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Abstract

Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell
division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in
normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been
demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been
identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are
mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with
KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways.
All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting
AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of
them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other
targeted therapies.
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Introduction
Aurora kinases belong to serine/threonine kinases which
share a highly conserved catalytic domain containing
auto-phosphorylating sites. This family contains three
members: Aurora A (AURKA), Aurora B (AURKB), and
Aurora C (AURKC). Both AURKA and AURKB play es-
sential roles in regulating cell division during mitosis
while AURKC has a unique physiological role in sperm-
atogenesis. Relatively less information is available for the
roles of AURKC in cancer. AURKA and AURKB have
been found to function as oncogenes to promote
tumorigenesis in multiple types of cancer including solid
tumors and hematological malignancies. Even though,

AURKA has attracted researchers’ attentions and has
been a more popular target than AURKB for cancer
therapy with nearly fifty clinical trials using specific
AKIs. However, only about ten clinical trials using inhib-
itors specifically targeting AURKB and most of them are
still in phase I stage. In comparison, the most popular
AKI alisertib has finished phase III clinical assessment.
In this review, we will focus on research progress associ-
ated with AURKA in cancer. Apart from playing a role
in mitosis, an increasing number of studies have sug-
gested that AURKA, when abnormally expressed, could
be an oncogene involved in tumorigenesis. Gene amplifi-
cation, transcriptional activation and inhibition of pro-
tein degradation could contribute to the elevated levels
of AURKA expression in cancer tissues. AURKA pro-
motes tumorigenesis by participating in the cancer cell
proliferation, epithelial-mesenchymal transition (EMT),
metastasis, apoptosis, and self-renewal of cancer stem
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cells. Given that overexpression and gene amplification
of AURKA have been identified in diverse cancers, small
molecule kinase inhibitors of AURKA have attracted
considerable interest. A series of AURKA kinase inhibi-
tors (AKIs) have been produced over the past decades;
inhibition of the expression or activity of AURKA by
AKIs suppresses cancer cell proliferation, migration and
invasion. Excitingly, some AKIs have already been used
in clinical trials. In this review, we highlight the import-
ance of AURKA in cancer cell signal transduction.
Moreover, we provide a summary of the selective inhibi-
tors and pan-inhibitors of AURKA tested in various pre-
clinical and clinical studies for the treatment of cancer.

Expression of Aurora kinases in cancer
Aurora kinases are expressed in a wide range of cancers
according to The Cancer Genome Atlas (TCGA) UAL-
CAN database. As shown in Fig. 1a, AURKA expression
is lowest in the thyroid carcinoma (THCA) dataset (me-
dian value 1.384) and highest in the rectum adenocarcin-
oma (READ) dataset (median value 5.329). AURKB has
the lowest expression in the kidney chromophobe car-
cinoma (KICH) dataset (median value 0.576) and the
highest expression in the diffuse large B-cell lymphoma
(DLBC) dataset (median value 6.525). Four out of 33
(12.1%) cancer types show expression of AURKA with
log2 (transcripts per million [TPM] + 1) values < 2, in-
cluding brain lower-grade glioma (LGG), prostate
adenocarcinoma (PRAD), pheochromocytoma and para-
ganglioma (PCPG) and THCA versus other tumors. In

contrast, as many as 7 out of 33 (21.2%) cancer types
show AURKB expression with a log2 (TPM + 1) value <
2. Moreover, all cancers exhibit AURKC expression with
a log2 (TPM + 1) value < 2.
As shown in Fig. 1b, compared with normal tissues,

most tumor types show significantly higher expression
of AURKA, except for pancreatic adenocarcinoma
(PAAD), PCPG, skin cutaneous melanoma (SKCM), and
thymoma (THYM). Notably, AURKA expression is re-
duced in tumor tissues versus normal tissues in the
THCA dataset. In samples from patients with 27 out of
33 tumor types, excluding KICH, PAAD, sarcoma
(SARC), SKCM, THCA and THYM, AURKB has mark-
edly higher expression in tumor tissues than in normal
tissues. In contrast, AURKC expression is higher in
tumor tissues than in normal tissues only in samples
from patients with 9 out of 33 tumor types, including
bladder urothelial carcinoma (BLCA), cholangiocarci-
noma (CHOL), esophageal carcinoma (ESCA), head and
neck squamous cell carcinoma (HNSC), lung squamous
cell carcinoma (LUSC), READ, THCA and stomach
adenocarcinoma (STAD). These data suggest that
AURKA and AURKB are better potential targets than
AURKC for cancer treatment.

Significance of Aurora kinases expression
According to the TCGA UALCAN database, high ex-
pression of AURKA may be a sensitive prognostic
marker in adrenocortical carcinoma (ACC), LGG, KICH,
kidney renal clear cell carcinoma (KIRC), kidney renal

Fig. 1 Expression of Aurora kinases in cancer. (A) Expression of Aurora kinases among various cancer types. (B) Comparison of the expression of
Aurora kinases between tumor and normal tissues. The images and significance are from ULCAN database. * P < 0.05, ** P < 0.01, *** P < 0.001, NS:
no significance
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papillary cell carcinoma (KIRP), liver hepatocellular car-
cinoma (LIHC), lung adenocarcinoma (LUAD), meso-
thelioma (MESO), PAAD, SARC and uveal melanoma
(UVM). High AURKB expression was more closely re-
lated to worse overall survival in ACC, LGG, cervical
squamous cell carcinoma (CESC), KICH, KIRC, KIRP,
LIHC, LUAD, MESO, SARC, SKCM and UVM. Interest-
ingly, AURKA and AURKB show similar patterns of sur-
vival correlation in ACC, LGG, KICH, KIRC, KIRP,
LIHC, LUAD, MESO, SARC and UVM. Targeting both
AURKA and AURKB in tumors of these cancer types
may exert considerable antitumor effects. However, the
expression of AURKC can predict patient survival only
in LGG, KIRC and SKCM. These survival data are sum-
marized in Fig. 2.

Upstream molecular regulation of AURKA
There is overwhelming evidence of overexpression and
gene amplification of AURKA in a wide range of can-
cers. The underlying mechanisms for AURKA upregula-
tion in cancer include gene amplification, gene
mutation, microRNA regulation, transcriptional or post-
transcriptional modification, and others. Here, we

summarize the molecules that positively or negatively
regulate AURKA through interactions (Table 1).

Positive regulators of AURKA

Transcriptional regulation of AURKA Initially,
AURKA function is regulated at the transcriptional level.
In breast cancer stem cells, nuclear AURKA is recruited
by FOXM1 and binds to the FOXM1 promoter to trans-
activate its expression, while FOXM1 activates AURKA
expression at the transcriptional level in a similar man-
ner [1]. The positive feedback signaling loop between
AURKA and FOXM1 is crucial for breast cancer stem
cell self-renewal. One study has reported that the tran-
scription of AURKA is positively regulated by E4TF1,
which is a ubiquitously expressed ETS family protein [4].
Another study has indicated that EGF-induced AURKA
expression depends on the interaction of nuclear EGFR
and STAT5 [6]. EGFR associated with STAT5 binds to
the AT-rich sequence of AURKA and subsequently in-
creases AURKA transcriptional activity [6]. ARID3A
(AT-rich interaction domain 3A) is a transcriptional fac-
tor. In colorectal cancer cells, ARID3A can bind with

Fig. 2 Correlation between Aurora kinases expression and patient overall survival. Red text: gene expression had significant relation with survival;
black text: gene expression had no significant relation with survival. The survival data are derived from ULCAN database. Samples were
categorized into two groups for analysis: High AURKA expression (with TPM values above upper quartile); Low/Medium AURKA expression (with
TPM values below upper quartile). * P < 0.05, ** P < 0.01, *** P < 0.001
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Table 1 Upstream molecules that regulate AURKA

Positive regulators of AURKA

Names Functions Mechanisms Ref

FOXM1 Activates AURKA expression at the
transcriptional level

FOXM1 binds directly to AURKA promoter to activate AURKA expression. [1]

ARID3A Promotes AURKA transcription Binds to AURKA promoter. [2]

PUF60 Promotes AURKA transcription Binds to AURKA promoter. [3]

E4TF1 Promotes AURKA transcription Binds to positive regulatory element of AURKA promoter. [4]

TRAP220/
MED1

Promotes AURKA transcription It binds between the transcription machinery and the GABPα subunit at a region
between − 169 and − 98 of AURKA promoter.

[5]

EGFR/
STAT5

Promotes AURKA transcription EGF induces recruitment of nuclear EGFR and STAT5 to the AURKA promoter. [6]

β-
catenin/
TCF4

Promotes AURKA transcription Binds to AURKA promoter and enhances AURKA promoter activity. [7]

HnRNPQ1 Increases the translational efficiency of
AURKA mRNA

Enhances the recruitment of ribosomes to those regions of AURKA 5 ′-UTRs. [8]

NEDD9 Stabilizes AURKA protein expression and
increases AURKA activity

Protects AURKA from binding cdh1;
Stimulates AURKA autophosphorylation at Thr288.

[9]

TPX2 Ehances AURKA
stability and activity

Interaction between AURKA and TPX2 and disassociation from cdh1 is required for
protecting AURKA from degradation; Stimulates autophosphorylation and
autoactivation of AURKA.

[10,
11]
[12]

PUM2 Promotes AURKA
stability and activity

Protects AURKA from cdh1-mediated degradation; Increases p-Histone-H3 levels. [13]

LIMK2 Inhibits AURKA degradation Association of LIM domains with AURKA is sufficient for AURKA stabilization. [14]

Twist Inhibits AURKA degradation Ubiquitin-proteosomal degradation pathway. [15]

ALDH1A1 Inhibits AURKA degradation Ubiquitin-proteosomal degradation pathway. [16]

YBX1 Inhibits AURKA degradation Ubiquitin -proteosomal degradation pathway. [17]

USP2a Inhibits AURKA degradation Removes ubiquitin from AURKA. [18]

PKC Increases AURKA activity Phosphorylates AURKA at Thr287, which augments interaction with TPX2. [19]

PNUTS Increases AURKA activity Blocks PP1-dependent dephosphorylation of AURKA. [20]

BuGZ Increases AURKA activity Zinc figers in BuGZ directly bind to the kinase domain of AURKA and stimulates
autophosphorylation at Thr288.

[21]

RASSF1A Increases AURKA activity Stimulates AURKA autophosphorylation at Thr288. [22]

IPP2 Increases AURKA activity Ability to activate MBP is enhanced through inhibition of PP1. No increase in p-
Thr288.

[23]

PAK1 Increases AURKA activity Phosphorylates AURKA at Thr288 and Ser342 sites in the activation loop. [24]

Ajuba Increases AURKA activity Stimulates AURKA autophosphorylation at Thr288 and kinase activity toward histone
H3.

[25]

KCTD12 Increases AURKA activity Stimulates AURKA autophosphorylation at Thr288. [26]

Negative regulators of AURKA

Names Functions Mechanisms Ref

INI1/
hSNF5

Represses AURKA transcription Associates with AURKA promoter. [27]

ARID1A Represses AURKA transcription Associates with AURKA promoter. [28]

SIX3 Represses AURKA transcription Associates with AURKA promoter. [29]

MCPIP1 Inhibits AURKA transcription Destabilizes AURKA mRNA [30]

Cdh1 Induces AURKA degradation Cdh1-APC/C-ubiquitin-proteasome pathway. [31]

NQO1 Induces AURKA degradation NQO1 competes with TPX2 for binding to AURKA. [32]

SMAD4 Induces AURKA degradation Ubiquitin -proteosomal degradation pathway. [33]
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the AURKA promoter region and promote AURKA ex-
pression [2]. As a nucleic acid-binding protein, PUF60
contributes to malignant phenotypes of bladder cancer
through binding to AURKA promoter and activating
AURKA transcription [3]. The TRAP220/MED1 com-
plex [5] and β-catenin/TCF4 complex [7] also directly
bind to the AURKA promoter to enhance AURKA tran-
scriptional activity.

Translational regulation of AURKA AURKA is identi-
fied as a target protein of HnRNP Q1 by RNA-
immunoprecipitation assay following next-generation se-
quencing. HnRNP Q1 enhances the translational effi-
ciency of AURKA mRNA by interacting with the 5′-
UTR of AURKA mRNA through its RNA-binding do-
mains [8]. More importantly, this regulation mechanism
is vital for the pro-proliferative properties of HnRNP
Q1in colorectal cancer.

Regulators promoting AURKA activity Posttransla-
tional regulation of AURKA is vital for AURKA auto-
phosphorylation and kinase activity. Among the proteins
that interact with and activate AURKA, some are well-
established activators, such as Ajuba, TPX2, NEDD9 and
PUM2. The LIM protein Ajuba efficiently stimulates
AURKA autophosphorylation at Thr288 and increases
kinase activity toward histone H3 in the late G2 phase
[25]. Both the LIM-2 and LIM-3 domains of Ajuba me-
diate the interaction with the N-terminus of AURKA,
and the Ajuba-AURKA complex induces mitotic entry

and progression of cell division [25]. Furthermore, acti-
vation of AURKA is also stimulated by TPX2. The N-
terminal domain of TPX2 binds to AURKA and protects
AURKA from dephosphorylation according to experi-
mental and structural analyses [10, 11]. TPX2 primarily
exists in an inhibitory complex along with importin α/β
at the onset of mitosis, and it is immediately released by
Ran-GTP after nuclear envelope breakdown to bind to
AURKA and stimulate AURKA autophosphorylation at
Thr288. Two other kinases, PAK1 and PKC, directly
phosphorylate AURKA and then increase AURKA activ-
ity [19, 24]. Other molecules also modulate AURKA ac-
tivity, such as PNUTS [20], BUGZ [21], RASSF1A [22],
IPP2 [23] and KCTD12 [26].

Regulators stabilizing AURKA protein expression
Abnormally upregulated AURKA in cancers is always
stabilized by other molecules. Protein kinases such as
LIMK2 are associated with AURKA through LIM do-
mains, and this interaction is responsible for AURKA
stabilization [14]. TPX2 protects AURKA from degrad-
ation both in interphase and in mitosis in a cdh1-
dependent manner [12]. Likewise, NEDD9 [9] and
PUM2 [13] not only stimulate autophosphorylation and
autoactivation of AURKA but also stabilize AURKA pro-
tein expression through disassociation from cdh.
AURKA protein stability is also maintained by Twist
[15], ALDH1A1 [16], YBX1 [17] and the deubiquitinase
USP2a [18] through ubiquitin-proteosomal degradation
pathway.

Table 1 Upstream molecules that regulate AURKA (Continued)

RPL3 Induces AURKA degradation Depends on PRL-3-mediated dephosphorylation of FZR1 and assembly of the APC/
CFZR1 complex.

[34]

IKK2 Induces AURKA degradation IKK2 phosphorylation of AURKA targets it for β-TRCP-mediated proteasomal
degradation.

[35]

AURKAIP1 Induces AURKA degradation Interaction with AURKA is essential for degradation. [36]
[37]

VHL Induces AURKA degradation VHL recognition of AURKA occurs independent of prolyl hydroxylation and results in
multi-monoubiquitination.

[38]

PTPRD Induces AURKA degradation Dephosphorylates tyrosine residues in AURKA. [39]

PHLDA1 Induces AURKA degradation Ubiquitin-proteosomal degradation pathway. [40]

PTTG1 Inhibits AURKA activity Attenuates AURKA autophosphorylation at Thr288 and p-Histone-H3 level. [41]

Gadd45a Inhibits AURKA activity Attenuates AURKA ability to phosphorylate MBP. [42]

PP1 Inhibits AURKA activity Dephosphorylates AURKA and abolishes kinase activity. [43]

GSK-3β Inhibits AURKA activity Phosphorylates AURKA on S290/291, leading to autophosphorylation of serine 349. [44]

Multiple myeloma SET domain protein (MMSET); Forkhead box subclass M1 (FOXM1); Human Pumilio homology protein 2 (PUM2); LIM-domain kinase-2 (LIMK2);
Aldehyde dehydrogenase 1 (ALDH1A1); Y-box binding protein-1 (YBX1); Protein kinase C (PKC); Phosphatase 1 nuclear targeting subunit (PNUTS); RAS-association
domain family 1, isoform A (RASSF1A); Protein phosphatase inhibitor-2(IPP2); P21-activated kinase 1 (PAK1); Potassium channel tetramerization domain containing
12 (KCTD12); Nicotinamide adenine dinucleotide(P) H quinone oxidoreductase 1 (NQO1); Phosphatase of Regenerating Liver-3 (RPL3); IκB kinase 2 (IKK2); Aurora-A
Kinase interacting protein (AURKAIP1); Von Hippel-Lindau (VHL); Protein tyrosine phosphatase receptor delta (PTPRD); Pleckstrin homology-like domain family A
member 1(PHLDA1); Pituitary tumor transforming gene 1 (PTTG1); Protein Phosphatase 1 (PP1); Glycogen synthase kinase 3 beta (GSK-3β); monocyte
chemoattractant protein-induced protein 1 (MCPIP1); poly(U) binding splicing factor 60 (PUF60); SIX homeobox 3 (SIX3); AT-rich interactive domain 1A (ARID1A);
AT-rich interaction domain 3A (ARID3A)
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Negative regulators of AURKA
Although many proteins determine the active state of
AURKA to a great extent, negative AURKA regulators
that tightly control AURKA expression or activity exist.
These regulators are usually tumor suppressors, and in-
hibition of AURKA is one of the mechanisms explaining
their tumor-suppressive functions.

Transcriptional regulation of AURKA INI1/hSNF5 is
a core component of the mammalian chromatin-
remodeling SWI/SNF complex, which regulates the tran-
scription of target genes. In rhabdoid tumor (RT) cells
and normal fibroblast cells, INI1/hSNF5 complex associ-
ates with the AURKA promoter and represses AURKA
transcription. This regulation is dependent on cell type
because in non-RT cells such as Jurkats, CEMX-174,
HeLa and SF268, downregulation of INI1/hSNF5 had ei-
ther no effect or a slight decrease in AURKA [27].
ARID1A, a component of the SWI/SNF chromatin re-
modeling complex, occupies the AURKA gene promoter
to negatively regulate its transcription [28]. SIX3, a
member of the sine oculis homeobox transcription fac-
tor family, suppresses the transcription of both AURKA
and AURKB by directly binding with their promoters in
astrocytoma [29]. Apart from the regulation of AURKA
transcription through interaction with AURKA pro-
moter, it was reported that ribonuclease MCPIP1 desta-
bilized AURKA mRNA [30]. A highly conserved 95-base
region in AURKA 3′-UTR was required for MCPIP1-
dependent cleavage of the AURKA transcript [30].

Regulators reducing AURKA activity GSK-3β interacts
with AURKA and phosphorylates AURKA at Ser290/291
in vitro, after which autophosphorylation occurs at
Ser349, which is an AURKA activity-inhibiting phos-
phorylation site [44]. Gadd45a is a stress gene that is
highly induced by a variety of genotoxic agents. Inter-
action between Gadd45a and AURKA has been shown
to strongly inhibit AURKA kinase activity and
antagonize AURKA-induced centrosome amplification
[42]. PTTG1 is a transforming gene highly expressed in
several cancers. One study has indicated that PTTG1 re-
presses AURKA autophosphorylation, inhibits phosphor-
ylation of histone H3 and results in abnormally
condensed chromatin [41]. Another study has shown
that the phosphatase PP1, but not PP2, dephosphorylates
AURKA and abolishes AURKA kinase activity [43].

Regulators promoting AURKA protein degradation
Apart from AURKA activity, AURKA protein expression
is tightly controlled as well. During the process of mi-
tosis, IKK2 acts as an antagonist of AURKA. Phosphoryl-
ation of AURKA by IKK2 targets it for β-TRCP-
mediated degradation and serves to maintain appropriate

levels of AURKA to assure proper bipolar spindle assem-
bly and mitotic progression [35]. AURKAIP1, an
AURKA-interacting protein, is involved in the degrad-
ation of AURKA through a proteasome-dependent path-
way [36]. A mechanistic study has revealed that
AURKAIP1-mediated AURKA degradation is dependent
on antizyme1 (Az1). AURKAIP1 enhances the ability of
Az1 to bind to AURKA in order to promote proteasomal
localization and subsequent degradation [37]. Cdh1 is a
WD40 repeat protein serving as an anaphase-promoting
complex/cyclosome (APC/C) coactivator. AURKA deg-
radation is dependent on Cdh1 in vivo, and AURKA is
targeted for proteolysis through distinct structural fea-
tures of its destruction box, its KEN box motifs and its
kinase activity [31]. VHL is an E3 ligase that multi-
monoubiquitinates AURKA in quiescent cells and tar-
gets it for proteasome-mediated degradation under both
normoxic and hypoxic conditions [38]. Phosphatase
PRL-3 enhances AURKA ubiquitination and degradation
in colorectal cancer [34]. Destabilization of AURKA by
PRL-3 requires PRL-3-mediated dephosphorylation of
FZR1 and assembly of the APC/CFZR1 complex [34].
PTPRD is a protein tyrosine phosphatase and a tumor
suppressor. It destabilizes the AURKA protein by de-
phosphorylating tyrosine residues in AURKA, leading to
downstream destabilization of the MYCN protein [39].
NQO1 [32], SMAD4 [33] and PHLDA1 [40] are also
tumor suppressors mediating AURKA protein degrad-
ation. NQO1 competes with TPX2 for binding to
AURKA and inhibits excessive increases in AURKA pro-
tein levels, thereby suppressing the generation of aneu-
ploidy in irradiated cells [32]. The tumor suppressor
SMAD4 interacts with AURKA and inhibits the expres-
sion of AURKA via proteasomal degradation which is in-
dependent of TGFβ signaling [33].

Downstream targets of AURKA
Based on the high expression and significance of
AURKA in multiple types of tumors, it is crucial to dis-
cover the mechanism of action for AURKA in cancer.
As a serine/threonine protein kinase, AURKA is re-
ported to interact with numerous proteins, including
tumor suppressors and oncogenes, to promote carcino-
genesis, as shown in Table 2.

AURKA substrates regulating mitosis
AURKA is involved in the regulation of spindle-
associated events during early mitosis. Many of the sub-
strates regulated by AURKA coordinate with AURKA to
control mitotic progression, and aberrant expression of
AURKA in a variety of human cancers has been linked
with mitotic defects. Phosphorylation of histone H3 is a
crucial event for the onset of mitosis. AURKA physically
interacts with the histone H3 tail and efficiently
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Table 2 AURKA downstream substrates

Substrates Phosphorylation
sites

Experimental methods Functional significance Ref

YBX1 T62, S102 Consensus motif, in vitro kinase assay,
autoradiography

Increases YBX1 protein stability, regulate EMT, CSC
and chemoresistance.

[17]

LDHB S162 In vitro kinase assay, MS analysis, point mutation, anti-
phosphoserine

Promotes glycolysis and biosynthesis; Promotes
tumor growth.

[45]

Merlin S518 In vitro kinase assay, specifc antibody Weakens merlin interaction with tubulin. [46]

RPS6KB1 T389 P-RPS6KB1 (T389) specifc antibody Reduces survival of KRAS-mutant gastrointestinal
cancer cells

[47]

CENP-A S7 In vitro kinase assay, truncation mutants,
autoradiography

Regulates mitosis especially kinetochore function. [48]

LKB1 S299 In vitro kinase assay, MS analysis,
point mutation, autoradiography

Impairs LKB1 interaction with and phosphorylation of
AMPK.

[49]

KCTD12 S243 Point mutation, IP, anti-phosphoserine Promotion of cancer cell proliferation and
tumorigenesis.

[26]

CHIP S273 Point mutation, in vitro kinase assay, autoradiography Promotes AR degradation via the proteasome
pathway.

[50]

ALDH1A1 T267, T442, T493 Consensus motif, point mutation, in vitro kinase assay,
autoradiography

Regulates protein stability, EMT and CSC phenotypes. [16]

Twist S123, T148,
S184

Consensus motif, point mutation, in vitro kinase assay,
autoradiography

Regulates protein stability, subcellular localization,
EMT, the CSC phenotype and drug resistance.

[15]

YAP S397 In vitro kinase assay, truncation mutants, MS,
consensus motif

Enhances transforming ability. [51]

TACC3 S558 MS, point mutation, in vitro kinase assay,
autoradiography

Regulates TACC3 localization to centrosomes and
proximal mitotic spindles.

[52]

HDM2 S166 In vitro kinase assay, specifc antibody NA [53]

β-catenin S552,
S675

In vitro kinase assay, truncation mutants,
autoradiography

Increases its stability and transcriptional activity [54]

ERα S167,
S305

In vitro kinase assay, truncation mutants,
autoradiography

Leading to increase in ERα DNA-binding and tran-
scriptional activity.

[55]

BimEL S93/94/98 Consensus motif, in vitro kinase assay, specifc
antibody

NA [56]

GSK-3β S9 In vitro kinase assay, specifc antibody Leading to accumulation and activation of the β-
catenin/TCF complex.

[57]

PLK1 T210 In vitro kinase assay, specifc antibody Centrosomal organization. [58]

IκBα S32, S36 Specifc antibody NFκB activation. [59]

VHL S72 In vitro kinase assay, MS, autoradiography NA [60]

PHLDA1 S98 In vitro kinase assay, consensus motif,
autoradiography

Negatively regulates PHLDA1 by promoting PHLDA1
degradation.

[40]

Histone H3 S10 In vitro kinase assay, autoradiography Involved in the initiation of mitosis. [61]

YY1 S365 In vitro kinase assay, truncation mutants, consensus
motif, autoradiography

Abolishes its DNA binding activity and transcriptional
activity.

[62]

SDCBP S131,
T200

In vitro kinase assay, consensus motif,
autoradiography, anti-phospho-serine/threonine

Stabilizes SDCBP protein and regulates its oncogenic
function.

[63]

SOX2 S220, S251 In vitro kinase assay, MS Maintains the ratio of stem-cell like cells. [64]

CPAP S467 In vitro kinase assay, truncation mutants, MS,
autoradiography

Is required for the integrity of the spindle pole
during mitosis.

[65]

RalA S194 In vitro kinase assay, consensus motif,
autoradiography

Enhances cell migration and anchorage-independent
growth.

[66]

CDC25B S353 MS, in vitro kinase assay, specifc antibody Control of the onset of mitosis. [67]

NDEL1 S251 MS, in vitro kinase assay, autoradiography Centrosomal maturation, separation, and TACC3
recruitment.

[68]

ASAP S625 MS, in vitro kinase assay, autoradiography Bipolar spindle assembly. [69]
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phosphorylates Ser10 both in vitro and in vivo [61].
NDEL1 phosphorylation by AURKA at the Ser251 site is
essential for centrosomal separation and centrosomal
maturation. After phosphorylation, NDEL1 displays high
affinity for the mitotic protein TACC3, mediating
TACC3 recruitment to the centrosome [68]. TACC3 is
another substrate of AURKA that is localized to mitotic
spindles and proximal mitotic spindles after phosphoryl-
ation at Ser558 [52]. The NDEL1-TACC3 protein com-
plex activated and initiated by AURKA plays a
significant role in centrosome maturation and separation
during mitosis. Another centrosome-associated protein,
CPAP, directly interacts with AURKA and is phosphory-
lated by AURKA at Ser467 to maintain the integrity of
the spindle pole [65]. ASAP is also a spindle-associated
protein, deregulation of which induces severe mitotic de-
fects. After phosphorylation at Ser625 by AURKA, ASAP
localizes to centrosomes from late G2 to telophase and
around the midbody during cytokinesis [69]. The
AURKA activator TPX2 is an AURKA substrate with
phosphorylation sites at Ser121 and Ser125. Phosphoryl-
ation of TPX2 by AURKA is required for establishment
of normal spindle length and interaction with cytoplas-
mic linker-associated protein 1 [77]. PLK1 is an essential
mitotic kinase regulating multiple aspects of the cell

division process, and activation of PLK1 requires phos-
phorylation at Thr210 in the T-loop of the PLK1 kinase
domain. It has been reported that AURKA is responsible
for the Thr210 phosphorylation of PLK1, which is re-
quired for checkpoint recovery [58]. Another study has
demonstrated that the phosphatase CDC25B is phos-
phorylated by AURKA at the Ser353 site to contribute
to the G2-M transition [67]. CENP-A, a well-conserved
variant of histone H3, is phosphorylated by AURKA at
Ser7, which is required for the concentration of AURKB
at inner centromeres and for kinetochore function [48].

AURKA substrates acting as functional oncogenes
Some AURKA substrates, such as GSK-3β, β-catenin,
Twist, ERα, IκBα, and YAP, participate in crucial onco-
genic signaling. AURKA and GSK-3β exist in a complex,
and a significant increase in the phosphorylation of
GSK-3β at Ser9 has been observed following overexpres-
sion of AURKA [57]. Furthermore, AURKA inhibits the
degradation of β-catenin, a known substrate of GSK-3β,
by phosphorylating β-catenin at the Ser552 and Ser675
sites [54]. This phosphorylation also regulates β-catenin
nuclear localization and transcriptional activity toward
its target genes [54]. Research has shown that AURKA
phosphorylation of Twist at Ser123, Thr148 and Ser184

Table 2 AURKA downstream substrates (Continued)

Substrates Phosphorylation
sites

Experimental methods Functional significance Ref

MBD3 S24 In vitro kinase assay, autoradiography, consensus
motif

NA [70]

RASSF1A T202, S203 Consensus motif, in vitro kinase assay,
autoradiography

Induces M-phase cell cycle arrest. [71]

P53 S215,
S315
S106

Consensus motif, in vitro kinase assay,
autoradiography

S215: Abrogates DNA binding and transactivation
activity;
S315: Inactivates p53 by enhancing its proteolytic
degradation.
S106: Inhibit the interaction of p53 with MDM2 and
prolong the half-life of p53.

[72]
[73]
[74]

HURP S627, S725,
S757, S830

In vitro kinase assay,autoradiography, MS Regulates HURP stability and exhibits serum-
independent growth.

[75]

PP1 NA In vitro kinase assay,autoradiography Inhibits PP1 activity at mitosis. [43]

P73 S235 Consensus motif, in vitro kinase assay,
autoradiography

Abrogates its transactivation function; Regulates
subcellular localization.

[76]

TPX2 S121,
S125

Consensus motif, in vitro kinase assay,
autoradiography

Maintains metaphase spindle length by regulating
the microtubules flux.

[77]

Lats2 S83 In vitro kinase assay, truncation mutants,
autoradiography

Regulates centrosomal localization. [78]

LIMK2 S283, T494,
T505

Consensus motif, in vitro kinase assay,
autoradiography

Inhibits LIMK2 degradation and increases LIMK2
kinase activity.

[14]

Y-box binding protein-1 (YBX1); Lactate dehydrogenase B (LDHB); Ribosomal protein S6 kinase B1 (RPS6KB1); Centromeric protein A (CENP-A); Liver kinase B1
(LKB1); Potassium channel tetramerization domain containing 12 (KCTD12); C-terminus of HSP70-interacting protein (CHIP); Aldehyde dehydrogenase 1 (ALDH1A1);
Yes-associated protein (YAP); Glycogen synthase kinase 3 beta (GSK-3β);Polo-like kinase-1 (PLK1); Pleckstrin homology-like domain family A member 1(PHLDA1);
Yin Yang 1 (YY1); Syndecan binding protein (SDCBP); Sex-determining region Y (SRY)-Box 2 (SOX2); Centrosomal P4.1-associated protein (CPAP); Ral small GTPase
(RalA); Neurodevelopment protein 1-like 1 (NDEL1); ASter-Associated Protein (ASAP); RAS-association domain family 1, isoform A (RASSF1A); Hepatoma
upregulated protein (HURP); Protein Phosphatase 1 (PP1); Large tumor suppressor 2 (Lats2); LIM-domain kinase-2 (LIMK2); Mass spectrometry (MS); NA:
not available
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facilitates Twist-mediated promotion of EMT and che-
moresistance in pancreatic cancer cells [15]. In addition,
AURKA interacts with ERα and phosphorylates it at
Ser167 and Ser305, leading to an increase in the DNA-
binding ability of ERα and the transcriptional activity of
ERα toward its target cyclin D1 [55]. More interestingly,
elevated expression of AURKA predicts poor survival in
ERα-positive but not in ERα-negative breast cancers
[55]. Regarding the pathway by which AURKA regu-
lates NF-κB signaling, a mechanistic study has re-
vealed that IκBα phosphorylation by AURKA
promotes its degradation, thus activating the NF-κB
pathway [59]. YAP is the main downstream effector
of the Hippo pathway. AURKA-mediated phosphoryl-
ation of YAP at Ser397 is crucial for YAP-mediated
transcriptional activity and transformation in triple-
negative breast cancer cells [51].
SOX2 and YBX1 are oncogenic transcription factors

phosphorylated by AURKA. After phosphorylation,
SOX2 is able to maintain the ratio of stem cell-like cells,
while YBX1 is stabilized and enhances EMT, stem cell
formation and chemoresistance [17, 64]. LDHB is a sub-
unit of the tetrameric enzyme LDH that catalyzes the
interconversion between pyruvate and lactate. Phosphor-
ylation of LDHB by AURKA at Ser162 amplifies its ac-
tivity in reducing pyruvate to lactate, thus promoting
glycolysis and biosynthesis and promoting tumor growth
[45]. Recently, our research has indicated that phosphor-
ylation of the scaffold and oncogenic protein SDCBP by
AURKA maintains its protein stability and pro-
proliferative functions [63]. Furthermore, the ability of
SDCBP to bind to its partners, including EGFR, SRC and
FAK, is attenuated when the phosphorylation sites are
inactivated [63]. Another unique substrate of AURKA is
HURP, which is phosphorylated at four serine positions
[75]. HURP protein stability and serum-independent
growth are enhanced after phosphorylation [75].
RPS6KB1, a mitogen-activated serine/threonine pro-

tein kinase, is activated in human malignancies. Acti-
vation of RPS6KB1 occurs through phosphorylation
by AURKA at the Thr389 position, which is import-
ant for promoting cell proliferation and survival [47].
LIMK2 is a crucial oncogenic regulator with serine/
threonine protein kinase activity. AURKA regulates
LIMK2 kinase activity, subcellular localization and
protein levels by directly phosphorylating LIMK2 at
Ser283, Thr494 and Thr505 [14]. The small GTPase
RalA is also a target of AURKA; phosphorylation of
RalA at Ser194 enhances cell migration and
anchorage-independent growth [66]. ALDH1A1 is an
AURKA substrate enzyme whose phosphorylation by
AURKA at Thr267, Thr442 and Thr493 regulates
ALDH1A1 protein stability, enhancing the role of this
protein in the process of EMT [16].

AURKA substrates acting as tumor suppressors
P53 is one of the most important substrates of AURKA.
It has been reported that AURKA phosphorylates p53 at
Ser315, after which p53 is destabilized and the G2-M
transition is enhanced [72]. However, Ser106 residue
phosphorylation by AURKA has the opposite effect.
After phosphorylation, the interaction of p53 with
MDM2 is inhibited and the p53 protein expression is
stabilized [73]. Another study has revealed that the p53
Ser215 site is phosphorylated by AURKA. P53 DNA
binding ability and transactivation activity are inhibited
after phosphorylation and p53 tumor suppressor activity
is inhibited by AURKA [74]. RASSF1A, initially identi-
fied as a microtubule- and centrosome-associated pro-
tein, is a scaffold protein with tumor-suppressive
function. Phosphorylation of RASSF1A by AURKA at
Ser203 and Thr202 removes the ability of RASSF1A to
interact with microtubules and induce M-phase cell
cycle arrest [71]. PHLDA1, a novel p53 target, can re-
press the Akt signaling pathway. AURKA directly phos-
phorylates PHLDA1 at Ser89, which results in
degradation of PHLDA1 [40]. Another novel substrate of
AURKA with tumor-suppressive function is LKB1. Phos-
phorylation of LKB1 at Ser299 causes LKB1 to dissociate
from AMPK, resulting in impairment of the AMPK sig-
naling pathway and facilitating non-small-cell lung can-
cer (NSCLC) growth and migration [49]. Merlin
suppresses tumor development through distinct mecha-
nisms and is a substrate of AURKA that is phosphory-
lated at its main regulatory site, Ser518, during mitosis
[46]. Another AURKA substrate acting as a tumor sup-
pressor is Lats2. Phosphorylation of Lats2 by AURKA at
the Ser83 site regulates its centrosomal localization [78].
This process may be important for Lats2 to suppress
tumorigenicity and to inhibit cell proliferation via cen-
trosomal regulation.

Other AURKA substrates
Several AURKA substrates exhibit multiple and counter-
acting functions in cancer development. YY1 and P73, as
transcription factors, have been shown to bind hundreds
of DNA sites and to regulate a very large number of tar-
get genes with a wide range of functionalities. Once YY1
is phosphorylated by AURKA at Ser365, its DNA-
binding activity and transcriptional activity are abolished
[62]. Furthermore, AURKA phosphorylation of p73 at
Ser235 eliminates the p73 transactivation function in
both DNA damage-induced cell death and mitotic spin-
dle assembly checkpoint pathways [76]. Another multi-
functional protein is the ubiquitin ligase CHIP, which
has been shown to be a regulator of oncogenic pathways
or tumor-suppressive pathways. AURKA-mediated phos-
phorylation of CHIP at Ser273 promotes androgen deg-
radation in castration-resistant prostate cancer [50].
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KCTD12 also exhibits dual and opposite functions in
cancer. Phosphorylation by AURKA at Ser243 may ac-
count for the cancer-promoting effects of KCTD12 [26].
MBD3 [70], HDM2 [53], PP1 [43], VHL [60] and

BimEL [56] are also phosphorylated by AURKA, but
their subsequent specific functions remain to be re-
vealed. Notably, some proteins, including ALDH1A1,
Twist, YBX1, KCTD12, RASS1A, PHLDA1, PP1, TPX2,
LIMK2 and VHL, usually form negative or positive feed-
back loops with AURKA.

Signaling pathways involving AURKA-interacting proteins
AURKA has been identified to regulate many signaling
pathways, such as the PI3K/Akt, mTOR, β-catenin/Wnt
and NF-κB pathways, and tumorigenesis requires inter-
actions among multiple signaling pathways. We obtained
an interactome network using the STRING database
based on the AURKA-interacting proteins mentioned in
the previous section (Fig. 3). Then, we performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
and Gene Ontology (GO) enrichment analyses of the
signaling pathways. The results indicated that AURKA-
related proteins are involved in the processes of mitosis,
cell cycle progression and apoptosis. Furthermore, these
proteins are directly or indirectly associated with key
molecules in crucial signaling pathways such as the
Hippo pathway, the p53 pathway, the PI3K-Akt pathway,
the FOXO pathway and the Wnt pathway. Most import-
antly, AURKA is involved in all of these cancer-related
pathways, suggesting the significance of AURKA in these
processes and pathways.

Pharmacologic targeting of AURKA in cancer therapy
A series of molecules have been demonstrated to be able
to inhibit AURKA activity. Although the majority also
exerts effects on other members of the Aurora kinase
family or even on other kinases, there is enough evi-
dence to make some of them potent targets for cancer
therapy both in vitro and in vivo in preclinical or clinical
evaluations (Table 3 and Table 4).

Specific AKIs

AKIs in preclinical studies In recent years, several
small molecules that selectively target AURKA have been
identified with anticancer activity in preclinical studies in-
cluding LY3295668 [86], BPR1K0609S1 [81, 82], LDD970
[83], MK-8745 [84, 85], AKI603 [80] and CYC3 [79]. The
detailed information is shown in Table 3.

AKIs in clinical studies Several inhibitors with high
specificity for AURKA have been developed, and some
of them have shown clinical efficacy in clinical trials.
The common dose-limiting toxicity of specific AKIs,

including MLN8237 and ENMD-2076, are neutropenia,
somnolence and mucisitis.
MLN8237 is a highly selective small molecule inhibi-

tor of AURKA with an IC50 of 1 nM. MLN8237 was de-
veloped as an enhancement of its predecessor,
MLN8054, development of which was terminated after
phase I studies due to central nervous system side ef-
fects, including dose-limiting somnolence [124, 125].
MLN8237 has been shown to inhibit cell proliferation by
impairing mitosis, inducing cell cycle arrest and autoph-
agy, and accelerating cancer cell apoptosis and senes-
cence in multiple cancer types [132, 133]. The EMT
process is also impeded by MLN8237 treatment in hu-
man epithelial ovarian and pancreatic cancer cells [134].
Importantly, MLN8237 significantly increases the sensi-
tivity of tumor cells to chemotherapy drugs or radiation
[135, 136]. Mechanistic studies have revealed that
MLN8237 induces proteasomal degradation of N-myc in
childhood neuroblastoma [137]. In THCA cells,
MLN8237 disrupts c-Myc/AURKA complex formation,
and c-Myc is a major determinant of MLN8237 respon-
siveness both in vitro and in vivo [138]. MLN8237 has
demonstrated efficacy in cell-derived and patient-derived
xenograft (PDX) models of numerous tumor types, in-
cluding glioblastoma [139], bladder cancer [140],
esophageal adenocarcinoma [136], multiple myeloma
[132], neuroblastoma [141] and colon cancer [142].
Due to its potent efficiency in preclinical studies,

MLN8237 has been tested in clinical trials for multiple
cancers and is the only AURKA inhibitor that has pro-
ceeded to phase III evaluation. Many phase I and II
studies have described the pharmacokinetic and pharma-
codynamic properties of MLN8237 in patients with ad-
vanced tumors and hematologic malignancies [143–146].
Based on the results of these studies, the recommended
phase II dose of MLN8237 is 50 mg twice daily orally for
7 days in 21-day cycles. However, because children ex-
perience greater frequencies of myelosuppression and
hand-foot-skin syndrome on this schedule, the recom-
mended pediatric phase II dose is 80 mg once daily for
7 days [147]. One phase II trial of MLN8237 in patients
with ovarian cancer, fallopian tube cancer, peritoneal
carcinoma, acute myelogenous leukemia and high-grade
myelodysplastic syndrome showed that MLN8237 has
modest single-agent antitumor activity [148]. In a multi-
center phase II study, MLN8237 treatment obtained an
objective response in 18% of 49 women with breast can-
cer and 21% of 48 participants with small-cell lung can-
cer [149]. In another phase II study of MLN8237 in
advanced/metastatic sarcoma, occasional responses and
prolonged stable disease were observed, and
progression-free survival (PFS) was promising [150]. In
castration-resistant neuroendocrine prostate cancer pa-
tients, those with AURKA and N-myc activation achieve
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significant clinical benefit from single-agent MLN8237
treatment [151]. Another phase II study has shown that
in relapsed or refractory peripheral T-cell NHL (PTCL)
patients, MLN8237 has antitumor activity with an over-
all response rate of 30% [152]. In a recently reported
phase III study conducted in patients with PTCL, al-
though MLN8237 did not demonstrate superior efficacy
over comparators, it did show antitumor activity and ac-
ceptable tolerability and safety [153]. All these encour-
aging outcomes make MLN8237 a promising agent for
cancer treatment.
ENMD-2076, a novel, orally bioavailable multitarget

inhibitor whose main targets are FLT3 (IC50 = 3 nM)

and AURKA (IC50 = 14 nM), exhibits much greater po-
tency against AURKA than against AURKB (IC50 = 350
nM) [154]. Because of its multitarget properties, ENMD-
2076 inhibits the growth of a wide range of human solid
tumor and hematopoietic cancer cell lines, with IC50
values ranging from 0.025 to 0.7 μM [155]. ENMD-2076
shows antitumor activity in colorectal cancer [154], mul-
tiple myeloma [156] and triple-negative breast cancer
[157, 158] both in vitro and in vivo. Due to the potent
inhibitory effects of ENMD-2076 on cancer cells and xe-
nografts, several phase I/II clinical trials on this com-
pound have been conducted in solid tumors and
hematologic malignancies [113–119] (Table 4).

Fig. 3 AURKA interactome and related signaling pathways. The interactome in the center is obtained through STRING database based on AURKA-
interacted proteins mentioned in Table 1 and Table 2. The interactome around are enriched pathway proteins. The left bottom literal statements
are the alternative names of the molecular
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Table 3 AKIs in preclinical studies

Compound
names

Structures Targets
(IC50)

Cell-based potency
(IC50/EC50/GI50)

Animal models
(type; concentration; efficiency)

Ref

CYC3 AURKA
(0.033 μM))

IC50:
MIA PaCa-2 (1.1 μM)
PANC-1 (2 μM)

NA [79]

AKI603 AURKA (12.3 nM) NA Epirubicin resistant MCF-7 cell xenograft;
mice were treated intra-gastrically every
day with 50mg/kg AKI603; tumor volume
and tumor weight were significantly reduced.

[80]

BPR1K0609S1(BP) AURKA (43 nM) HCT116 (400 nM) Parental and BP-resistant HCT116
Puma(−), Bax(−), Chk2(−) and p53(−)
cells were transplanted into nude mice;
these BP-resistant cells did not show faster
tumor development compared to their
parental cells, respectively.

[81,
82]

LDD970 AURKA (0.37 μM) IC50:
HT29 (4.22 μM)

NA [83]

MK-8745 AURKA (0.6 nM) NA HCT116, HCT116 p53(−), HCT116 Puma(−),
HCT116 p21(−) and HCT116 Chk2(−)
xenografts; MK-8745 (800 nM) was directly
s.c. injected daily; HCT116 p53(−)
tumorigenesis was weakly inhibited,
HCT116 Puma(−), HCT116 p21(−), HCT116
Bax(−) and HCT116 Chk2(−) cells was inhibited
with MK-8745.

[84,
85]

LY3295668 AURKA (< 1 nM) 55 out of 80 cell lines
displayed sensitivity
(IC50 < 1 μM) to
LY3295668 with an
average IC50 of
0.048 μM

1. NCI-H446 xenograft model; 50 mg/kg (s.c),
(BIDX7, rest 14) X 2, (BIDX14, rest 7) X 2,
or (BIDx21) X 2 schedule; produced significant
tumor growth inhibition.
2. PDX; 50 mg/kg BIDX28 showed 97.2%
of tumor growth inhibition.

[86]

BPR1K653 AURKA (124 nM)
AURKB (45 nM)

IC50:
A549 (9 nM)
HT29 (12 nM)
OECM-1 (135 nM)
HONE-1 (11 nM)
KB (12 nM)
NTUB1 (8 nM)
MV4–11(5 nM)
IM9 (4 nM)

Cervical cancer KB xenograft;
15 mg/kg through intravenous injection for
two weeks;
73% decrease in tumor volume.

[87]

TY-011 AURKA (102.1 nM)
AURKB (93.9 nM)

IC50:
SNU-16 (0.09 μM)
MKN-45 (0.13 μM)
MGC-803 (0.19 μM)
SGC-7901(0.57 μM)
AGS (0.96 μM)

Gastric cancer cell MGC-803 xenograft; TY-011
was orally administered at 3, 6 and 9mg/kg
once a day for 13 days; 64.9, 87.7, 89% inhibition
rate for 3, 6 and 9mg/kg respectively.

[88]
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Table 3 AKIs in preclinical studies (Continued)

Compound
names

Structures Targets
(IC50)

Cell-based potency
(IC50/EC50/GI50)

Animal models
(type; concentration; efficiency)

Ref

BPR1K871 AURKA (22 nM)
AURKB (13 nM)
FLT3 (19 nM)

EC50 values ranged
from 34 nM to 7 μM
in various cancer cells.
COLO205 (34 nM)
Mia-PaCa2 (94 nM)

Colorectal COLO205 or pancreatic Mia-PaCa2
xenograft; 15 mg/kg intravenous administration
of BPR1K871 once a day for two continuous
weeks (on days 1–5 and 8–12); TGI was
about 90%.

[89]

SCH-1473759 AURKA (≤4 nM)
AURKB
(≤ 13 nM)

In 51/53 tumor cells
IC50 < 100 nM. The
mean IC50 was 21
nM. A2780, LNCap,
N87, Molt4, K562, and
CCRF-CEM with
IC50 < 5 nM.

A2780 human tumor xenograft; 5 mg/kg (i.p)
bid dosed daily on days 0–16 (TGI = 50%)
and 10 mg/kg (i.p) bid dosed intermittently
on days 0–4 and 10–14 (TGI = 69%).

[90]

Derrone AURKA (22.3 μM)
AURKB (6 μM)

H1299 (23.8 μM)
MCF7 (24.4 μM)
Hela (31.2 μM)
KPL4 (45.8 μM)

NA [91]

JNJ-7706621 AURKA
(11 nM)
AURKB (15 nM)
CDK1 (9 nM)
CDK2 (4 nM)

IC50 values ranged
from 112 to 514 nM
in various cancer cell
lines while IC50
values ranged from
3.67 to 5.42 μM in
normal cells.

A375 xenograft model; JNJ-7706621 was treated
i.p using 125mg/kg 7 on/7 off schedule and the
100mg/kg QD schedule; TGI values were 93%
for both two schedules.

[92]

SAR156497 AURKA (0.6 nM)
AURKB (1 nM)
AURKC (3 nM)

SAR156497 was active
on various tumor cell
lines (IC50: 5–500 nM).

HCT116 xenografts; compound was s.c injected
in continuous infusion using ALZET micropump
at an 8 μL/h flow rate for 48 h and at doses
of 25 mg/kg; TGI% = 81%. Note: therapeutic
window was narrow.

[93]

R1498 VEGFR2 (25 nM)
AURKA (67 nM)
AURKB (167 nM)

Mean IC50s were
7.81, 7.55 and
30.07 μM in
epatocellular
carcinoma, gastric
cancer, and
nasopharyngeal
carcinoma cell lines,
respectively.

1. BEL-7402, MGC-803 and SGC-7901 xenografts;
25 mg/kg, twice daily, orally; R1498 showed better
TGI% over sorafenib.
2. CNE-2 xenograft; 25 mg/kg, twice-daily, oral
gavage; TGI% was 90%.
3. Three PDX model; TGI% reached 73.6–91.6%
(25mg/kg, twice-daily, oral gavage).

[94]

VE-465 AURKA (1 nM)
AURKB (26 nM)
AURKC (8.7 nM)

Huh-7 (2.01 μM)
HepG2 (4.15 μM)

HCC human Huh-7 xenograft; twice a day
i.p with VE-465 at 15, 25, and 35mg/kg for
14 days; the mean tumor volumes were
reduced by 59, 59, and 77%, respectively.

[95]

CCT129202 AURKA (0.042 μM)
AURKB (0.198 μM)
AURKC (0.227 μM)

GI50:
Colo205 (0.46 μM)
SW620 (0.7 μM)
HCT116 (0.35 μM)
HT29 (0.5 μM)
KW12 (1.2 μM)
Hela (0.2 μM)
A2780 (0.3 μM)
OVCAR8 (1 μM)
MV4–11 (0.08 μM)

HCT116 colon carcinoma xenografts; mice
were treated i.p. with a single dose of
100 mg/kg /day for 9 days;
Significant tumor growth inhibition was
observed compared with the
vehicle-treated mice (% treated versus
control, 57.7; P = 0.0355)

[96]
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MK-5108 is a novel small molecule that shows robust
selectivity for AURKA over AURKB (220-fold greater se-
lectivity) and AURKC (190-fold greater selectivity) [159].
It inhibits the growth of 14 tumor cell lines with IC50
values between 0.16 and 6.4 μM and shows antitumor ef-
fects alone or in combination with docetaxel in xenografts
[159]. In EOC stem cells, MK-5108 induces cell cycle
arrest by affecting the NF-ĸB pathway [160]. MK-5108
also decreases the rate of proliferation and increases intra-
tumoral apoptosis in uterine leiomyosarcoma xenografts
[161]. MK-5108 effect has been evaluated in a phase I
clinical study as shown in Table 4 [123].

Pan Aurora kinase inhibitors
Clinically significant side effects of pan Aurora kinase in-
hibitors include neutropenia, fatigue, diarrhea and
hypertension. Even though the selective AURKA

inhibitors might be less toxic than pan-inhibitors, it may
also lead to drug resistance more easily, so it is necessary
to develop broad Aurora kinase inhibitors to obtain
drugs with greater potency for cancer treatment.

Inhibitors in preclinical studies Recently, more than
10 pan-Aurora kinase inhibitors have been designed in
preclinical studies. For example, AKI-001 [100],
BPR1K871 [89], CCT137690 [97, 98], JNJ-7706621 [92],
SAR156497 [93], SCH-1473759 [90] and VE-465 [95]
have potent inhibitory effects on Aurora kinase activity
with IC50 values< 50 nM. Other Aurora kinase inhibitors
with IC50 values> 50 nM against kinase activity, such as
BPR1K653 [87], CCT129202 [96], derrone [91], PHA-
680632 [99], R1498 [94], reversine [101] and TY-011
[88], have also been tested in preclinical studies, and the
preliminary data are shown in Table 3.

Table 3 AKIs in preclinical studies (Continued)

Compound
names

Structures Targets
(IC50)

Cell-based potency
(IC50/EC50/GI50)

Animal models
(type; concentration; efficiency)

Ref

CCT137690 AURKA (0.015 μM)
AURKB (0.025 μM)
AURKC (0.019 μM)
FLT3 (0.0025 μM)

CCT137690 effectively
inhibited the growth
of human tumor cell
lines of different
origins with GI50
values ranging from
0.005 to 0.47 Μm.

1. SW620 xenografts; orally at a dose of
75 mg/kg twice a day for 21 days; The
treated/control (T/C) ratio was calculated as
42.4% based on final tumor weight.
2. MYCN-driven transgenic mouse model;
100mg/kg twice daily for 10 days; TGI was observed
as early as day 3 and continuous treatment showed
significant tumor growth inhibition at day 7 and
day 10.

[97,
98]

PHA-680632 AURKA
(27 nM)
AURKB (135 nM)
AURKC (120 nM)

PHA-680632 has
potent
antiproliferative
activity in a wide
range of cell types
with an IC50 in the
range of 0.06 to
7.15 μM.

1. HL60 xenograft; mice were injected i.v. at three
dose levels (15, 30, and 45mg/kg for 5 days); the
45mg/kg dose resulted in 85% of TGI without
signs of toxicity.
2. A2780 xenograft; 60 mg/kg i.v. for 5 days;
TGI% = 78%.
3. HCT116 colon carcinoma xenograft; 15 and
30mg/kg i.p for 12 days; TGI was 75%.

[99]

AKI-001 AURKA (0.004 μM)
AURKB (0.005 μM)

HCT116 (0.07 μM)
HT29 (0.07 μM)
MCF7 (0.1 μM)

HCT-116 xenograft model;
Mice were dosed orally QD for 21 days (0, 1, 2.5, 5,
or 10 mg/kg); 2.5 (82% TGI) and 5mg/kg (92% TGI).
Note: dosing at 10 mg/kg QD led to unacceptable
weight loss, marked bone marrow depletion, and
gastrointestinal hypocellularity.

[100]

Reversine AURKA (400 nM)
AURKB (500 nM)
AURKC (400 nM)

IC50 values ranged
from 100 to 1000 nM
of a wide variety of
tumor cell lines.

U14 cell xenograft; mice were treated with
reversine (10 mg/kg) alone or with aspirin
(1 μg/kg), i.p per 3 days; tumor growth was
reduced and the mice survived longer in the
combination group.

[101]

Tumor growth inhibition (TGI); Intraperitoneal injection (i.p); Subcutaneous (s.c); Intravenous (i.v); Growth inhibition by 50% (GI50); Twice a day (BID); Once a day
(QD); NA: not available
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Table 4 AKIs in clinical development

Drug name Targets
(IC50/Ki
value)

Phase
of
trial

Clinical Trial
ID

Patients Administration Efficiency Ref

AMG900 IC50
value:
AURKA (5
nM)
AURKB (4
nM)
AURKC (1
nM)

I NCT01380756 Acute myeloid
leukemia (n = 35)

Doses from 15 to 100mg or
doses from 30 to 50mg,
orally, once daily.

CRi = 9% (80% confidence interval: 3,
18%).

[102]

I NCT00858377 TPROC (n = 29)
TNBC (n = 14)
CRPC (n = 12)

40mg, orally, once daily. PR = 10.3%for TPROC patients; No
responses for TNBC and CRPC.

[103]

AS703569
(R763)
(MSC1992371A)

IC50
value:
AURKA
(4.0 nM)
AURKB
(4.8 nM)
AURKC
(6.8 nM)

I NCT00391521 Solid tumors (n =
92)

60–74mg/m2/21-day cycle,
orally.

No patients had PR or PR. [104]

I NCT01080664 Hematologic
malignancies (n =
75)

37 or 28 mg/m2/day, orally. 3 patients obtained CR. [105]

I NCT01097512 Solid tumors
(n = 66)

37mg/m2/day, orally.
Combined with standard
1000mg/m2 dose of
gemcitabine.

2 patients obtained PR.
5 patients had SD.

[106]

AT9283 IC50
value:
AURKA (3
nM)
AURKB (3
nM)
JAK3 (1.1
nM)
JAK2 (1.2
nM)
Abl
(T315I)
(4 nM)

I NCT00443976 Advanced
malignancies (n =
35)

40mg/m2/day on days 1, 8
of a 21-day cycle, i.v.

1 patient had PR.
4 patients had SD.

[107]

I NCT00522990 R/R leukemia or
myelofibrosis (n =
48)

108 mg/m2/d for 72-h infu-
sion and 40 mg/m2/d for 96-
h infusion.

2 patients showed benefit. [108]

I CR0708–11 Solid tumors (n =
33)

18.5 mg/m2/d, i.v. 1 patient had PR. [109]

I /II NCT01431664 Leukemia (n = 7) 9,14.5 or 23 mg/m2/day, i.v. No patients showed responses. [110]

II NCT01145989 R/R multiple
myeloma (n = 8)

40mg/m2/day or 30mg/m2/
day, i.v.

No objective responses. [111]

BI-847325 IC50
value:
AURKA
(25 nM)
AURKC
(15 nM)
MEK1 (25
nM)
MEK2 (4
nM)

I NCT01324830 Advanced solid
tumors (n = 69)

Cumulative dose was 1680 or
2250mg per 3-week cycle.
Orally, once daily.

1 patient had PR.
21 patients had SD.

[112]

CYC116 Ki value:
AURKA (8
nM)
AURKB
(9.2 nM)

I NCT00560716
(Terminated)

Advanced solid
tumors (n = 40)

NA NA NA

ENMD-2076 IC50
value:
AURKA(14
nM)
FLT3 (3
nM)

I NCT00658671 Solid tumors (n =
67)

60 to 200mg/m2, Orally,
once daily.

2 patients had PR. [113]

I NCT00904787 R/R AML/CML
(n = 27)

225 mg, 375 mg, 325 mg or
275 mg. Orally, once daily.

1 patient had CRi. 3 patients had
MLFS.

[114]

II NCT01104675 Ovarian cancer
(n = 64)

250 mg or 275 mg/d. Orally,
once daily.

PFS rate at 6 months was 22%. [115]

II NCT01639248 TNBC (n = 41) 250 mg. Orally, once daily. 6-month CBR was 16.7%, 2 PR. 4-
month CBR was 27.8%.

[116]

II NCT01914510 Ovarian clear cell
carcinoma (n =
40)

275 mg (250mg for patients
≤1.65 m2).

3 patients had PR, 26 patients had
SD.

[117]

II NCT01719744 Advanced soft-
tissue sarcomas
(n = 25)

275 mg. Orally, once daily. 2 patients had PR, 2 patients had SD.
CBR was 17% and ORR was 9%.

[118]
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Table 4 AKIs in clinical development (Continued)

Drug name Targets
(IC50/Ki
value)

Phase
of
trial

Clinical Trial
ID

Patients Administration Efficiency Ref

II NCT02234986 Advanced
fibrolamellar
carcinoma (n =
35)

150–250mg. Orally, once
daily

1 patient had PR, 20 patients had SD. [119]

MK-0457
(VX-680,
Tozasertib)

Ki value:
AURKA
(0.6 nM)
AURKB
(18 nM)
AURKC
(4.6 nM)

I NCT02532868 Advanced solid
tumors (n = 27)

64 mg/m2/h 24-h infusion
every 21 days.

12 patients had SD. [120]

I/II NCT00111683 BCR-ABL T315I
leukemia (n = 77)

40mg/m2/h 5-day infusion or
144 mg/m2/h 24-h infusion.

1 patient had CR. 8 patients had
hematologic responses.

[121]

II NCT00405054 T315I mutant CML
and Ph+ ALL (n =
52)

40mg/ m2/h, 32 mg/ m2/h
or 24mg/ m2/h 5-day
infusion.

8% of patients had major cytogenetic
response. 6% achieved unconfirmed
complete or partial response.

[122]

MK-5108
(VX-689)

IC50
value:
AURKA
(0.064 nM)

I NCT00543387 Advanced or
refractory solid
tumors (n = 35)

200 or 450 mg/day. Orally,
twice daily.

1 patient had PR. 16 patients had SD. [123]

MLN8054 IC50
value:
AURKA (4
nM)

I NCT00249301 Advanced solid
tumors (n = 61)

60mg/day plus
methylphenidate or
modafinil, four times daily,
orally.

3 patients had SD. [124]

I NCT00652158 Advanced solid
tumors (n = 43)

10-80mg/day, four times
daily, orally.

3 patients had SD. [125]

PF-03814735 IC50
value:
AURKA (5
nM)
AURKB
(0.8 nM)

I NCT00424632 Advanced solid
tumors (n = 57)

Days 1–5 (5-100mg); or days
1–10 (40-60 mg). Orally, once
daily.

19 patients had SD. [126]

PHA-739358
(Danusertib)

IC50
value:
AURKA
(13 nM)
AURKB
(79 nM)
AURKC
(61 nM)

I NA Advanced or
metastatic solid
tumors (n = 50)

45mg/m2 6-h infusion, 250
mg/m2 3-h infusion. MTD:
330 mg/m2, 6-h infusion.

23.7% patients had SD. [127]

I NA Advanced solid
tumors (n = 56)

Without G-CSF: 500 mg/m2;
with G-CSF: 750 mg/m2, 24-h
infusion.

1 patient had an objective response.
1 patient had 27% tumor regression
and 30% CA125 decline.

[128]

I 2007–
004070-18

Accelerated or
blastic phase
CML, Ph+ ALL
(n = 37)

180 mg/m2 3-h infusion for 7
days in a 14-day cycle.

Responses were observed in four
(20%) of the 20 evaluable patients.

[129]

II NCT00766324 Prostate cancer
(n = 88)

330 mg/m2 6-h infusion or
500 mg/m2 24-h infusion.

11 out of 81 (13.6%) patients had SD. [130]

II NA Solid tumors (n =
223)

500 mg/m2 24-h infusion
every 14 days.

2 patients had PR. [131]

SNS-314 IC50
value:
AURKA (9
nM)
AURKB
(31 nM)
AURKC (3
nM)

NCT00519662 Advanced solid
tumors (n = 32)

NA NA NA

Complete response (CR); Partial response (PR); Stable disease (SD); Complete response with incomplete count recovery (CRi); Morphologic leukemia-free state
(MLFS); Progression free survival (PFS); Granulocyte colony-stimulating factor (G-CSF); Taxane- and platinum-resistant ovarian cancer (TPROC); Triple-negative
breast cancer (TNBC); Castration-resistant and taxane- or cisplatin/etoposide–resistant prostate cancer (CRPC); Acute myelogenous leukaemia (AML); Chronic
myelogenous leukaemia (CML); Relapsed or Refractory (R/R); Philadelphia Chromosome Positive (Ph+); Clinical benefit rate (CBR); Objective response rate (ORR);
Not available (NA)
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Inhibitors in clinical studies AT9283 exhibits strong
activity against several kinases [162]. The ability of
AT9283 to inhibit the growth and survival of tumor cells
as well as xenografts has been demonstrated in imatinib-
resistant BCR-ABL-positive leukemic cells [163], aggres-
sive B-cell lymphoma [164] and medulloblastoma [165].
Several clinical studies have been completed on AT9283
as shown in Table 4 [107–111]. However, there
have been no clinical or objective responses in
patients in these trials because of the small numbers of
patients.
MK-0457, a pyrazoloquinazoline compound, inhibits

all three Aurora kinases [166] and inhibits FLT-3 and
Abl kinases [167]. This compound increases the Bax/
Bcl-2 ratio and induces apoptosis in AML cases with
high AURKA expression [168]. MK-0457 has been con-
firmed to show efficiency in anaplastic THCA cells
[169], chemoresistant ovarian cancer models [170], mye-
loma cell lines and primary myeloma cell samples [171],
and imatinib-resistant chronic myelogenous leukemia
[172]. MK-0457 induces accumulation of cells with ≥4 N
DNA content, inhibits cell cycle progression and induces
apoptosis of anaplastic THCA cells [169]. In a phase I
study conducted in patients with advanced solid tumors,
almost half of them attained stable disease, including
one patient with advanced ovarian cancer who attained
prolonged stable disease for 11 months after receiving
15 cycles of MK-0457 [120]. The activity of MK-0457
was also assessed in two other phase I/II studies, both of
which showed promising outcomes in patients with
BCR-ABL T315I leukemia [121, 122].
PHA-739358 exerts strong activity against all three

Aurora kinases and cross-reactivity with tyrosine kinases,
including FGFR1 and Abl [173]. PHA-739358 exhibits
strong antiproliferative activity in BCR-ABL-positive
leukemia cells, including those harboring the T315I mu-
tation [174]. The crystal structure of the Abl-T315I-
PHA-739358 complex provides a possible structural ex-
planation for the activity of PHA-739358 on the T315I
mutation [175]. PHA-739358 also induces cell cycle ar-
rest, apoptosis and autophagy and suppresses the EMT
process [176, 177]. More importantly, PHA-739358
shows antimetastasis properties. In one study, PHA-
739358 inhibited liver metastases from gastroenteropan-
creatic neuroendocrine tumors in an orthotopic xeno-
graft model [178]. In another study, PHA-739358
inhibited early-stage bone metastases based on an
ex vivo model named the ‘bone-in-culture array’ [179].
Several phase I/II clinical evaluations have been per-
formed on PHA-739358 due to its encouraging antitu-
mor effects [127–131].
Other drugs including AMG900 [102, 103], AS703569

[104–106], BI-847325 [112], CYC116, PF-03814735
[126], and SNS-314 are also in phase I clinical trials.

Combination therapy

Synergy between AKIs and chemotherapy or
radiotherapy AURKA inhibitors have been shown to
have great potential for enhancing the efficacy of mul-
tiple established therapeutic agents in both preclinical
and clinical studies. AURKA inhibitors combined with
docetaxel can produce better therapeutic outcomes than
docetaxel alone in mantle cell lymphoma and upper
gastrointestinal adenocarcinomas [180–182]. This com-
bination procedure was applied in a phase I clinical trial;
in this trial, 20 mg of alisertib twice daily for days 1 to 7
with intravenous docetaxel at 75 mg/m2 on day 1 in a
21-day cycle was well tolerated, and the combination
regimen demonstrated antitumor activity in various can-
cer types [183]. Combined treatment with alisertib and
paclitaxel has been found to result in more potent inhib-
ition of tumor growth and dissemination than single-
agent treatment in an orthotopic xenograft model of
EOC [184]. Moreover, AMG900 demonstrates potent in-
hibitory efficiency in paclitaxel-resistant tumor cell lines
and xenografts [185]. A clinical trial in patients with re-
current ovarian cancer has shown that combined treat-
ment with 40 mg of oral alisertib twice daily plus 60 mg/
m2 paclitaxel weekly shows promising antitumor activity
with an increased but generally manageable safety profile
[186]. Gemcitabine has also been considered for com-
bined treatment with AKIs. In patients with solid tu-
mors, AS703569 in combination with the standard dose
of gemcitabine produces preliminary signs of efficacy
[106]. In AML, alisertib increases the efficacy of cytara-
bine in a FOXO-dependent manner [187]. Another two
clinical trials have demonstrated that alisertib plus in-
duction chemotherapy with cytarabine and idarubicin is
effective and safe in patients with AML [188, 189].
In addition, MLN8237 has a synergistic effect in asso-

ciation with vincristine and rituximab in aggressive B-
cell NHL [190]. Researchers have applied this strategy in
clinical trials. A combination of 50 mg of alisertib b.i.d.
plus 40 mg of rituximab or alisertib b.i.d. plus rituximab
and vincristine is well tolerated and demonstrates activ-
ity against non-germinal center B-cell DLBC [191]. In a
study on Myc-overexpressing lymphoma xenografts, a
combination of cyclophosphamide and MLN8237 in-
duced complete tumor regression in all mice, leading to
improvements in survival [192].
The combination of alisertib and carboplatin is select-

ively effective in glioblastoma patients with high tumor
O6-methylguanine DNA methyltransferase expression
who are resistant to standard therapy [193]. Eribulin, a
microtubule-targeting drug, is used in metastatic breast
cancer patients in the clinic. Combined treatment with
MLN8237 and eribulin leads to a synergistic increase in
apoptosis in mammary tumors as well as cytotoxic
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autophagy in metastases through the LC3B/p62 axis and
Akt pathway [194]. In multiple myeloma, studies on
combined treatment with AT9283 and lenalidomide
have shown significant synergistic antitumor effects of
this regimen both in vitro and in vivo [195]. Recently,
two clinical trials have revealed that 60 mg/m2 alisertib
per dose for 7 days is tolerable with a standard irinote-
can and temozolomide backbone and shows antitumor
activity, particularly in neuroblastoma patients with
MYCN-nonamplified tumors [196, 197].
In addition to clinical drugs, AURKA inhibitors also

show synergistic effects when used in combination with
radiotherapy. PHA680632 treatment prior to radiation
treatment leads to an additive effect in cancer cells, es-
pecially in p53-deficient cells in vitro or in vivo [198].
Another AURKA inhibitor, MLN8054, sensitizes
androgen-insensitive prostate cancer to radiation; this
sensitization is associated with sustained DNA double-
strand breaks [199]. Two other AURKA inhibitors,
MLN8237 and ENMD-2076, also enhance radiation sen-
sitivity in cancer cells [200, 201]. A phase I trial on ali-
sertib with fractionated stereotactic reirradiation therapy
for patients with recurrent high-grade glioma has been
conducted and has revealed that 40 mg of alisertib twice
daily in combination with irradiation is safe and well tol-
erated [202]. Further exploration in the phase II trial
may provide a better sense of clinical outcomes moving
forward.

Combination of AKIs with targeted therapies Cancer
is a multistep disease involving multiple genes, so target-
ing multiple oncogenes simultaneously may enhance the
efficiency of AKIs. HDAC inhibitors have been shown to
repress the expression of AURKA in various cancer cells,
and AKIs can decrease the activity of HDAC proteins,
suggesting that synergetic effects could be obtained by
combining AKIs and HDAC inhibitors [203, 204]. Stud-
ies have shown that the HDAC inhibitor vorinostat syn-
ergistically potentiates MK-0457 lethality in leukemia
cells and breast cancer cells [205–207]. In addition, vori-
nostat and MK-0457 or MK-5108 combination treat-
ment enhances lymphoma cell killing with reductions in
c-Myc, hTERT, and microRNA levels [208]. A study in
T-cell lymphoma has suggested that the effects of aliser-
tib in combination with the HDAC inhibitor romidepsin
are highly synergistic through modulation of cytokinesis
[209]. Combination treatment with vorinostat and
AMG900 produces synergistic antiproliferative effects
both in vitro and in vivo [210]. A phase I study on alisertib
in combination with vorinostat in patients with relapsed/
refractory lymphoid malignancies has shown encouraging
clinical activity with a manageable safety profile [211].
EGFR inhibitors have been a major breakthrough for

NSCLC treatment. However, resistance to EGFR

inhibitors through multiple mechanisms has been identi-
fied, including activation of other oncogenic proteins. One
recent study has demonstrated that EGFR-mutant LUAD
cells that demonstrate acquired resistance to third-
generation EGFR inhibitors are sensitive to AKIs [212].
Furthermore, combination treatment with AKIs and EGFR
inhibitors has been found to robustly decrease tumor
growth in an EGFR-mutant LUAD PDX model [212].
Both BRD4 and AURKA are regulators of the MYC

gene at the translational and posttranslational levels, re-
spectively, and targeting both of them simultaneously
may produce synergistic antitumor effects. JQ1 treat-
ment to repress BRD4 activity together with MLN8237
treatment synergistically promotes cell death in c-Myc
expressing human glioblastoma cells [213]. Combined
treatment with another BRD4 inhibitor, I-BET151, and
alisertib is efficacious in exerting antitumor effects
against neuroblastoma with or without MYCN amplifi-
cation both in vitro and in vivo [214].
To investigate whether combined treatment with a

p53-activating MDM2 antagonist and senescence-
inducing AKIs can be useful for melanoma therapy, two
studies have been performed. One study showed that
AURKA and MDM2 antagonism with MLN8237 and
Nutlin-3 halted melanoma growth by inducing growth
arrest and senescence, limiting the lifespans of senescent
cells, and enhancing tumor immune infiltration and
clearance [215]. The other study showed that combined
MK-0457 and Nutlin-3 treatment activated p53-
dependent postmitotic checkpoints at pseudo-G1 phase
and induced proapoptotic p53 signaling and mitochon-
drial apoptosis in AML [216]. Other molecules, such as
SRC [217], CHEK1 [218], mTOR [219, 220], WEE1
[221], PDK1 [222, 223], and MEK [224], have also been
chosen as targets together with AURKA in preclinical
studies.

Combination of AKIs with immunotherapy Immuno-
therapy and specific monoclonal antibodies targeting
multiple molecules have been widely used for cancer
therapy. Combining AKIs and these agonists may en-
hance therapeutic efficacy. In human neuroblastoma
cells, MK-5108 increases the efficacy of an anti-
ganglioside (GD2) 14G2a antibody, which is related to a
reduction in N-Myc expression and an increase in
PHLDA1 and p53 protein levels [225]. In addition, com-
bined treatment with an anti-GD2 14G2a antibody and
MK-5108 leads to enhancement of the autophagy
process in IMR-32 neuroblastoma cells [226]. A death
receptor 5 agonist antibody has been found to initiate
significant apoptosis in tumor cells undergoing therapy-
induced senescence induced by MLN8237 treatment
[227]. In that study, the combination group achieved re-
markable tumor growth inhibition in melanoma
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xenografts derived from cell lines and patient tissues
[227]. Another study has indicated that alisertib facili-
tates an anticancer immune microenvironment with de-
creased numbers of myeloid-derived suppressor cells
and increased numbers of active CD8+ and CD4+ T lym-
phocytes [228]. More importantly, combined administra-
tion of alisertib and a PD-L1 antibody has demonstrated
synergistic efficacy for the treatment of breast cancer cell
4 T1 xenografts [228]. Combining AKI treatment with
anti-PD-1/PD-L1 immune checkpoint therapy may be a
promising strategy for cancer treatment.

Conclusions and outlooks
Activation of AURKA is responsible for the resistance of
lung cancer to third-generation EGFR inhibitors [212].
Resistance initiated by AURKA may lead to tumor het-
erogeneity and promote the generation of distinct clones
harboring different driving forces of drug resistance.
AURKA attenuates the efficacy of inhibition of the
PI3K-AKT-mTOR pathway, a downstream pathway of
EGFR, in breast cancer [229]. These findings indicate
that AKIs should be used together with oncogenic path-
way inhibitors to treat drug resistance incrementally.

Fig. 4 An overview of AURKA-interacting proteins and AKIs. AURKA expression is regulated at transcriptional or post-transcriptional levels and
AURKA activity is tightly controlled by numerous molecules. Once activated, AURKA interacts with and phosphorylates a wide variety of proteins
serving as mitotic regulators, oncogenes or tumor suppressors. Selective AKIs and pan Aurora kinases inhibitors are developed and studied in
preclinical or clinical evaluation
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To obtain the desired clinical benefits of AKIs, it is es-
sential to know the pathways and proteins involved in
AURKA-mediated oncogenic function. In this review, we
have summarized the interactome proteins regulating
AURKA or regulated by AURKA and the inhibitors tar-
geting AURKA (Fig. 4). Preclinical studies have shown
that AKIs affect the regulation of various cellular pro-
cesses, such as proliferation, invasion, metastasis, au-
tophagy, EMT, chemoresistance and radioresistance.
Furthermore, preclinical animal studies and clinical
studies have illustrated the efficacy of AKIs and AKIs in
combination with other standard chemotherapeutic
drugs, such as paclitaxel, cisplatin and other targeted
therapies.
The high toxicity of AKIs should be considered given

the crucial physiological function of AURKA in normal
cells. Toxicities of AKIs mainly include reversible neu-
tropenia together with mucositis and somnolence,
among which neutropenia is the dose-limiting toxicity.
The predominant toxicities of AKIs reflect the mechan-
ism of action of AURKA in highly proliferating cells
such as bone marrow cells and epithelial cells. The off-
target adverse events in central nervous system including
somnolence and dizziness reflect the binding of AKIs to
the alpha-1 subunit of the GABA-A receptor [230]. Re-
searchers can attempt to reduce the side effects of AKIs
by combining low dose of AKIs with chemotherapeutics,
targeted therapies or immunotherapy. To weaken the
bone marrow suppression induced by AKIs, granulocyte
colony-stimulating factor (G-CSF) is administrated in
conjunction with PHA-739358. In this phase I study, es-
calating the PHA-739358 dose until 1000 mg/m2 do not
cause any bone marrow related toxicities, particularly
neutropenia [128]. Furthermore, development of nano-
particle therapeutic carriers that are passively targeted to
tumors through the enhanced permeability and retention
effect may be helpful [231]. This drug delivery technology
has been applied to MLN8237 and the polysaccharide nano-
vesicle efficiently delivers low concentrations of MLN8237 to
inhibit AURKA and disrupt the anchorage-independent
growth of MCF-7 cell than free MLN8237 [232].
Several methods may be taken into consideration to

overcome the side effects when developing new AKIs.
Researchers can take advantage of the high-resolution
3D protein structures and computer docking tools to
find natural compound or FDA approved drugs that tar-
get AURKA. For example, derrone, extracted from ery-
thrina orientalis, is screened from 100 natural
substances to inhibit AURKA kinase activity and cell
growth [91]. Another case is bioactive tanshinone I
which is from traditional Chinese herbal medicine Salvia
miltiorrhiza. Although there is no direct evidence that
tanshinone I can directly target AURKA, it exhibits po-
tent effects on growth inhibition of colon cancer [233],

lung cancer [234] and breast cancer cells [235] through
downregulating AURKA expression. Another way is to
attempt to develop inhibitors that disrupt the interaction
between AURKA and its activators. AURKA can be acti-
vated by its protein partners, among which TPX2 is the
best established one. Withanone is an herbal ligand iso-
lated from ashwagandha. Withanone is reported to bind
to the TPX2/AURKA complex which results in the dis-
sociation of TPX2 from AURKA and disruption of mi-
totic spindle apparatus in cancer cells [236].
Furthermore, due to the fact that AURKA exerts its
function through specific substrates in certain cancers,
inhibition of AURKA substrates instead of targeting
AURKA kinase activity may decrease the adverse effects.
The tumor types that most likely respond to AKIs

should also be studied in order to obtain the desired
clinical benefits. In one preclinical study, 29 breast can-
cer cell lines are evaluated for the sensitivity to AURKA
inhibitor ENMD-2076 [157]. ENMD-2076 shows stron-
ger activity in cell lines lacking estrogen receptor expres-
sion and HER2 expression [157]. Furthermore, in the
triple-negative breast cancer cells, cell lines with a p53
mutation and increased p53 expression are more sensi-
tive to ENMD-2076 than cell lines with decreased p53
expression [157]. Further studies are required to estab-
lish specific biomarkers predicting whether patients will
respond well to AKIs.
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