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Abstract

Background: The highly intra-tumoral heterogeneity and complex cell origination of prostate cancer greatly limits
the utility of traditional bulk RNA sequencing in finding better biomarker for disease diagnosis and stratification.
Tissue specimens based single-cell RNA sequencing holds great promise for identification of novel biomarkers.
However, this technique has yet been used in the study of prostate cancer heterogeneity.

Methods: Cell types and the corresponding marker genes were identified by single-cell RNA sequencing. Malignant
states of different clusters were evaluated by copy number variation analysis and differentially expressed genes of
pseudo-bulks sequencing. Diagnosis and stratification of prostate cancer was estimated by receiver operating
characteristic curves of marker genes. Expression characteristics of marker genes were verified by immunostaining.

Results: Fifteen cell groups including three luminal clusters with different expression profiles were identified in
prostate cancer tissues. The luminal cluster with the highest copy number variation level and marker genes
enriched in prostate cancer-related metabolic processes was considered the malignant cluster. This cluster
contained a distinct subgroup with high expression level of prostate cancer biomarkers and a strong distinguishing
ability of normal and cancerous prostates across different pathology grading. In addition, we identified another
marker gene, Hepsin (HPN), with a 0.930 area under the curve score distinguishing normal tissue from prostate
cancer lesion. This finding was further validated by immunostaining of HPN in prostate cancer tissue array.
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Conclusion: Our findings provide a valuable resource for interpreting tumor heterogeneity in prostate cancer, and
a novel candidate marker for prostate cancer management.
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Introduction
Prostate cancer (PCa) is the most common malignant can-
cer apart from lung cancer in males worldwide, with an es-
timated 1.3 million new cases and 359,000 associated
deaths in 2018 [1]. Comprehensive treatments, including
radical prostatectomy, radiotherapy and hormone therapy,
have been used for many years and contribute to the in-
crease of the total survival rate of PCa patients [2]. How-
ever, advanced PCa such as metastatic PCa and castration-
resistant prostate cancer (CRPC) remains largely incurable
due to the lack of adequate therapies [3]. Since the early
stage localized PCa is very treatable with the combined
therapy of surgery and hormonal drugs, it is necessary to
identify more specific and sensitive markers for early detec-
tion or stratification of PCa so as to not delay optimal and
appropriate treatment.
PCa diagnosis, stratification and treatment selection is

usually based on multiple factors such as serum prostate
specific antigen (PSA) level, tumor size, and pathology
grading [4]. However, PSA levels can also be detected in
benign prostatic hyperplasia (BPH), prostatitis, and even
after digital rectal examination (DRE), resulting in a high
rate of overdiagnosis and overtreatment of PCa [5]. DRE
is conducted based on the shape, symmetry, firmness
and nodularity of prostate tumor, and is more suitable
for higher stage and advanced PCa [6]. Imaging tools, in-
cluding transrectal ultrasound (TRUS), computed tom-
ography (CT), magnetic resonance imaging (MRI) and
positron emission tomography (PET), play important
roles in clinical diagnosis and stratification of PCa [7].
Despite this, they are still not as sensitive or accurate as
histological observation with the detection of specific
prostatic marker genes.
With the advances in genomic and transcriptome se-

quencing technologies, more and more molecular aber-
rations and potential marker genes for PCa initiation
and progression have been revealed. Androgen plays a
pivotal role in the growth of hormone sensitive PCa. An-
drogen receptor (AR) gene mutation, amplification and
splice variants are frequent AR alterations in CRPC,
driving PCa growth in a ligand-independent way [8].
Transmembrane Serine Protease 2-Erythroblast Trans-
formation Specific Related Gene (TMPRSS2-ERG) gene
fusion is a very common genomic alteration in PCa, and
can be detected in almost half of Caucasian PCa patients
[9]. Genomic losses of tumor suppressor genes such as
Cyclin Dependent Kinase Inhibitor 1B (CDKN1B),

Phosphatase and Tensin Homolog (PTEN), Retinoblast-
oma Transcriptional Corepressor 1 (RB1), Tumor Pro-
tein P53 (TP53) and genomic gains of oncogenes like
Cyclin D1 (CCND1), Fibroblast Growth Factor Receptor
1 (FGFR1), Myelocytomatosis (MYC) are frequently
identified in primary PCa [10, 11]. Loss-of-function mu-
tations in DNA double strand breaks (DBS) repair-
related genes such as Ataxia Telangiectasia Mutated
(ATM), Breast Cancer 1/2 (BRCA1/2), Cyclin Dependent
Kinase 12 (CDK12) are detected more prevalently in
metastatic PCa than localized PCa, suggesting critical
roles of these genes in the transition towards metastatic
state [12]. Despite these findings, specific biomarkers
still need to be identified for early diagnosis and precise
stratification of PCa.
PCa is a highly heterogeneous tumor composed of

various types of cells such as epithelial cells, fibroblasts,
muscle cells, and immune cells [13]. Conventional bulk
RNA sequencing (RNA-seq) averages the transcriptional
profiles of all cells within a sample. This sequencing
strategy might result in missing some important differ-
ences in gene expression in cancer cells. On the other
hand, bulk RNA-seq was not capable of identifying and
analyzing the rare but critical populations indicative of
tumor progression, such as cancer stem cells. Therefore,
it might not be an ideal tool in identifying precise bio-
marker of highly heterogeneous tumors especially for
PCa. Single-cell RNA sequencing (scRNA-seq) is a
powerful tool for characterizing the transcriptional pro-
files in thousands of individual cells. It allows for un-
biased assessment of heterogeneous cell populations at
the single-cell level, thus revealing the differences be-
tween individual types within one cell population. A
number of studies have explored tumor heterogeneity,
evolutionary lineages and detection of rare subpopula-
tions with the use of scRNA-seq [14, 15]. Peng et al. re-
vealed the tumor heterogeneity of pancreatic ductal
adenocarcinoma and discovered a subgroup in ductal
cells with unique proliferative features [16]. Young et al.
showed that childhood Wilms tumor cells were aberrant
fetal cells and adult renal carcinoma cells were derived
from a rare kind cells called PT1 [17]. However, due to
the low viability of PCa cells after tissue lysis, scRNA-
seq of PCa has yet to be reported, resulting in a void in
the study of PCa heterogeneity.
Here, we performed scRNA-seq in 7904 cells from two

patients with primary PCa to investigate the heterogeneity
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of PCa at a single-cell level. We found that PCa cells in
the tissue consisted mostly of three different types of lu-
minal cells, the marker genes of which were mainly in-
volved in metabolic process, regulation of cell adhesion
and vasculogenesis. Copy number variation (CNV) and
pseudotime trajectory analysis suggested that type 1 lu-
minal cells had the most malignant characteristics within
the 3 types of luminal cells. In addition, five cell subgroups
in type 1 luminal cells were further identified by featured
gene expression profiles. The fifth cell subgroup, charac-
terized by high expression of PCa marker genes, might be
critical for PCa diagnosis and stratification. Furthermore,
we found a specific marker for subgroup 5, Hepsin (HPN),
with a much higher Area Under the Curve (AUC) score
than those of widely used markers in the clinic, such as
Alpha-Methylacyl-CoA Racemase (AMACR), Folate
Hydrolase 1 (FOLH1), Kallikrein Related Peptidase 3
(KLK3) and Prostate Cancer Associated 3 (PCA3). These
findings were further validated by immunostaining in PCa
tissue array, which showed that the protein expression
level of HPN in PCa with a Gleason score > 6 was signifi-
cantly higher than those with a Gleason score = 6. Our
findings revealed the heterogeneity of PCa at a single-cell
level and a distinct luminal subpopulation with high ex-
pression level of HPN, a potential marker for PCa diagno-
sis and stratification.

Methods
Samples collection
Two PCa patients were diagnosed with primary PCa
with Gleason scores of 6 (3 + 3) and 7 (3 + 4) by morph-
ology observation and immunostaining analysis of PCa
markers, including AMACR and Tumor Protein P63
(TP63). Samples were obtained from these patients by
radical prostatectomy with the guidance of an experi-
enced pathologist, and immediately transported to re-
search facility on ice. No treatment was conducted on
both patients before surgery. After washed in pre-cooled
phosphate buffer saline (PBS) to remove blood contami-
nations, samples were dissected to pieces (< 10mm3) for
pathological examination and single-cell suspension
preparation. Patient consent was obtained for the study
and the sample collection was under ethical approval.

Single-cell suspension preparation
Most dissected samples were further cut into small
pieces (< 1 mm3) and digested in a lyase cocktail collage-
nase/hyaluronidase/dispase solution (Fisher Scientific,
cat. no. NC-9694308 and 354,235) at 37 °C with a shak-
ing speed of 40 rpm for 60min. Sample dissociation so-
lutions were filtered by a 40-μm cell strainer prior to the
removal of red blood cells with a RBC lysis buffer
(Thermo Fisher Scientific, cat. no. 1966634). The single-
cell suspension was stained with 0.4% trypan blue

(Thermo Fisher Scientific, cat. no. T10282) to examine
the concentration of live cells. Live cells were further
concentrated using a Dead Cell Removal Kit (Miltenyi
Biotec, cat. no. 130–090-101) if the cell viability was
lower than 80%.

Single-cell RNA sequencing and data processing
The single-cell suspension was adjusted to the required
concentration of 700–1200 cells/μl and loaded onto the
10 × Genomics single-cell-A chip for a target capture of
3000–5000 cells/chip. The cDNA library was prepared
according to the standard manufacturer’s protocol from
10 × Genomics Single Cell 3′ v2 Reagent Kit and then
sequenced on a HiSeq 2500 instrument by SequMed Bio
Technology Inc., Guangzhou, China.
Raw sequencing data was processed by Cell Ranger

(10 ×Genomics, version 3.0.2) pipeline and aligned to the
human reference genome (GRCh38). Gene-Barcode
matrices containing the barcoded cells and gene expres-
sion counts were imported into the Seurat R toolkit (ver-
sion 3.1.2) [18]. Cells with small library size (< 200) or
high mitochondrial transcript ratio (> 0.4), and genes
expressed in less than 3 cells were all excluded. For the
remaining cells, gene expression matrices were normalized
using NormalizeData function in Seurat package to elim-
inate the effects of sequencing depth or library size, and
were scaled with the Seurat ScaleData function to gain lin-
ear conversion [18]. Gene expression matrices from differ-
ent samples were then integrated and the batch effects
were removed by canonical correlation analysis and mu-
tual nearest neighbors-anchors using Seurat package [18].

Identification of cell types and marker genes
Highly variable genes (top 2000) were extracted to per-
form the principal component analysis (PCA) and top 20
of significant principle components were used for cluster
analysis. Clusters were visualized using the Uniform
Manifold Approximation and Projection (UMAP). Cell
type identities were characterized based on the expres-
sion of known markers in the Cell Marker database [19].
In addition, sub-clustering of luminal cells was per-
formed with the same method as described above.
Marker genes for each cluster and subgroup were

identified by contrasting gene expression of cells from
certain cluster or subgroup to that of others using the
Seurat FindMarkers function, and filtered by a detectable
expression in more than 50% of all cells from that clus-
ter or subgroup. Additionally, the expression fold change
of marker genes in certain cluster or subgroup to others
and the difference of detectable expression in that clus-
ter or subgroup with others were both required to be in
top 10 of all detected genes.
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CNV analysis
Initial CNVs were estimated by the expression levels of
genes within each chromosome region using inferCNV
R package [20]. The relative expression values of ana-
lyzed genes were limited to [− 1,1]. We considered other
cells apart from luminal cells to be non-malignant cells
and used their average estimated CNV as background to
identify which cluster of luminal cells was malignant.

Differentially expressed genes (DEGs) analysis of pseudo-
bulks sequencing
Pseudo-bulks were generated by randomly combining
every 10 cells in one cell type, the average gene expres-
sion level of which was regarded as its gene expression
profile. The DEGs were identified using edgeR package
and filtered by |log2FoldChange| ≥ 1 and FDR < 0.05.
Gene Ontology (GO) enrichment analysis was per-
formed by examining the DEG involved in biological
process and conducting the Fisher exact test.

Pseudotime trajectory analysis
DEG of epithelial cells, including basal cell, luminal cell
and neuroendocrine cell, were identified by Seurat.
Genes expressed in at least 10 cells were kept and
imported into Monocle2 R package. Top 1000 DEG of
epithelial cells were used to perform the dimension re-
duction and construct the pseudotime trajectory. We
identified the genes that varied according to pseudotime
by using the “differentialGeneTest” function in Mon-
ocle2 and used them to perform GO enrichment.

Clinical relevance
To estimate the individual role of each subgroup of type 1
luminal cells in PCa development, we extracted a 50-gene
set for each type of luminal cells in this study and RNA-
seq data of PCa with different Gleason scores from TCGA,
then analyzed their correlation by creating a hierarchical
clustering heatmap with ComplexHeatmap R package
[21]. The predictive sensitivity and specificity of selected
marker genes of luminal cells for PCa progression was
assessed with receiver operating characteristic (ROC)
curves created by SPSS 20.0. To determine the correlation
of candidate marker genes with the recurrence-free rates
of PCa patients from TCGA, Kaplan-Meier curves were
constructed according to the gene expression profiles after
normalizing the expression of each gene to an average ex-
pression of 1 in PCa samples.

Immunostaining
We used Tyramide Signal Amplification system for
chromogenic immunostaining. Prostate tissue sections
were incubated in 3% H2O2 for 10 min at room
temperature to block the endogenous peroxidase, after
which they were incubated with primary antibody

SLC45A3 (diluted at 1:200, Abcam, cat. no. ab137065)
for 2 h at room temperature. The sections were then in-
cubated with HRP-linked secondary antibody (Abcam,
cat. no. ab7090) and stained with Alexa Fluor™ 488-
labeled tyramide (Thermo Fisher Scientific, cat. no.
B40953). For multiplex with primary antibodies, the sec-
tions were placed in citrate buffer and heated in a micro-
wave for 15min to release the antibodies. The sections
were then rinsed in PBS and subsequently incubated with
primary antibody CP (diluted at 1:200, Abcam, cat. no.
ab48614), HRP-linked secondary antibody, Alexa Fluor™
555-labeled tyramide (Thermo Fisher Scientific, cat. no.
B40955). After the second round of heating and washing
as described above, the sections were incubated with pri-
mary antibody B4GALT1 (diluted at 1:200, Abcam, cat.
no. ab121326), HRP-linked secondary antibody, Alexa
Fluor™ 647-labeled tyramide (Thermo Fisher Scientific,
cat. no. B40958) and counterstained with DAPI.
PCa tissue array (Shanghai Outdo Biotech Co. Ltd.,

Shanghai, China) containing 55 normal prostate tissues
and 95 PCa tissues with Gleason scores from 6 to 9 was
used to perform immunostaining for the detection of
HPN expression in normal prostate and cancerous pros-
tate with different Gleason scores. PCa tissue chip was
incubated in 3% H2O2 for 10 min at room temperature
to block endogenous peroxidase and immersed in citrate
buffer at 95 °C for 40 min for antigen retrieval, after
which it was incubated with primary antibody HPN (di-
luted at 1:200, Abcam, cat. no. ab73133) for 2 h at room
temperature. Thereafter, the chip was incubated with
HRP-linked secondary antibody (Abcam, cat. no.
ab7090), stained with 3,3′ diaminobenzidine (DAB) and
counterstained with hematoxylin. HPN immunostaining
scoring of all cases was performed under the guidance of
a qualified pathologist using H-score [22].

Results
scRNA-seq profiling and cell typing in PCa
Two patients were diagnosed as PCa by the overexpres-
sion of AMACR and loss expression of TP63 in prostate
tissue (Supplementary Fig. 1). Cancerous samples from
two patients were collected, dissected, and digested into
single cells with which scRNA-seq was performed with
10 × Genomics Chromium (Fig. 1a). A total of 7904
qualified cells were applied for further analysis. The
cellular composition was explored with unbiased clus-
tering across all cells by PCA and visualized by
UMAP (Fig. 1b). Identities of 15 main clusters were
defined according to cluster-specific marker genes
identified by DEG analysis: T cell, endothelial cell,
type 1 luminal cell, type 2 luminal cell, erythroblast,
myofibroblast, smooth muscle cell, macrophage, type
3 luminal cell, mast cell, basal cell, fibroblast, mesen-
chymal cell, B cell and neuroendocrine cell (Fig. 1c).
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Fig. 1 Diverse cell types in PCa were identified by single-cell sequencing. a Workflow of primary PCa samples for scRNA-seq was summarized.
Cancerous tissue dissected from radical PCa surgery was cut into small pieces and further digested to single-cell suspension. After cDNA library
construction with collected single cells, sequencing and analysis were performed using the 10 × platform. b The main cell clusters in PCa tissue
demonstrated by the Uniform Manifold Approximation and Projection (UMAP) plot were colored and labeled according to their featured gene
expression profiles. Cell numbers and percentages of each main cluster were counted in the right panel. c A heatmap was generated based on
the expression levels of top 50 specific marker genes in each cluster
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In our data, 3 types of luminal cells were identified ac-
cording to their high expression level of luminal markers
including Keratin 8 (KRT8) and Keratin 18 (KRT18) in
PCa samples [23]. To characterize these luminal clusters,
we examined the expression pattern of respective marker
genes individually by VlnPlot and FeaturePlot. Results
showed that Kallikrein Related Peptidase 4 (KLK4) and
Solute Carrier Family 45 Member 3 (SLC45A3) were
specifically expressed in type 1 luminal cell; thus, they
could be used as specific markers for the detection of
these cells (Fig. 2a, b). Ceruloplasmin (CP) was uniquely
expressed in type 2 luminal cells, while Cellular Retinoic
Acid Binding Protein 2 (CRABP2) was highly expressed
in mesenchymal cell, as well as type 2 and type 3 luminal
cells, suggesting a more suitable marker of CP for type 2
luminal cells (Fig. 2a, b). Type 3 luminal cells exhibited
much higher expression levels of Beta-1,4-Galactosyl-
transferase 1 (B4GALT1) and Interferon Alpha Inducible
Protein 6 (IFI6) compared with other clusters, indicating
that B4GALT1 and IFI6 may identify these cells (Fig. 2a,
b). To investigate the cytological localizations of each
type of luminal cells in PCa tissue, we performed immu-
nostaining using anti-SLC45A3, anti-CP, anti-B4GALT1
antibodies and counterstained the tissue sections with
DAPI (Fig. 2c). SLC45A3 was expressed in most luminal
cells of the prostate tissue (Fig. 2c). In contrast, CP was
detected in a small part of luminal cells with a low ex-
pression level of SLC45A3 (Fig. 2C). B4GALT1 was lo-
cated at similar positions to CP positive areas but not
entirely overlapped, suggesting different roles for each
type of luminal cells in PCa development (Fig. 2c).

Identification of malignant luminal cells in PCa
To evaluate the malignancy of identified luminal clus-
ters, analysis of CNV levels in each cell type were per-
formed according to average expression patterns across
intervals of the genome [24]. Most non-luminal cells
showed extremely low CNV levels except for erythro-
blast and fibroblast cells, which presented moderate
CNV levels (Supplementary Fig. 2A). In luminal cells,
type 1 luminal cell exhibited the highest CNV level,
whereas type 2 and type 3 luminal cells showed lower
CNV levels, indicating that type 1 luminal cells might be
malignant cells in PCa (Supplementary Fig. 2B).
We further examined the gene expression patterns in

these cells using edgeR package. Type 1 luminal cell
showed much higher expression level of PCa markers in-
cluding FOLH1, KLK3 and Neuropeptide Y (NPY) (Sup-
plementary Fig. 3A, D) [25, 26]. In contrast, type 2
luminal cells exhibited higher expression of PCa
suppression-related genes, Latexin (LXN) and Secretory
Leukocyte Peptidase Inhibitor (SLPI), the loss expression
of which were usually detected in PCa and associated
with negative prognosis of PCa patients (Supplementary

Fig. 3B, E) [27, 28]. However, Anterior Gradient 2
(AGR2), a urine marker for PCa [29], was also highly
expressed in type 2 luminal cells, indicating that type 2
luminal cells were not entirely normal cells. Type 3 lu-
minal cells exhibited high expression of C-C Motif Che-
mokine Ligand 3 (CCL3), C-X-C Motif Chemokine
Ligand 1 (CXCL1) and Dickkopf WNT Signaling Path-
way Inhibitor 1 (DKK1), which have been reported to
have an increased expression level in PCa and relate to
the occurrence of bone metastases and invasiveness in
PCa (Supplementary Fig. 3C, F) [30–32]. In conclusion,
type 1 and 3 luminal clusters were consisted of malig-
nant cells with different roles in PCa initiation and pro-
gression, whereas type 2 luminal cells were normal
prostate epithelial cells undergoing carcinogenesis.
To further determine the potential roles of each lu-

minal cluster in PCa initiation and progression, func-
tional enrichment was performed. Genes upregulated in
type 1 luminal cells were mainly enriched for metabolic
processes involved in cancer progression, such as fatty
acid metabolic process, steroid biosynthetic process and
peptide hormone secretion, indicating that type 1 lu-
minal cells were indeed malignant cells (Fig. 3a, d). Most
genes with high expression levels in type 2 luminal cells
were enriched in positive regulation of peptidase activity
and proteolysis, and negative regulation of cell-cell adhe-
sion, suggesting that type 2 luminal cells were related to
cancer growth and migration (Fig. 3b, e). Interestingly,
other highly expressed genes in type 2 luminal cells were
enriched in normal prostate developmental processes in-
cluding epidermis development, epidermal cell differen-
tiation and response to steroid hormones (Fig. 3b, e).
Taken together, type 2 luminal cells were identified as
cells of relatively low malignancy. To further verify this
perspective, we performed a GO analysis of each luminal
DEG acquired from pairwise comparison and received
similar results (Supplementary Fig. 4). Upregulated genes
expressed in type 3 luminal cells were mainly involved
in tumor migration related processes like vasculogenesis,
positive regulation of epithelial to mesenchymal transi-
tion and endothelium development, indicating that type
3 luminal cells were also malignant cells (Fig. 3c, f).

The pseudotime trajectory of PCa epithelial cells during
tumor progression
PCa is usually characterized by luminal cell expansion
and loss of basal cells [33, 34], therefore it is believed
that luminal cells are the origins of neoplastic cells in
PCa. However, Goldstein et al. demonstrated that origins
might not originate from luminal cells because basal
cells from primary benign prostate tissue can induce
prostatic tumorigenesis in immune-deficient mice [35].
To investigate the origins of neoplastic cells in the
tumorigenesis of PCa, pseudotime trajectory analysis
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 The expression levels of specific marker genes of diverse luminal clusters examined by scRNA-seq analysis and immunostaining in PCa
tissue. a Violin plots displaying the expression levels of each luminal representative markers in each cluster. b Expression levels of representative
markers for each luminal cluster plotted onto the UMAP. Color key from gray to red indicates relative expression levels from low to high. c
Immunostaining showing the cytological localization of each luminal cluster cells in representative PCa tissues. Blue fluorescence represents
nucleus stained with DAPI; green fluorescence represents type 1 luminal cells stained with anti-SLC45A3; red fluorescence represents type 2
luminal cells stained with anti-CP; purple fluorescence represents type 3 luminal cells stained with anti-B4GALT1

Fig. 3 DEGs of each luminal cluster and the enriched biological processes. a, b, c The DEGs in each luminal cluster were identified using edgeR
package with the comparison to the other two luminal clusters. Scatter plots showing DEGs profiles of type 1, 2, 3 luminal clusters in PCa,
respectively. Red spots indicate upregulated genes; green spots indicate downregulated genes; black spots indicate no significant change in
genes. d, e, f The enriched biological processes for DEGs in type 1, 2, 3 luminal clusters, respectively
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was further performed using basal cells and 3 types of
luminal cells. Basal cells and type 2 luminal cells were
shown in the beginning of the trajectory (Fig. 4a, b).
Type 3 luminal cells appeared at the end of the trajec-
tory branch 1 and type 1 luminal cells were at both ends
of the trajectory branch 2 (Fig. 4a, b). These findings in-
dicated that both basal cells and type 2 luminal cells
could be the tumor-initiating cells and may transition to
2 different types of malignant luminal cells during the
progression of PCa.

We further analyzed the dynamic expression changes
of genes along the trajectory to determine the genes crit-
ical for PCa progression. Genes with the most significant
expression changes were identified: Acid Phosphatase,
Prostate (ACPP), Kallikrein Related Peptidase 2 (KLK2),
KLK3, Keratin 15 (KRT15), Matrix Metallopeptidase 7
(MMP7) and NPY (Fig. 4c). In addition, we performed
clustering of the top 100 genes with pseudotemporal ex-
pression pattern and analyzed the functional enrich-
ments of each cluster. Genes in cluster 1 were highly

Fig. 4 Reconstructing the pseudotime trajectory of cancer cells using basal and luminal cells, and identifying genes varied during the trajectory. a
Pseudotime trajectory of basal cells and 3 types of luminal cells was generated by Monocle2. Red spots represent type 1 luminal cells; green
spots represent type 2 luminal cells; blue spots represent type 3 luminal cells; purple spots represent basal cells. b Pseudotime was colored in a
gradient from dark to light blue. The start of pseudotime is indicated by dark blue, the end of pseudotime by light blue. c Basal and luminal cells
were divided into 5 states by featured gene expression profiles. Top six DEGs with expression levels that changed the most over pseudotime
trajectory were identified and shown as dot plots representing as expression level. d Top 100 DEGs with expression levels that changed the most
over the pseudotime trajectory were divided into 3 clusters based on their expression trend, and the representative processes of each cluster are
shown. Color key from blue to red indicates relative expression levels of top 100 DEGs from low to high
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expressed at the end stage and they were mainly enriched
in PCa initiation- and progression-related processes in-
cluding cellular modified amino acid metabolic process,
hormone secretion, and AR signaling pathways (Fig. 4d).
Genes in cluster 2 showed high expression level at the be-
ginning stage and were mainly involved in epidermis de-
velopment and epidermal cell differentiation, suggesting a
potential role for normal prostate development (Fig. 4d).
Most genes in cluster 3 had increased expression at the
intermediate stage of the pseudotime trajectory and
enriched in cell chemotaxis (Fig. 4d).

Sub-clustering of malignant luminal cells in PCa
We first analyzed the expression levels of each lu-
minal marker genes in the public PCa patients from
TCGA to examine their clinical relevance to PCa ini-
tiation and progression. In comparison, most type 1
luminal marker genes had increased expression in
PCa with low malignancy (Gleason score = 6 or 7)
than high malignancy (Gleason score ≥ 8) or normal
prostate, indicating a potential role in PCa initiation
and early development (Supplementary Fig. 5). We
therefore performed sub-clustering of type 1 luminal
cells to identify the subpopulation responsible for PCa
initiation. The type 1 luminal cells were divided into
5 subgroups by PCA (Fig. 5a, b). Functional enrich-
ment for marker genes of each subgroup was ana-
lyzed and subgroup 1 was associated with
biomolecule metabolic process essential for the prep-
aration of tumor cells mitosis, such as lipid metabolic
process and organic acid metabolic process (Fig. 5c).
Compared with other subgroups, subgroup 2 was re-
lated to cell motility, tube morphogenesis and nega-
tive regulation of cell death, the processes critical for
cancer migration and growth (Fig. 5c). Subgroup 3
was mainly involved in the G protein coupled recep-
tor signaling pathway and muscle tissue development
(Fig. 5c). Subgroup 4 correlated with PCa-related pro-
cesses, including regulation of hormone level, hor-
mone transport and peptide hormone transcription
(Fig. 5c). In comparison, the unique function of subgroup
5 was mainly enriched in cell growth (Fig. 5C). VlnPlot
and FeaturePlot showed that AMACR, Glycine-N-
Acyltransferase Like 1 (GLYATL1) and PCA3 were specif-
ically expressed in subgroup 5 (Fig. 5d, e). Interestingly,
AMACR is a peroxisomal enzyme highly expressed in can-
cerous prostate and involved in β-oxidation of branched-
chain fatty acids and bile acid intermediates, and is critical
for PCa initiation and progression [36, 37]. PCA3 is a non-
coding RNA with high expression levels in PCa cell lines,
primary tissues and even urine from PCa patients [38].
These two markers of subgroup 5 have been used for PCa
diagnosis and stratification for decades, implying that

subgroup 5 might be a distinct bunch of cells essential for
PCa diagnosis and stratification in clinic.

Subgroup 5 in type 1 luminal cell is critical for PCa
diagnosis and stratification
Clinical correlations of type 1 luminal subgroups were
analyzed with the expression patterns of their marker
genes in PCa patients from TCGA. The expression levels
of most subgroup 1–4 marker genes in normal prostate
were similar to or even higher than those in PCa tissues
(Supplementary Fig. 6). In contrast, marker genes of sub-
group 5 were highly expressed in PCa tissues, especially
in patients with a Gleason score at 6 or 7, suggesting a
potential role in PCa initiation and early development
(Fig. 6a). We further identified 6 marker genes of sub-
group 5 with the highest specificity and sensitivity in dis-
tinguishing normal prostate from cancerous prostate by
ROC analysis, including AMACR, GLYATL1, HPN,
PCA3, Prostate Cancer Associated Transcript 18
(PCAT18) and Phospholipase A2 Group VII (PLA2G7)
(Fig. 6b). ROC analysis based on the 6-gene set showed
a strong PCa predictive ability with an AUC score of
0.937 (Supplementary Fig. 7A). In addition, the expres-
sion patterns of these genes not only distinguished PCa
from normal prostate, but also distinguished early-stage
PCa (Gleason score = 6) from highly malignant PCa
(Gleason score ≥ 8) (Supplementary Fig. 8).
Numerous PCa patients exhibit therapy resistance

within 1–2 years and relapse into advanced PCa, such as
CRPC. Subgroup 5 may contribute to PCa recurrence.
However, Kaplan-Meier analysis revealed that these genes
showed no significant predictive abilities in biochemical
recurrence, either individually or as a gene set (Fig. 6c,
Supplementary Fig. 7B). In summary, malignant cells in
subgroup 5 were critical for PCa diagnosis and stratifica-
tion, but not relevant to biochemical recurrence.

HPN is a qualified biomarker for PCa diagnosis and
stratification
Specifically, HPN as one of the subgroup 5 marker genes
presented enormous potential to distinguish PCa tissue
from normal prostate with an AUC score as high as
0.930, which is only down by 0.007 compared with the
6-gene set (Fig. 6b, Supplementary Fig. 7A). In addition,
HPN showed different distinguishing ability in patients
with various pathology grading as shown in Supplemen-
tary Fig. 8. To further validate the bioinformatic predic-
tion of HPN as a qualified biomarker for PCa diagnosis
and stratification, we performed immunostaining on
PCa tissue array with 55 normal prostates and 95 cancer
tissues with different pathology grading demonstrated by
Gleason scores from 6 to 9. We found that HPN was
highly expressed in cancer tissues compared with normal
prostate, and the staining intensities seemed to vary
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Fig. 5 Subgroups in type 1 luminal cells were sub-clustered by PCA. a Five subgroups generated from type 1 luminal cells are demonstrated by
UMAP. b Statistics of cell number and percentage of each subgroup in type 1 luminal cells. c Heatmap showing the representative biological
processes that each subgroup was enriched in. Color key from white to green indicates z-score of -Log10 (p value). d Violin plots displaying the
expression of subgroup 5 representative marker genes across all subgroups identified in type 1 luminal cells. e Expression levels of representative
markers for subgroup 5 plotted onto the UMAP. Color key from gray to red indicates relative expression levels from low to high
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Fig. 6 (See legend on next page.)
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between the cancer tissues with different pathology
grading (Fig. 7a). To examine the intensity differences,
we further analyzed the immunostaining scoring with H-
score, and found that the expression level of HPN was
significantly enhanced in cancer tissues (Fig. 7b). In
addition, the expression level of HPN in cancer tissues
with high pathology grading (Gleason score = 7, 8, 9)
was significantly higher than that with low pathology
grading (Gleason score = 6) (Fig. 7c). Therefore, we be-
lieve that HPN might be a more specific and sensitive
biomarker for clinical PCa diagnosis and stratification.
To explore the role of HPN in predicting PCa recur-

rence, we divided the PCa patients from TCGA into 2
groups as LOW and HIGH based on HPN expression
level, thereafter analyzed the expression of therapy-
resistant markers including ATP Binding Cassette Sub-
family G Member 2 (ABCG2), Aldehyde Dehydrogenase
1 (ALDH1), Receptor Tyrosine Kinase (KIT), Activated
Leukocyte Cell Adhesion Molecule (ALCAM), Cadherin
1 (CDH1), C-X-C Motif Chemokine Receptor 4
(CXCR4), Epithelial Cell Adhesion Molecule (EPCAM),
Enhancer Of Zeste 2 (EZH2), Integrin Subunit Beta 1
(ITGB1) and Transglutaminase 2 (TGM2) in these two
groups. We found no significant differences between
PCa patients with low and high expression of HPN, sug-
gesting that HPN was not suitable as a predictive marker
for PCa recurrence (Fig. 7d).

Discussion
Numerous genomic and transcriptomic studies have
been performed to obtain specific and sensitive markers
for precise stratification and early detection of PCa.
However, PCa is a highly heterogeneous tumor consist-
ing of multiple types of cells. Except for PSA, few clinic-
ally relevant biomarkers have been identified and
established using novel techniques such as next gener-
ation sequencing. In the context of these sequencing
strategies, significant gene expression differences in spe-
cific cell population might be normalized or even hidden
by “less important” genes expressed in abundance. Com-
pared to conventional RNA-seq, scRNA-seq examines
cancerous gene expression at the individual cell level
and has been recently used to investigate heterogeneity
in many types of tumors [14–17]. However, single-cell
analysis of PCa has only been reported in liquid biopsies
and cultured prostate epithelial cells [39, 40]. To our
knowledge, studies using scRNA-seq to examine PCa
heterogeneity with primary PCa tissue has yet been

reported. In this study, we performed scRNA-seq using
PCa tissues obtained from two patients and identified 15
clusters, including 3 different types of luminal clusters.
Type 1 luminal cells, identified as highly malignant cells
according to CNV level and pseudotime trajectory ana-
lysis, might be closely related to PCa initiation and early
development.
Multiple PCa initiation- and progression-related genes

that have been used as potential markers for PCa diagno-
sis can also be detected in different subgroup of type 1 lu-
minal cells. Subgroup 1 expressed several of these genes
including NPY and KLK3. NPY is a secreted protein highly
expressed in early PCa and usually associated with worse
clinical outcome [41]. KLK3 is the coding gene of PSA,
which has been used in prostate health index (PHI) and 4
K score to evaluate PCa early development [42]. Subgroup
2 highly expressed E74-Like Factor 3 (ELF3), the expres-
sion of which is usually elevated in PCa for tumor growth
[43]. In contrast, no PCa candidate marker genes have
been identified in subgroup 3 based on our findings. Sub-
group 4 marker genes contained Golgi Membrane Protein
1 (GOLM1) and FOLH1. Golgi protein GOLM1, consist-
ently upregulated in PCa, has been used as a urine marker
of PCa [44]. FOLH1 encodes prostate specific membrane
antigen (PSMA), a membrane bound glycoprotein overex-
pressed in PCa and serves as an important marker and tar-
get for drug delivery [45]. Subgroup 5 expressed marker
genes AMACR and PCA3, which have been widely used
for PCa diagnosis and stratification in decades due to their
more specific expression in PCa cells compared to previ-
ously used biomarkers like KLK3 and FOLH1 [46, 47].
Therefore, we speculated that subgroup 5 was a distinct
cell cluster critical for PCa diagnosis and stratification.
We further generated an ROC curve for more sub-

group 5 marker genes and found that HPN exhibited the
potential ability in distinguishing normal prostate from
cancerous prostate in PCa patients with various path-
ology grading. Particularly, HPN showed an AUC score
of 0.930, which was higher than that of most reported
candidate marker genes for PCa diagnosis (Supplemen-
tary Fig. 9). To validate our findings, we performed im-
munostaining with anti-HPN antibody on PCa tissue
array and verified its expression in normal prostate and
cancerous prostate with various pathology grading. HPN
is a membrane serine protease identified as one of the
most overexpressed molecules in PCa [48]. Goel et al.
stated that HPN should be regarded as a novel immuno-
histochemical marker for the histopathological diagnosis

(See figure on previous page.)
Fig. 6 Clinical relevance of subgroup 5 to PCa diagnosis and stratification. a Clustering heatmap demonstrating the correlation of PCa status to
subgroup 5 marker gene expression using TCGA data. b ROC curves for top 6 marker genes of subgroup 5 in distinguishing normal prostate and
cancerous prostate using TCGA data. c Kaplan-Meier plot predicting recurrence-free rate of PCa patients based on the expression changes of top
6 subgroup 5 marker genes
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Fig. 7 Validation of HPN expression in PCa tissue array. a Immunostaining of HPN in normal prostate and cancerous prostate with different pathology
grading. Positive signals with anti-HPN were stained in brown. Cell nucleus were stained with hematoxylin and presented blue in PCa tissue sections. a
normal prostate, b cancerous prostate with a Gleason score of 6, c cancerous prostate with a Gleason score of 7, d cancerous prostate with a Gleason
score of 8, e cancerous prostate with a Gleason score of 9. b H-score of HPN staining in normal prostate and cancerous prostate. c H-score of HPN staining
in PCa tissues with different pathology grading. d Relative expression of therapy-resistant markers in PCa patients with low and high expression levels of
HPN, LOW patients with low expression of HPN; HIGH patients with low expression of HPN
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of PCa based on the immunostaining intensity among
normal prostate, low-scoring and high-scoring PCa [49].
Furthermore, HPN as a cell surface marker could be a
drug target in PCa treatment. Tang et al. have reported
that targeted inhibition of HPN by small-molecule in-
hibitor Hepln-13 could attenuate PCa progression and
metastasis [50]. Taken together, HPN may be a potential
biomarker for clinical PCa diagnosis and stratification,
even a potential target for PCa treatment.

Conclusions
In conclusion, this is the first report of PCa heterogeneity ex-
amined by scRNA-seq of primary PCa tissue to our know-
ledge. We found that PCa tissue consisted of 3 different
types of luminal cells with distinct roles in PCa initiation and
progression. A distinct subgroup of luminal cells critical for
PCa diagnosis and stratification was identified along with its
marker gene HPN. Our findings are potentially valuable in
not only advancing the current understanding of PCa initi-
ation and progression, but also the translational use of
markers for PCa diagnosis and stratification.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12943-020-01264-9.

Additional file 1 Supplementary Figure 1. PCa pathology grading
diagnosis by histology observation and the expression of AMACR and
TP63. A, D HE staining of PCa tissues. B, E Immunostaining of AMACR on
PCa tissues. C, F Immunostaining of TP63 on PCa tissues. Bar = 50 μm.
Supplementary Figure 2 CNV analysis of different type of cells in PCa
tissues. A All clusters in PCa tissues; B Three types of luminal clusters in
PCa tissues. Supplementary Figure 3 Highly expressed genes
distributed in PCa. A-C Violin plots displaying the expression of highly
expressed genes in each luminal cluster across the cell types identified in
PCa (from luminal 1 to luminal 3, respectively); D-F Expression levels of
highly expressed genes in each luminal cluster plotted onto the UMAP
(from luminal 1 to luminal 3, respectively), color key from gray to red
indicates relative expression levels from low to high. Supplementary
Figure 4 GO enrichment of differentially expressed genes (DEGs) of each
luminal cluster analyzed by pairwise comparison. A, B The enriched GO
terms for DEGs between type 1 and type 2 luminal cells; C, D The
enriched GO terms for DEGs between type 1 and type 3 luminal cells; E,
F The enriched GO terms for DEGs between type 2 and type 3 luminal
cells. Supplementary Figure 5 Clustering heatmap demonstrating the
correlation between PCa status and the marker gene expression of each
luminal cluster using TCGA data. Supplementary Figure 6 Clustering
heatmap demonstrating the correlation between PCa status and the
marker gene expression of subgroup 1–4 using TCGA data.
Supplementary Figure 7 Clinical correlations of 6-gene set from sub-
group 5 marker genes were analyzed with their expression patterns in
PCa patients from TCGA. A ROC analysis for 6-gene set from subgroup 5
marker genes in distinguishing normal prostate from cancerous prostate;
B Kaplan-Meier analysis predicting recurrence-free rate of PCa patients
based on the expression changes of 6-gene set from subgroup 5 marker
genes. Supplementary Figure 8 Heatmap showing different distin-
guishing abilities of subgroup 5 marker genes in patients with various
pathology gradings. Supplementary Figure 9 ROC analysis of reported
candidate marker genes for PCa diagnosis.
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