IO effects. Positive preclinical investiga-
tions in different cancer entities build a strong rationale
for further clinical studies.

Clinical translation

Therapeutic combinations of AAD and IO have already
been approved for RCC and endometrial cancer. In non-
squamous NSCLC, the IMpower150 trial showed an OS
benefit for the first-line quadruple (atezolizumab/bevaci-
cumab/carboplatin/paclitaxel) therapy versus AAD/doub-
let-chemotherapy with a particular benefit in patients with
EGFR-mutant/ALK-positive tumors or baseline hepatic
metastases [85]. The observed benefit in patients with liver
metastasis adds on to previous investigations by Sandler
et al. [86] that showed benefit of the AAD/chemotherapy
combination, suggesting an organotypic vascular pheno-
type predisposing to AAD sensitivity. To clinically validate
these combinational approaches, deeper investigation of
synergistic anti-tumor functions and related toxicity is re-
quired. Regarding currently ongoing studies and the basic
concepts we refer to other comprehensive reviews [87, 88].

10 and radiotherapy

Background and rationale

Radiation acts cytotoxic by inducing caspase-driven gen-
omic and mitochondrial DNA fragmentation in tumor
cells, promoting the release of cytochrome ¢ from mito-
chondria to activate caspase 9 (CASP9) to ultimately
initiate intrinsic apoptosis. Also, radiation alters the in-
flammatory TME by activating cytosolic DNA sensing
pathways (particularly c-GAS-cGAMP-STING cascade,
discussed below) in DC [89], possibly also endothelial
cells (EC) [90], resulting in IFN I production and activa-
tion of anti-cancer immune responses [89]. Irradiated
tumor cells often fail to activate DNA sensing pathways
to produce IFN I and this barrier most likely depends on
CASP9, as blocking radiation-induced CASP9 with a
pan-caspase inhibitor emricasan activates tumor-
intrinsic type I IFN production, thereby promoting anti-
tumor immune responses. However, in this study CASP9
inhibition resulted in PD-L1 upregulation by tumor cells
as adaptive resistance strategy. Thus, combinational
blockage by emricasan plus PD-L1 inhibitor enhanced
radiation effects [91].

Clinical translation

The additive effect of radiotherapy and IO was investi-
gated in the phase III PACIFIC trial. A long-term sur-
vival benefit was seen with PD-L1 inhibitor durvalumab
versus placebo when used as consolidation therapy in
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patients with stage III unresectable NSCLC, who did not
have disease progression after concurrent chemoradio-
therapy [92].

DNA damage inhibitors (PARP inhibitors)

Background and rationale

DNA damage occurs frequently during cell replication
and cells have evolved various DNA Damage Response
(DDR) pathways to repair damaged DNA, which when ac-
cumulating would lead to cell cycle arrest or apoptosis
[93]. One DDR mechanisms involves the poly ADP-ribose
polymerase (PARP), a key protein repairing single-strand
DNA breakages. Therapeutic PARP inhibition triggers ef-
fective anti-cancer immune responses [94]. Double-strand
DNA breaks are repaired by homologous recombination
(HR). The germline BRCA1/2 genes are involved in HR
mechanism and their mutation may lead to HR deficiency
(HRD) [95]. HRD alone does not always induce apoptosis
as other repair mechanisms can prohibit accumulation of
damaged DNA. However, impairing two DDR mecha-
nisms by adding PARPi to HR-deficient cells can lead to
cell death (synthetic lethality) [95].

Clinical translation

PARP inhibitors (PARPi) are well established in the
treatment of BRCA-mutated breast (Olaparib, Talazo-
parib) and ovarian cancer independent of HRD status
(Olaparib, Niraparib, Rucaparib), being highly associated
with sensitivity to platinum-based chemotherapy [96].

The BRCA-proficient NSCLC is not clinically respon-
sive to PARPi monotherapy. However, numerous clinical
studies showed synergistic effects of PARPi and IO in
several solid BRCA-proficient malignancies [97]. As ob-
served preclinically, PARPi induces genetic instability,
increases TMB and neoantigen burden via DDR defi-
ciency and may be involved in PD-L1 upregulation by
cancer cells [97, 98]. This enhanced tumor immunogen-
icity explaining potential synergy with 10 [97, 99, 100].

Following these encouraging investigations, combin-
ational IO/PARPi NSCLC studies are ongoing: The phase
II Hudson umbrella trial (NCT03334617) investigates dur-
valumab plus olaparib in PD-1/PDL-1 refractory patients.
The phase II Jasper trial (NCT03308942) studies first-line
Niraparib plus a PD-1 inhibitor in PD-L1 positive patients
progressive on chemotherapy. Results have not been re-
leased, however preliminary data from other tumor en-
tities are promising [101, 102]. Lastly, an ongoing phase
II trial (NCT02106546) investigates first-line veliparib
plus chemotherapy versus placebo plus chemotherapy in
advanced or metastatic NSCLC patients.

Altogether, combining PD-1/PD-L1 inhibitors with
PARPi is preclinically active in BRCA-proficient tumors
and numerous clinical investigations in NSCLC are
ongoing,.
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STING agonists

Background and rationale

The c¢GAS-STING pathway has been identified as key
intracellular pathway bridging anti-cancer innate and
adaptive immunity [103]. Stimulator of Interferon Genes
(STING) is a cytosolic protein of phagocytic immune,
endothelial and cancer cells (Fig. 2) that gets activated
by the enzyme cyclic-GMP-AMP synthase (cGAS) via
the cyclic dinucleotide (CDN) second messenger
cGAMP. The STING pathway senses cytosolic DNA
(self or foreign e.g. cancer-derived DNA) and, via activa-
tion of numerous downstream signals, induces IFN I
IEN-f3. IEN-3 plays a major role in priming adaptive im-
munity, including activation and recruitment of CD8'T
cells and promoting DC migration and maturation, thus
enhancing anti-tumor immune responses [103, 104].
Cancer cells can downregulate STING activity to evade
immune-mediated apoptosis [105].

Clinical translation

Based on this understanding, STING agonists, including
STING-binding molecules and CDN derivatives, are be-
ing developed as novel cancer therapeutics. Preclinical
studies showed dramatic anti-cancer effects of intratu-
morally (i.t.) applied STING agonist [90, 106—108]. Im-
portantly, the STING induced increase in CD8" T cells
at the tumor site can enhance concomitant anti-PD-1 ther-
apy effect [109, 110]. The synthetic STING agonist ADU-
S100 is currently under investigation in clinical phase I/II
trials (NCT02675439, NCT03937141) as i.t. monotherapy
or in combination with ICI in advanced solid tumors or
lymphoma. A first-in-human study (NCT03010176) of
STING agonist MK1454 as it. monotherapy or together
with pembrolizumab in advanced solid tumors or lymph-
omas showed encouraging results with PR in 24% of pa-
tients and substantial tumor size reduction (83% of both
injected and non-injected target lesions).

In conclusion, it. STING agonists may evolve as po-
tent combination to ICI treatment by “boosting” cancer-
directed immune responses and sensitizing tumor cells
to ICL

IDO inhibitors

Background and rationale

Tryptophan catabolism, involving the key enzymes indo-
leamine 2,3-dioxygenase 1 and 2 (IDO1 and 2) and
tryptophan-2,3-dioxygenase (TDO2) is a critical meta-
bolic pathway in cancer progression. IDO is IFN-
induced in cancer, stromal non-immune and immune
cells that metabolizes tryptophan to kynurenine. Its
overexpression has immunosuppressive functions by de-
pleting tryptophan and increasing kynurenine in the
TME. Indeed, kynurenine accumulation and tryptophan
depletion promotes the generation of Tregs and MDSCs,
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and inhibits T proliferation and activation [111]. IDO1
upregulation has been demonstrated in numerous cancer
types, including NSCLC, and associates with poor prog-
nosis and IO resistance [56]. Various preclinical studies
demonstrated increased T cell proliferation and tumor
infiltration as well as IL-2 upregulation upon IDO1 in-
hibition (reviewed in [112]). Although investigated to a
lesser extent, TDO2 exerts similar immunosuppressive
functions and enhanced expression has been shown in
NSCLC [56].

Clinical translation

IDO1 inhibitors (IDO1i) have been tested in multiple
phase I/II trials in combination with PD-1/PD-L1/
CTLA-4 inhibitors with promising results (reviewed in
[113]). However, the first large phase III ECHO-301 trial
evaluating the selective IDO1i epacadostat in combin-
ation with pembrolizumab in advanced melanoma was
terminated early as the primary endpoint (improved PFS
compared to pembrolizumab) was not reached [114].
Many flaws, such as insufficient dosing, lack of pharma-
codynamic surrogates for drug efficacy and testing in an
unselected patient population (without prior IDO test-
ing) limit the value of the trial. Moreover, the inclusion
of patients pre-treated with CTLA4- or BRAF inhibitors
might explain the beneficial lack of selective IDO1i, as
these therapies enhance TME levels of IDO1 and the
compensatory molecules TDO2 and IDO2, which may
have increased cytotoxic TIL and IFN-y, hence impeding
the effect of concomitant PD-1 blockade [56]. Still, the
scientific rationale of IDOLli is solidly grounded and
further clinical investigation is ongoing. Other drug
combinations might evolve as efficient partners for
IDO1j, e.g. CTLA-4 inhibitors, STING agonists or radio-
chemotherapy [115].

Arginase inhibitors

Background and rationale

Arginine is a semi-essential amino acid critical for
lymphocyte proliferation and function. The enzymes ar-
ginase 1 and 2 (ARG1/2) regulate extracellular arginine
availability by converting arginine to ornithine and urea.
High ARG1/2 expression and activity has been shown in
various cancer types including NSCLC [116] and associ-
ates with poor prognosis. Within the TME, ARG is
mainly produced by myeloid cells (i.e. MDSC, macro-
phages) in response to local stimuli (e.g. immunosup-
pressive cytokines, hypoxia, acidosis). ARG impedes T
cell function e.g. by downregulation of TCR CD3({ chain,
lowers Thl cytokine production (IEN-y, TNF-) and in-
hibits T cell proliferation and differentiation [117]. Thus,
therapeutic ARG inhibition may enhance anti-tumor im-
munity. Contrarily, preclinical studies implicated that
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arginine deprivation by using recombinant human ARG
can induce apoptosis in some tumors, including NSCLC.

Clinical translation

ARG inhibitors have entered clinical trials and most sub-
stances competitively target ARGl and ARG2. In ad-
vanced or metastatic solid cancers including NSCLC a
phase I/II study (NCT02903914) investigates the small
molecule INCB001158 alone or in combination with
pembrolizumab. First results from CRC show manage-
able AEs and clinical responses. The substance OATD-
02 is a selective ARG1/2 inhibitor and has shown signifi-
cant anti-tumor immunity in preclinical tumor models
alone or in combination with PD-1 or IDOLi.

Epigenetic modulators + 10

Background and rationale

Epigenetic-modulating drugs like 5-azacitidin (DNA
hypomethylating agent) and entinostat (class I HDAC
inhibitor) are well established in hematology. In addition
to reactivating expression of epigenetically silenced
tumor suppressor genes in cancer cells, these drugs may
also selectively inhibit MDSC by induction of viral mim-
icry via inducing retrotransposon-derived dsRNA. This
increases tumor foreignness through enhanced neoepi-
tope expression, as well as it upregulates genes related to
immune-evasion, such as B2M. In preclinical models,
the combination of epigenetic modulators and PD-1 in-
hibitors has shown major therapeutic effects [54, 118].

Clinical translation

Based on these investigations, numerous phase I/II clin-
ical trials in various solid tumor entities have been initi-
ated, including NSCLC. Though interim analysis (e.g.
ENCORE 601 trial) showed promising results, most of
these studies are currently still ongoing [119].

Adenosin-signaling pathway (CD73)

Background and rationale

Adenosine is an effective endogenous immunosuppres-
sive mediator in normal and cancerous tissues. It gets ei-
ther excreted by stressed or injured cells or generated
via a multi-staged pathway from extracellular adenosine-
triphosphate (ATP) through dephosphorylation of
adenosine-monophosphate (AMP) by the enzyme CD73
[120]. In the TME both CD73 and adenosine are widely
expressed on a variety of cells (Fig. 2). Adenosine acts
via binding the A2a receptor (A2aR) (expressed on lym-
phocytes, myeloid and NK cells, CAF, EC), provoking i.e.
Treg and MDSC accumulation, Ty and NK cell inhib-
ition or CAF proliferation, thereby fostering a tumori-
genic TME. CD73 expression and consequently
adenosine generation is regulated via complex molecular
pathways, including HIF-lalpha, MAPK, mTOR, TGEF-
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beta [120]. Some tumors overexpress CD73 as a possible
immune-evading strategy while others do not. CD73 up-
regulation has been associated with an inferior outcome
in NSCLC [121], and in preclinical cancer models, high
CD73 expression correlated with a better response to
CD73 blockade [122]. In NSCLC, high A2aR expression
correlated with lower CD4" and CD8" T cell activation
and lower PD-L1 expression [123].

Clinical translation

Therapeutic attempts have focused on inhibiting adeno-
sine production by targeting CD73 or interfering with ad-
enosine signaling by targeting A2aR. Different anti-CD73
antibodies have entered clinical trials as monotherapy or
in combination with ICI: The anti-CD73 antibody oleclu-
mab plus durvalumab is being tested in phase II studies in
locally advanced or metastatic ICI-refractory (COAST,
NCT03822351; HUDSON, NCT03334617, respectively)
or as neo-adjuvant therapy in resectable (NeoCOAST,
NCT03794544) NSCLC. Concerning A2aR antagonists
the two oral small molecules cifroadenant (CPI-444)
and AZD4635 are currently under investigation in
phase I studies (NCT03337698 and NCT02740985, re-
spectively) alone or in combination with PD-L1 inhib-
itors. NSCLC-regarding results of both studies have
not been released yet.

Chemokine receptor antagonists: CCR4 and CXCR2
inhibitors

Background and rationale

The CC chemokine receptor type 4 (CCR4) is expressed
on Treg and other circulating/tumor-infiltrating T cells
and binding of TME-derived ligands (CCL17, CCL22) to
CCR4 promotes recruitment of immunosuppressive
Treg. Therapeutic Treg depletion may alleviate the sup-
pression of anti-tumor immunity and hence synergize
with PD-1 inhibition, as also suggested by a preclinical
study [55]. Furthermore, the CXCL5/CXCR2-axis medi-
ates myeloid cell recruitment and CXCR2 blockade sig-
nificantly reduced presence of MDSC in murine tumors
[124]. CCR4 and CXCLS5 expression has been associated
with poor prognosis in various cancer types including
NSCLC [125, 126].

Clinical translation

The monoclonal anti-CCR4 antibody mogamulizumab
exerts Treg-depleting effects and is FDA-approved for
refractory T cell lymphoma. First results from phase I
solid tumor trials in combination with PD-1/PD-L1/
CTLA-4 inhibitors suggest an acceptable safety profile
[127, 128] and antitumor effects of mogamulizumab/
nivolumab in a small NSCLC subgroup [127]. Different
CXCR2 antagonists are getting investigated preclinically
and clinically (reviewed in [124]), acting as neutrophil-
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directed immunotherapy. A phase II trial is currently
testing the selective CXCR2 antagonist navarixin (MK-
7123) together with pembrolizumab in advanced solid
tumors including NSCLC (NCT03473925). Although
only at the beginning of an understanding, these data
pinpoint to possible future chemokine-targeted therapies
in cancer.

CSF1R antagonists

Background and rationale

Polarization of TAM to the pro-tumorigenic M2 pheno-
type is promoted by binding of tumor cell-derived M-
CSF to CSF1R on TAM. Anti-CSF1R antibodies can de-
plete TAM, however clinical studies failed to show po-
tent anti-tumor effects of the monotherapy (e.g.
NCTO01494688). A study by Kumar et al. showed that
CSF  downregulates granulocytic chemokine (e.g.
CXCL1/2) production by CAF and that anti-CSF1 anti-
bodies hence promote TME infiltration by immunosup-
pressive MDSC. Inhibition of both CSF1R and CXCR2
decreased TME infiltration by TAM and MDSC, signifi-
cantly reduced tumor growth and enhanced the effect of
PD-1 inhibitor [129].

Clinical translation

Numerous ongoing preclinical studies are testing CSFIR
antagonists with different IO partners. In advanced NSCLC,
two phase I trials (NCT03502330, NCT02526017) are
currently investigating the CSF1R antagonist cabiralizumab
in combination with an anti-CD40 mAb or nivolumab,
respectively. Unfortunately, a recent phase II trial
(NCT03336216) testing cabiralizumab plus nivolumab in
advanced pancreatic cancer failed its primary endpoint.

RIG-I

Background and rationale

Retinoic acid Inducible Gene 1 (RIG-I) is a cytosolic
RNA receptor ubiquitously expressed in most human
body cells and is known for its major role in antiviral
immune defense by inducing pyroptosis. RIG-I is also
expressed in cancer cells, acting pro-inflammatory by ex-
pressing INF I and other cytokines [130]. In preclinical
models, systemically applied RIG-I agonists were able to
inhibit tumor growth via induction of immunogenic can-
cer cell death [131-133].

Clinical translation

Intratumoral application of the selective RIG-I agonist
RGT100 was investigated in a small phase I/II first-in-
human study (NCT03065023) in advanced or recurrent
cancer (n=15). There were no dose-limiting toxicities,
especially as only minimal systemic exposure was found
after it. application. Interestingly, systemic chemokine
elevation and INF-associated gene expression were
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detected. RIG-I agonists are only at the starting point of
clinical applicability. Therapeutic challenges include the
development of highly selective agonists due to ubiqui-
tous RIG-I expression and to avoid uncontrolled cyto-
kine release.

Fibroblast Activation Protein (FAPa)

Background and rationale

The immunosuppressive activity of CAF can be ham-
pered by blocking cell surface markers and most experi-
ence has been gathered with fibroblast-activation protein
o (FAPa), a common but non-selective CAF marker in
many cancer types [134]. In a mouse model, FAPa-
blockade resulted in tumor growth inhibition and stro-
mal reduction of myofibroblasts and vasculature in lung
and colon tumors [135]. Other preclinical strategies in-
clude FAPa-targeted oncolytic adenovirus-vaccination
[136] or FAPa-targeted chimeric antigen receptor T cell
(CAR-T) [137].

Clinical translation

A recent pioneer study investigated the use of a bispeci-
fic antibody (RO6874281) consisting of an interleukin-2
variant (IL-2v) domain that binds the IL-2 receptor on
immune cells and a FAPa-specific domain, which tracks
the antibody-drug conjugate inside the tumor and re-
duces efflux. RO6874281 showed an acceptable safety
profile and displayed monotherapy activity in tumor
types not previously reported to respond to IL-2 [138] A
phase II trial (NCT02627274) of RO6874281 together
with atezolizumab is currently ongoing. CAFs and their
immunosuppressive network present an interesting
therapeutic target, however non-specificity of molecular
markers incorporates a major hurdle and needs further
exploration.

Discussion

In this article, we discussed relevant immunomodulatory
pathways imprinted within the TME that fundamentally
impact the evolution of IO resistance in NSCLC and
summarized novel therapy approaches targeting many of
these alterations. Considering that the majority of
NSCLC patients eventually progress on IO therapy,
combinational or multimodal treatment approaches are
an unmet medical need.

The mechanisms underlying IO efficacy are still in-
completely understood. Factors such as the dynamic cel-
lular composition and heterogeneity of immunogenic
and metabolic pathways within the TME, as well as the
mutational load driving tumor immunogenicity, all con-
tribute to IO effectiveness and evolution of resistance
mechanisms.

The hallmarks of carcinogenesis are significantly influ-
enced not only by cancer cell-intrinsic mechanisms but
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also by the different stromal cell populations [139]. The
heterogeneity and complexity of the stromal TME and
associated pathway activities and resistance patterns
were particularly highlighted in lung cancer by recent
high-resolution profiling [2]. However, it is likely that
many of the here described TME alterations are univer-
sally apparent across different tumor entities and most
preclinical studies and early-phase IO trials include sev-
eral, mostly solid cancer types. At the current state of
knowledge, no NSCLC-specific molecular target has
been identified yet. Nevertheless, differences in the rela-
tive abundances of tumor infiltrating immune and stro-
mal cells as well as the mutational burden do exist
across different tumor entities [140].

Many of the discussed novel treatment approaches ei-
ther aim to inhibit intrinsic immunosuppressive (IDO,
CD73/adenosine, VEGF, CCR4, CXCR?2, arginase) or
promote proinflammatory/immunogenic (STING, RIG-I,
PARP) pathways. Combinations of these targeted ap-
proaches with different ICI are often synergistic and may
evolve as promising strategies to overcome IO resist-
ance. Moreover, dual ICI therapy with PD-1/CTLA-4
antibodies may boost intrinsic anticancer immunity and
has previously been translated into clinical OS benefit
(see CheckMate227). Combinations of PD-L1 and alter-
native IC (e.g. LAG-3, TIM-3, TIGIT) have shown
promising results in phase I trials.

Concerning biomarkers, PD-L1 is still considered the
most robust biomarker in NSCLC, even though in many
cases its predictive power is insufficient. Thus, the need
for further, more complex biomarker-signatures that
help to optimize patient selection for the different 10
strategies is immense. A priori identification of resist-
ance mechanisms in order to initiate targeted therapies
upfront will depict a major challenge. In-depth tumor
analysis including whole-genome sequencing, single cell
RNA-sequencing, multidimensional flow cytometry or
epigenetics might be implemented in the future as to
find individualized treatment strategies.

Conclusion

IO therapy induces a wide range of cellular and molecu-
lar alterations in the TME and resistance mechanisms
are only partially understood. However, as research is
rapidly growing, numerous targets have been identified
that may inhibit or override 1O resistance. With positive
results from many clinical trials, these novel IO combin-
ational approaches pose a promising outlook for future
therapies that improve clinical outcome and patient
survival.
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