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of PCa at a single-cell level. We found that PCa cells in
the tissue consisted mostly of three different types of lu-
minal cells, the marker genes of which were mainly in-
volved in metabolic process, regulation of cell adhesion
and vasculogenesis. Copy number variation (CNV) and
pseudotime trajectory analysis suggested that type 1 lu-
minal cells had the most malignant characteristics within
the 3 types of luminal cells. In addition, five cell subgroups
in type 1 luminal cells were further identified by featured
gene expression profiles. The fifth cell subgroup, charac-
terized by high expression of PCa marker genes, might be
critical for PCa diagnosis and stratification. Furthermore,
we found a specific marker for subgroup 5, Hepsin (HPN),
with a much higher Area Under the Curve (AUC) score
than those of widely used markers in the clinic, such as
Alpha-Methylacyl-CoA Racemase (AMACR), Folate
Hydrolase 1 (FOLH1), Kallikrein Related Peptidase 3
(KLK3) and Prostate Cancer Associated 3 (PCA3). These
findings were further validated by immunostaining in PCa
tissue array, which showed that the protein expression
level of HPN in PCa with a Gleason score > 6 was signifi-
cantly higher than those with a Gleason score = 6. Our
findings revealed the heterogeneity of PCa at a single-cell
level and a distinct luminal subpopulation with high ex-
pression level ofHPN, a potential marker for PCa diagno-
sis and stratification.

Methods
Samples collection
Two PCa patients were diagnosed with primary PCa
with Gleason scores of 6 (3 + 3) and 7 (3 + 4) by morph-
ology observation and immunostaining analysis of PCa
markers, including AMACR and Tumor Protein P63
(TP63). Samples were obtained from these patients by
radical prostatectomy with the guidance of an experi-
enced pathologist, and immediately transported to re-
search facility on ice. No treatment was conducted on
both patients before surgery. After washed in pre-cooled
phosphate buffer saline (PBS) to remove blood contami-
nations, samples were dissected to pieces (< 10 mm3) for
pathological examination and single-cell suspension
preparation. Patient consent was obtained for the study
and the sample collection was under ethical approval.

Single-cell suspension preparation
Most dissected samples were further cut into small
pieces (< 1 mm3) and digested in a lyase cocktail collage-
nase/hyaluronidase/dispase solution (Fisher Scientific,
cat. no. NC-9694308 and 354,235) at 37 °C with a shak-
ing speed of 40 rpm for 60 min. Sample dissociation so-
lutions were filtered by a 40-� m cell strainer prior to the
removal of red blood cells with a RBC lysis buffer
(Thermo Fisher Scientific, cat. no. 1966634). The single-
cell suspension was stained with 0.4% trypan blue

(Thermo Fisher Scientific, cat. no. T10282) to examine
the concentration of live cells. Live cells were further
concentrated using a Dead Cell Removal Kit (Miltenyi
Biotec, cat. no. 130–090-101) if the cell viability was
lower than 80%.

Single-cell RNA sequencing and data processing
The single-cell suspension was adjusted to the required
concentration of 700–1200 cells/� l and loaded onto the
10 × Genomics single-cell-A chip for a target capture of
3000–5000 cells/chip. The cDNA library was prepared
according to the standard manufacturer’s protocol from
10 × Genomics Single Cell 3� v2 Reagent Kit and then
sequenced on a HiSeq 2500 instrument by SequMed Bio
Technology Inc., Guangzhou, China.

Raw sequencing data was processed by Cell Ranger
(10 × Genomics, version 3.0.2) pipeline and aligned to the
human reference genome (GRCh38). Gene-Barcode
matrices containing the barcoded cells and gene expres-
sion counts were imported into the Seurat R toolkit (ver-
sion 3.1.2) [18]. Cells with small library size (< 200) or
high mitochondrial transcript ratio (> 0.4), and genes
expressed in less than 3 cells were all excluded. For the
remaining cells, gene expression matrices were normalized
using NormalizeData function in Seurat package to elim-
inate the effects of sequencing depth or library size, and
were scaled with the Seurat ScaleData function to gain lin-
ear conversion [18]. Gene expression matrices from differ-
ent samples were then integrated and the batch effects
were removed by canonical correlation analysis and mu-
tual nearest neighbors-anchors using Seurat package [18].

Identification of cell types and marker genes
Highly variable genes (top 2000) were extracted to per-
form the principal component analysis (PCA) and top 20
of significant principle components were used for cluster
analysis. Clusters were visualized using the Uniform
Manifold Approximation and Projection (UMAP). Cell
type identities were characterized based on the expres-
sion of known markers in the Cell Marker database [19].
In addition, sub-clustering of luminal cells was per-
formed with the same method as described above.

Marker genes for each cluster and subgroup were
identified by contrasting gene expression of cells from
certain cluster or subgroup to that of others using the
Seurat FindMarkers function, and filtered by a detectable
expression in more than 50% of all cells from that clus-
ter or subgroup. Additionally, the expression fold change
of marker genes in certain cluster or subgroup to others
and the difference of detectable expression in that clus-
ter or subgroup with others were both required to be in
top 10 of all detected genes.
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Fig. 1 Diverse cell types in PCa were identified by single-cell sequencing.a Workflow of primary PCa samples for scRNA-seq was summarized.
Cancerous tissue dissected from radical PCa surgery was cut into small pieces and further digested to single-cell suspension. After cDNA library
construction with collected single cells, sequencing and analysis were performed using the 10 × platform.b The main cell clusters in PCa tissue
demonstrated by the Uniform Manifold Approximation and Projection (UMAP) plot were colored and labeled according to their featured gene
expression profiles. Cell numbers and percentages of each main cluster were counted in the right panel.c A heatmap was generated based on
the expression levels of top 50 specific marker genes in each cluster
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Fig. 7 Validation of HPN expression in PCa tissue array.a Immunostaining of HPN in normal prostate and cancerous prostate with different pathology
grading. Positive signals with anti-HPN were stained in brown. Cell nucleus were stained with hematoxylin and presented blue in PCa tissue sections.a
normal prostate,b cancerous prostate with a Gleason score of 6,c cancerous prostate with a Gleason score of 7,d cancerous prostate with a Gleason
score of 8,e cancerous prostate with a Gleason score of 9.b H-score of HPN staining in normal prostate and cancerous prostate.c H-score of HPN staining
in PCa tissues with different pathology grading.d Relative expression of therapy-resistant markers in PCa patients with low and high expression levels of
HPN,LOWpatients with low expression ofHPN;HIGHpatients with low expression ofHPN
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of PCa based on the immunostaining intensity among
normal prostate, low-scoring and high-scoring PCa [49].
Furthermore, HPN as a cell surface marker could be a
drug target in PCa treatment. Tang et al. have reported
that targeted inhibition of HPN by small-molecule in-
hibitor Hepln-13 could attenuate PCa progression and
metastasis [50]. Taken together,HPN may be a potential
biomarker for clinical PCa diagnosis and stratification,
even a potential target for PCa treatment.

Conclusions
In conclusion, this is the first report of PCa heterogeneity ex-
amined by scRNA-seq of primary PCa tissue to our know-
ledge. We found that PCa tissue consisted of 3 different
types of luminal cells with distinct roles in PCa initiation and
progression. A distinct subgroup of luminal cells critical for
PCa diagnosis and stratification was identified along with its
marker geneHPN. Our findings are potentially valuable in
not only advancing the current understanding of PCa initi-
ation and progression, but also the translational use of
markers for PCa diagnosis and stratification.
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diagnosis by histology observation and the expression of AMACR and
TP63.A, D HE staining of PCa tissues.B, EImmunostaining of AMACR on
PCa tissues.C, FImmunostaining of TP63 on PCa tissues. Bar = 50� m.
Supplementary Figure 2 CNV analysis of different type of cells in PCa
tissues. A All clusters in PCa tissues; B Three types of luminal clusters in
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cells.Supplementary Figure 5 Clustering heatmap demonstrating the
correlation between PCa status and the marker gene expression of each
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marker gene expression of subgroup 1–4 using TCGA data.
Supplementary Figure 7 Clinical correlations of 6-gene set from sub-
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PCa patients from TCGA.A ROC analysis for 6-gene set from subgroup 5
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B Kaplan-Meier analysis predicting recurrence-free rate of PCa patients
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