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Abstract

Autophagy, as a type II programmed cell death, plays crucial roles with autophagy-related (ATG) proteins in cancer.
Up to now, the dual role of autophagy both in cancer progression and inhibition remains controversial, in which
the numerous ATG proteins and their core complexes including ULK1/2 kinase core complex, autophagy-specific
class III PI3K complex, ATG9A trafficking system, ATG12 and LC3 ubiquitin-like conjugation systems, give multiple
activities of autophagy pathway and are involved in autophagy initiation, nucleation, elongation, maturation, fusion
and degradation. Autophagy plays a dynamic tumor-suppressive or tumor-promoting role in different contexts and
stages of cancer development. In the early tumorigenesis, autophagy, as a survival pathway and quality-control
mechanism, prevents tumor initiation and suppresses cancer progression. Once the tumors progress to late stage
and are established and subjected to the environmental stresses, autophagy, as a dynamic degradation and
recycling system, contributes to the survival and growth of the established tumors and promotes aggressiveness of
the cancers by facilitating metastasis. This indicates that regulation of autophagy can be used as effective
interventional strategies for cancer therapy.
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Introduction
Fifty years ago, Christian de Duve, a Belgian scientist,
firstly coined the term autophagy at the Ciba Foundation
symposium on lysosomes in 1963 [1, 2], for which he
shared the Nobel Prize in Physiology or Medicine in
1974 with Albert Claude and George E. Palade. There
are three morphologically and mechanistically distinct
types of autophagy in cells: macroautophagy, microauto-
phagy and chaperone mediated autophagy [3], and usu-
ally macroautophagy is referred to as autophagy [4].
Autophagy is an intracellular evolutionarily conserved

catabolic degradation process in which cytoplasmic mac-
romolecules, aggregated proteins, damaged organelles or
pathogen are delivered to lysosomes, and digested by lyso-
somal hydrolases to generate nucleotides, amino acids,
fatty acids, sugars, and ATP, and ultimately recycled into

the cytosol [5–13] (Fig. 1). This cellular self-digestion me-
diated by lysosome sustains, on the one hand, cell metab-
olism and survival during starvation and stress, and
eliminates, on the other hand, damaged proteins and or-
ganelles to maintain protein and organelle quality and
quantity [14, 15].
Although autophagy was found over 50 years ago,

only within decade lots of studies elucidated the func-
tions and roles of this ubiquitous process. Recent
studies have indicated that autophagy plays a greater
variety of pathophysiological roles in many disease
processes, including cancer, neurodegeneration, auto-
immune diseases, aging, cell death, heart disease and
infection, and aids cell to clear damaged proteins, or-
ganelles, pathogens or aggregates, and has been pro-
posed as a cell death mechanism, programmed cell
death type II [16–21], whereas apoptosis is distinct-
ively programmed cell death type I [22–24]. The po-
tential ability of autophagy to modulate cell death
makes it a therapeutic target in cancer [25, 26].
With its basic role in the turnover of proteins and or-

ganelles, autophagy has multiple physiological and patho-
physiological functions. During tumorigenesis, autophagy
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plays an important role. In this review, the molecular basis
of autophagy and its roles in cancer are summarized.

Molecular basis of autophagy
Only a small amount of autophagy in cells is involved in
maintaining homeostasis in physiological condition.
When cells are stimulated by intracellular and extracel-
lular factors e.g. starvation, hypoxia [27], some small
molecular compounds [28], oxidation, and pathogen in-
vasion [3, 29], a large number of autophagy is induced
by the transduction of cellular signaling pathways, and
many important autophagy-related proteins and their
complex involved in the autophagic process [30].

Process of autophagy
Physiologically, autophagy is an evolutionarily conserved,
self-degradative, normal physiological process in cells,
which is composed of several closely related steps in-
cluding induction of autophagy, assembly and formation
of autophagosome, autophagosome docking and fusion
with lysosomal membranes, and degradation and recir-
culation of intra-autophagosomal contents in autopha-
golyosome [17, 31] (Fig. 1a-d).

Induction of autophagy
Induction of autophagy can be triggered by several intra-
cellular and extracellular stimulus, e.g. nutrient starvation

including depletion of total amino acids and serum starva-
tion that strongly induces a high level of autophagy [27],
oxidative stress that induces autophagy in order to recycle
damaged organelles (e.g. mitochondria) and eliminate pro-
teins aggregates [32], and inhibitors of TOR such as rapa-
mycin and CCI-779 [17]. Under nutrient-rich condition,
the active mTORC1 kinase hyperphosphorylates ATG13
and blocks the interaction of ATG13 with ULK1and
FIP200. When cells are induced by those intracellular and
extracellular stimulating factors, the ATG13 anchors
ULK1 to a pre-autophagosomal structure (PAS), and then
the almost all autophagy-related (Atg) proteins gather
hierarchically onto the PAS (Fig. 1a), which is reported to
be a crucial site of the cytoplasm to vacuole targeting
(Cvt) and autophagosome formation [2, 33, 34].
As a dock structure for recruitment of ATG pro-

teins, PAS plays a critical role during induction of
autophagy [34, 35] Under autophagy-inducing condi-
tions, the functional unit ULK1/Atg1 (including
ULK1, ATG13, FIP200, and ATG101) acts as autoph-
agy initiation complex, in which the ATG13 is a cru-
cial protein for the PAS localization of ULK1 (Atg1 in
yeast) and the interaction of FIP200 with ULK1, while
the FIP200 (Atg11 and Atg17 in yeast) functions as a
scaffold for downstream ATG protein assembly at the
PAS. Once the ATG13 and ULK1 target to the PAS,
all of these multiple ATG proteins are initially

Fig. 1 Schematic overview of autophagy. a Initiation, activation of ULK1 complex and multiple ATG proteins are engaged and localized to PAS. b
Nucleation, ATG proteins and lipids are recruited to form phagophore; Elongation, cytoplasm and organelles are wrapped and engulfed during
elongation of the phagophore; Maturation, completion and transport of the autophagosome. c Fusion, docking and fusion between
autophagosome and lysosome. d Degradation, degradation of the cargos inside the autolysosome. e The ULK1 kinase core complex including
ULK1, ATG13, FIP200, and ATG101. f The class III PI3K complex I including Beclin1, VPS34, VPS15, and ATG14L. g The ATG9A/ATG2-WIPI1/2
trafficking system including ATG9A, ATG2, and WIPI1/2. h The ATG12-conjugation system including ATG12, ATG7, ATG10, ATG5, and ATG16L. i The
LC3-conjugation system including ProLC3, ATG4, LC3-I, ATG7, ATG3, and LC3-II (LC3-I/PE)
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engaged and localized to the PAS, that is the initiation
of autophagy [2, 33, 34] (Fig. 1a). Subsequently, the
other functional units, including ULK1 complex, PI3K
complex, ATG9A system, ATG12-conjugation system,
and LC3-conjugation system, are targeted to the PAS
in a hierarchical manner and involved in assembly and
formation of autophagosome [12, 36–39].

Assembly and formation of autophagosome
Final formation of mature autophagosome includes nu-
cleation of the multiple Atg proteins at PAS, elongation
of the isolation membrane, and maturation of autopha-
gosome, and four functional units are involved in these
processes (Fig. 1b). The multiple Atg proteins gathering
onto the PAS lead to the formation of a phagophore (or
an isolation membrane) [40, 41]. The PAS is a potential
nucleating site for forming the isolation membrane and
recruits multiple Atg proteins. This nucleation process is
initiated by the ULK1/Atg1 complex [42]. In response to
nutrient starvation, the ULK1/Atg1 protein forms a
complex with Atg13, FIP200/Atg17, Atg29, and Atg31,
and this complex further associates with itself to gener-
ate the PAS scaffold complex, then the PI3K complex is
gathered to the PAS and involved in forming phago-
phore through ATG14L interacting and binding to the
ATG13 at PAS; and the ATG9A positive membrane ves-
icles associating with ATG2-WIPI complex (Atg2-Atg18
complex in yeast) are tethered to the PAS via interacting
with the FIP200 (Atg17 and Atg11 in yeast). The mul-
tiple Atg proteins coordinate to generate the isolation
membrane [42]. Once the first small ATG9A positive
vesicles are fused at the PAS to form a phagophore, the
bowl-shaped membrane is elongated continuously, and
wraps and engulfs portions of cytoplasm and organelles.
Finally, the isolation membrane, mediated by two
ubiquitin-like ATG conjugation pathways, Atg12-Atg5
and Atg8/LC3 conjugation systems, forms a closed bi-
layer membrane structure, mature autophagosome with
an inner and outer membrane [43] (Fig. 1b).

Autophagosome fusion with lysosomal membranes
Autophagosome docking and fusion with lysosomal
membranes require the mature autophagosomes which
will be transported to the perinuclear region for the
autophagosome-lysosome fusion [44]. Autophagosomes
can be formed randomly throughout the cytoplasm,
whereas lysosomes are predominantly found in the
perinuclear region. Therefore, once mature autophago-
somes have been generated, they need to be delivered
to the perinuclear region [45]. As long as autophago-
somes arrive at the perinuclear region, they dock and
fuse with lysosome immediately, and then form autop-
hagolyosome (Fig. 1c).

Degradation and recirculation of autophagosomal contents
When autophagosome fuses with lysosomes to form
autophagolyosome, many enzymes in lysosomes, e.g. lyso-
somal hydrolases, can degrade the inner membrane of the
autophagosome and the cytoplasm-derived macromole-
cules, e.g. proteins and organelles, in the autophagosome
into amino acids or peptides for reuse by cells (Fig. 1d).

Autophagy-related proteins
Although autophagic structures by electron microscopy
examination were firstly reported by Christian de Duve
under 60 years ago, the molecular mechanism of autoph-
agy regulation remained mostly unknown until discovery
of yeast Atg genes in the 1990s, which greatly promoted
the mechanistic understanding of autophagy and clari-
fied the fact that autophagy plays important roles in
various biological processes [46–49]. Functionally, mul-
tiple autophagy-related proteins regulate and control
various stages of the autophagy formation, including ini-
tiation of autophagy, nucleation of the multiple Atg pro-
teins at PAS, elongation of the isolation membrane, and
maturation of autophagosome, trafficking of mature
autophagosomes, autophagosome docking and fusion
with lysosomal membranes, and degradation of intra-
autophagosomal contents in autophagolyosome by a
hierarchical manner [17, 31].
So far, more than 40 genes encoding Atg proteins have

been identified in yeast [49], and most of the genes (e.g.
Atg1-Atg10, Atg12-Atg14, Atg16-Atg18) are conserved
between yeast and mammalian, which indicates that au-
tophagy is an evolutionarily conserved process [50].
Klionsky et al. (2003) collectively named the genes en-
coding these proteins as ATG (AuTophaGy), which is
used to represent the autophagy gene and its encoding
protein [50] (Table 1; Fig. 1).

Regulation and signaling of autophagy
In mammal cells, the starvation-induced autophagy is reg-
ulated by about 20 core ATG proteins, which can be clas-
sified into several functional units: (1) the ULK kinase
core complex including ULK1/2, ATG13, RB1CC1/
FIP200, and ATG101, (2) the autophagy-specific class III
phosphatidylinositol 3-kinase (PI3K) complex including
VPS34, VPS15, Beclin1, and ATG14L, (3) the ATG9A
trafficking system including ATG9A, WIPI1/2, and
ATG2A, (4) the ATG12 ubiquitin-like conjugation system
including ATG12, ATG7, ATG10, ATG5, and ATG16L1,
and (5) the LC3 ubiquitin-like conjugation system includ-
ing LC3A/B/C, ATG7, ATG3, and ATG4A/B/C/D. These
ATG proteins are recruited hierarchically proximal to the
vacuole and organize the pre-autophagosomal structure
(PAS) that is essential for autophagosome formation [12,
36–39] (Fig. 1e-i; Table 2).
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ULK/Atg1 kinase core complex
During autophagy, autophagosome biogenesis com-
mences at the PAS. In yeast, the Atg1 kinase core com-
plex, consisting of the subunits Atg1, Atg13, Atg17,
Atg29, and Atg31, is thought to play an essential and
crucial role in the initiation of autophagy at the PAS,
and has similar function to the ULK kinase core com-
plex in mammal cells [92]. The ULK/Atg1 complex is
mainly involved in receiving signals of cellular stimula-
tion, recruiting ATG/Atg proteins to the PAS, organiz-
ing the vesicle cluster to form the phagophore, and
governing elongation of the phagophore and formation
of autophagosome [54, 93].
In human cells, the ULK1/2 is thought to serve similar and

conserved functions as the yeast Atg1 [54]. In yeast, the core
subunits of the Atg1 kinase complex are Atg1 and Atg13
[94]. When the cell is stimulated by starvation or other

external stress, the target of rapamycin kinase complex
(TOR) is inactivated, and then the Atg13 is dephosphorylated
and binds greatly to Atg1 to form an activated Atg1-Atg13
dimer [95, 96]. The Atg17, Atg29, and Atg31 can assembly
and form a trimeric complex Atg17-Atg31-Atg29 at the PAS
[2, 97], and then serve as a preexisting scaffold for the re-
cruitment of Atg1-Atg13 upon activation [98]. In mammal,
the ULK1/2, a homologous protein of the kinase Atg1, forms
a ULK1/2 kinase complex with ATG13 (homologous to
Atg13 in yeast), FIP200 (homologous to Atg17 in yeast) and
ATG101 (no homolog in yeast) [99] (Fig. 1e; Table 2).
Atg17 (FIP200) is the earliest protein to arrive at the

PAS and adapts a highly elongated crescent shape [37,
93, 100]. The Atg17 is required specifically and associ-
ates physically with Atg1-Atg13 (ULK1/2-ATG13)
complex, and the interaction between Atg17 and Atg1
is mediated by Atg13, indicating that Atge13 directly

Table 1 Autophagy-related (Atg) genes and their protein function in autophagy

Genes Protein function description References

Mammals Yeast

ULK1/2
(Unc51-like kinase 1 and
2)

Atg1 Is part of the ULK-ATG13-ATG101-FIP200 complex and phosphorylates Beclin1; interacts with Atg13; is
involved in initiation of autophagy, membrane targeting, membrane curvature sensing, and lipid
vesicle tethering

[51–54]

ATG2A/B Atg2 Is part of the ATG9/ATG12-WIPI complex, which is important for ATG9 recruitment to expand
autophagosome

[55, 56]

ATG3 Atg3 E2-like enzyme in LC3 lipidation; autocatalyzes itself to form ATG12-ATG3 complex for maintaining
mitochondrial homeostasis

[57–59]

ATG4A-D Atg4 Cysteine protease to process Atg8 by removing its last amino acid; and deconjugate Atg8–PE;
involved in LC3 activation and delipidation

[60, 61]

ATG5 Atg5 Is part of the ATG12-ATG5 complex involved in autophagosome formation/elongation, acting as an
E3-like enzyme in LC3 lipidation; interacts with Atg16 and plays crucial roles in autophagy.

[62, 63]

Beclin1 Atg6 Is subunit of the VPS34-PI3K complex; recruits Atg14 or Vps38; interacts with Bcl-2; and lipid binding
and membrane deformation

[64, 65]

ATG7 Atg7 E1-like enzyme interacting with E2 enzyme Atg10 or Atg3 involved in LC3 and ATG12 conjugation;
and forms a thioester bond with Atg8

[66–68]

MAP 1 LC3A-C, GABAR-
APs, GATE-16

Atg8 Modifier; Ubiquitin-like module conjugated to PE and used as autophagosome marker; recognizes the
cargo-specific adaptors; and in vitro membrane tethering

[69–71]

ATG9L1/L2 Atg9 Transmembrane protein; interacts with ATG2-WIPI complex; shuttles between PAS and peripheral or-
ganelles to deliver lipids/factors during phagophore expansion; and self-interaction

[72, 73]

ATG10 Atg10 E2-like enzyme in ATG12 conjugation with Atg5 [74–76]

ATG12 Atg12 Modifier; ubiquitin-like module conjugated to Atg5; forms an E3 complex with Atg5 and Atg16; and in-
teracts with Atg3

[59, 62,
77]

ATG13 Atg13 Is part of the ULK-ATG13-ATG101-FIP200 complex involved in initiation of autophagy; targets mTOR
signaling pathway; interact with Atg1 and bridges Atg1 and Atg17-Atg31-Atg29; recruits the Vps34
complex via Atg14; binds to LC3; and interacts with Atg101

[78–80]

ATG14L
(Barkor)

Atg14 Is subunit of VPS34-PI3K complex; interacts with Beclin1 to assemble the autophagic-specific complex;
membrane targeting and membrane curvature sensing; and promote membrane fusion

[81–83]

ATG16L1/L2 Atg16 Binds to ATG5-ATG12 complex acting as part of the E3 enzyme complex [84–86]

RB1CC1/ FIP200 Atg17 Is part of the ULK-ATG13-ATG101-FIP200 complex involved in initiation of autophagy; interacts with
Atg13 and Atg9; forms ternary complex with Atg31 and Atg29; and senses membrane curvature

[53, 78,
87]

WIPI1–4 Atg18 Is part of the ATG2-WIPI complex which is important for ATG9 recruitment to autophagosome; binds
to PI3P; required for the retrograde transport of Atg9; and complexes with Atg2

[88, 89]

ATG101 – Interact with Atg13 and forms the ULK-ATG13-ATG101-FIP200 complex [90, 91]

-, This protein has not been identified
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binds to both Atg1 and Atg17 and the Atg17-Atg13
complex formation plays an important role in normal
autophagosome formation via binding to and activat-
ing the Atg1 kinase [33, 93, 96, 101, 102].

The class III PI3K complex I
In mammalian cells, the class III PI3K complex has two
distinct types: complex I (PI3KC3-CI) and complex II
(PI3KC3-CII). The both complexes share three core sub-
units: VPS34 (Vps34 in yeast), VPS15 (Vps15 in yeast),
and Beclin1 (Atg6/Vps30 in yeast), and each complex
contains a unique component: ATG14L/Barkor (Atg14
in yeast) of the autophagy-related complex I and Vps38
of the Vps-related complex II, which determines the
localization of its own complex in the cell (Fig. 1f). The
ATG14L (Atg14) can associate with and anchor the
PI3KC3-CI to the PAS [103–106] and the Vps38 can
localize the PI3KC3-CII to vacuolar and endosomal
membranes [103, 107].
In the autophagy-specific PI3KC3-CI, VPS34, a catalytic

PI(3) kinase, catalyzes phosphatidylinositol (PI) phosphoryl-
ation to form phosphatidylinositol 3-phosphate (PtdIns(3)
P or PI3P). The PtdIns(3) P on autophagic membranes is
essential for the elongation and completion of autophago-
somes for it can bind and recruit the membrane-bound
protein ATG18 to the bilayer membrane [108, 109].

In yeast, Atg6 mediates interaction with Atg14 that is
crucial for localizing the PI3KC3-CI to PAS [110, 111].
The sole Class III PI3K, Vps34, is associated with the
protein kinase Vps15, which functions as a Vps34 regu-
latory subunit [112]. Recently, it is reported that the
interaction of Vps15-Vps34 with Atg14-Atg6 is mediated
by Atg38, which was shown to play a crucial role in the
complex integrity [113]. In mammalian cells, Beclin1 is a
central regulator, which interacts with a multitude of
proteins including ATG14L, UVRAG, Rubicon, and Bcl-
2, etc. [114–117]. The Beclin1 has three functional do-
mains including a N-terminal Bcl-2 homology 3 (BH3)
domain, interacting with the Bcl-2 family protein Bcl-XL
[118–120], a central coiled-coil domain (CCD), mediat-
ing interaction of Beclin1 with ATG14L and UVRAG
[121], and a C-terminal evolutionarily conserved domain
(ECD), mediating the interaction of Beclin1 with VPS34
and activation of VPS34 kinase activity to regulate the
size and number of autophagosomes [110, 111, 116, 122]
(Fig. 1f; Table 2).

The ATG9A/Atg9 trafficking system
After the ULK/Atg1 complex is formed, the next step is
recruitment of ATG9A/Atg9-containing cytoplasmic
vesicles (ATG9A/Atg9 vesicles), which is a crucial step
of autophagosome formation and plays an essential role
in the nucleation step of autophagosome formation in

Table 2 ATG proteins of mammals in the core machinery of autophagosome formation

Complex Components Roles of the proteins in the core machinery

The ULK kinase core complex ULK1/2 Protein kinase and recruitment of ATG proteins to the PAS

ATG13 ULK-binding protein and linker between ULK1/2 and FIP200

RB1CC1/FIP200 Scaffold protein for ULK1/2 and ATG13

ATG101 ATG13-binding protein

The class III PI3K complex I VPS34 PtdIns 3-kinase catalytic subunit

VPS15 Serine/Threonine protein kinase

Beclin1 Component of PtdIns3K complex I and II

ATG14L Component of PtdIns3K complex I

The ATG9A/ATG2-WIPI1/2 trafficking system ATG9A Transmembrane protein required for autophagosome formation

WIPI1/2 PtdIns3P-binding protein

ATG2A Interacts with WIPI1/2

The ATG12-conjugation system ATG12 Ubiquitin-like protein conjugated to ATG5

ATG7 E1-like enzyme

ATG10 E2-like enzyme

ATG5 Conjugated by ATG12

ATG16L1 Interacts with ATG12 and ATG5

The LC3-conjugation system LC3A-C, GABARAPs, GATE-16 Ubiquitin-like protein conjugated to PE

ATG7 E1-like enzyme

ATG3 E2-like enzyme

ATG4A-D LC3 carboxy-terminal protease, and deconjugating
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eukaryotes (from yeast to mammals) [73, 123, 124]. The
ATG9A/Atg9 can be phosphorylated by ULK/Atg1, and
then the phosphorylated ATG9A/Atg9 is required for
the recruitment of LC3/Atg8 and WIPI1/2/Atg18 to the
site of autophagosome formation and the expansion and
elongation of phagophore [125].
Mammalian ATG9A, the yeast Atg9 homolog, is the

sole multi-spanning transmembrane protein within the
core machinery of autophagosome formation and has 6
highly conserved transmembrane helices and 2 cytosolic
NH2- and COOH-terminal domains that are involved in
interactions with other ATG components in both yeast
and mammals [126–128].
The ATG9A/Atg9 self-interacts and self-associates

within membranes into a higher-order assembly [129].
Recent studies indicated that the majority of Atg9 in the
yeast are incorporated on small cytoplasmic vesicles with
diameters of 30–60 nm, namely Atg9 vesicles [123, 130].
It is estimated that 3 Atg9 vesicles contain approxi-
mately 30 molecules of Atg9 each assemble at the PAS
[123, 131], and subsequently the Atg9 is integrated into
the outer autophagosomal membrane. Once the autop-
hagosomes fuse with vacuole, the Atg9 are recycled as
new Atg9 vesicles [102, 123, 132]. The level of Atg9
expressed in cells correlates with the frequency of autop-
hagosome formation and the number of autophagosome
[133]. The Atg9 vesicles are originated and transported
from the Golgi apparatus [73, 102, 123, 127]. In normal
physiological conditions, Atg9 localizes to and cycles be-
tween the trans-Golgi network (TGN) and early and late
post-Golgi endosomes [134, 135]. A recent study sug-
gests that autophagosome formation occurs where
ATG9 vesicles coalesce with the ER [136].
In yeast, Atg9 recycling from PAS is regulated by the

Atg2-Atg18 complex [37, 102]. The Atg18 and Atg2 are
peripheral membrane proteins. The Atg18 as a down-
stream effector of class III PI (3) K localizes to PAS via
binding to PtdIns(3) P [137]. Recent reports showed that
the Atg18-Atg2 complex may play an important role in
transporting the membrane structures during autopha-
gosome formation through binding to Atg9 and form an
Atg9·Atg2-Atg18 complex on the surface of the PAS and
further regulate cycling of Atg9 [102, 138, 139].
In mammals, the WIPI (WD-repeat protein interacting

with phosphoinositides) proteins, including WIPI1, WIPI2,
WIPI3, and WIPI4, have a similar function to the Atg18
[88, 140, 141]. The WIPI1/2-ATG2 complex is involved in
forming ATG9A·WIPI1/2-ATG2 trafficking system, medi-
ating and regulating cycling of ATG9A, and promoting for-
mation of LC3-positive autophagosomes in autophagy
[140]. The WIPI1/2-ATG2 (Atg18-Atg2 in yeast) complex
localizes to the expanding edge of the isolation membrane
and plays a key role in the elongation and/or closure of the
isolation membrane [43, 142] (Fig. 1g; Table 2).

The ATG12/Atg12-conjugation system
During autophagosome formation, two ubiquitin-like
conjugation systems are required including the ATG12/
Atg12 and LC3/Atg8 conjugation systems, and as many
as eight ATG proteins are involved in both conjugation
systems, which contribute to and are tightly associated
with expansion of autophagosomal membrane.
In yeast, the Atg12, a ubiquitin-like protein, is cova-

lently linked to its substrate Atg5 and forms an irrevers-
ible Atg12~Atg5 conjugate [38]. The Atg12-conjugation
system is similar to the E1-E2-E3 activation and ligase
present in the ubiquitination pathway, in which Atg12 is
activated by Atg7, an E1-like enzyme [143], and then is
transferred to Atg10, an E2-like enzyme [144], and is fi-
nally conjugated to its substrate protein Atg5 [38]. The
Atg12~Atg5 conjugation has no typical E3 enzyme. The
Atg5 of the Atg12~Atg5 conjugate further interacts with
a small coiled-coil protein, Atg16, to form a ~ 350-kDa
Atg12~Atg5-Atg16 complex [145, 146].
In mammals, the ATG12, activating by the E1 enzyme

ATG7, is conjugated to ATG5 via the E2 enzyme Atg10
and then the ATG12-ATG5 conjugate can be stabilized
by ATG16L proteins and further form ATG12-ATG5-
ATG16L complex of approximately 800 kDa, which is
important for the formation of the LC3 conjugation sys-
tem [58, 62, 147] (Fig. 1h; Table 2).

The LC3/Atg8 -conjugation system
The LC3/Atg8-conjugation system is located down-
stream of the ATG12/Atg12 system in the context of
Atg protein organization.
In yeast, the Atg8, another ubiquitin-like protein in

yeast, is covalently linked to phosphatidylethanolamine
(PE) after its C-terminal Arg117 residue is removed by a
cysteine protease, Atg4, to expose to Gly116 [148]. The
Atg8 is activated by the E1-like enzyme Atg7 [143], and
then transferred to the E2-like enzyme Atg3 [149], and
eventually the Atg3 conjugates Atg8 with the PE through
an amide bond [39]. The Atg8-PE conjugate can be
cleaved by Atg4 to release free Atg8, indicating that the
Atg8-PE is reversible [148]. Most of Atg8 exist in the
unconjugated form under normal conditions, but when
autophagy is induced by starvation, most of Atg8 are ac-
tivated, transferred, and converted to the PE-conjugated
form [150].
In mammalian cells, there are several homologues of

yeast Atg8 including LC3, GATE16, GABARAP and
ATG8L. The LC3 has been best investigated and charac-
terized as an autophagosome marker in mammalian cells
[151–155], which forms an Atg8-like conjugation system,
called the LC3-conjugation system (Fig. 1i; Table 2).
LC3, microtubule-associated protein light chain 3, is

a soluble protein with a molecular mass of approxi-
mately 17 kDa. The LC3 is firstly synthesized as a
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precursor protein (proLC3) [156], then the C-terminal
peptide of the proLC3 precursor is cleaved by mam-
malian ATG4B homologues to form LC3-I with an ex-
posed C-terminal glycine [151, 157, 158]. Catalyzed by
mammalian ATG7 and ATG3 homologues, cytosolic
LC3-I is then activated by the E1 enzyme ATG7 and
transferred to the E2 enzyme ATG3, and finally is
modified to a membrane-bound protein, LC3-II, by
conjugating to the amino group of the lipid phosphati-
dylethanolamine (PE) (LC3-I/PE). Then, the Atg12-
Atg5-Atg16 complex acts as an E3 enzyme for the
conjugation reaction of LC3-II (LC3-I/PE) [154, 155,
157] (Fig. 1i), which corresponds to the Atg8-PE-
conjugated form in yeast [151, 159]. The ATG4B has
been reported that it is the sole enzyme to efficiently
cleave LC3 precursors and LC3-I/PE among four
human homologues of yeast Atg4 (Atg4A-D) [151].
Thus, the both ubiquitin-like systems are intimately
involved in formation of PAS, assembly and formation
of autophagosome, and subsequent biogenesis of
autophagy.

Autophagy in cancer
Physiologically, autophagy, by eliminating damaged pro-
teins and organelles during stress and aging, plays crit-
ical roles in regulating organismal development,
cooperating with the adaptive immune system, sustain-
ing energy homeostasis and maintaining protein and or-
ganelle quality control [11, 160–164].
In diseases, such as neurodegenerative diseases [165,

166], infectious diseases [11, 167, 168], and metabolic
diseases [14], dysfunctional autophagy leads to the accu-
mulation of abnormal and damaged proteins and organ-
elles and formation of intracellular aggregates, and then
prevents the ability of autophagy to battle and eliminate
infectious pathogens [11, 161, 167, 169].
In cancer, autophagy can play neutral, tumor-

suppressive, or tumor-promoting roles in different con-
texts and stages of cancer development [25, 170–173],
which is determined by nutrient availability, microenvir-
onment stress, pathogenic conditions, and the presence
of an immune system.

Dual role of autophagy in cancer
In cancer development, autophagy plays a dual role de-
pending on type, stage or genetic context of the cancers
[174–179]. On the one hand, via its protein and organelle
quality control function, autophagy can maintain genome
stability, prevent chronic tissue damage, cell injury, and in-
flammation, and inhibit accumulation of oncogenic p62
protein aggregates, and then prevent tumor initiation, pro-
liferation, invasion, and metastasis, thereby function as a
tumor suppressive mechanism, especially in the early stage
of tumorigenesis [180–182]. Autophagy is important for

the quality control of the cells such as removing damaged
mitochondria, and its defective proteins (e.g., heterozygous
knockdown Beclin1 and Atg7 in mice) promote the malig-
nant transformation and spontaneous tumors [183–185];
on the other hand, once the tumors progress to late stage,
autophagy can function as a cellular protective, survival,
and defense mechanism, maintain functional mitochondria,
reduce DNA damage, and enhance the survival and resist-
ance of the cancer cells against stress (e.g., nutrient
deprivation, hypoxia, DNA damage metabolic stress, and
chemotherapy), and then sustain tumor metabolism,
growth, and survival and then mediate tumor promotion
and development, finally promotes tumorigenesis and
causes resistance to therapeutic agents [180, 182, 186]. It is
reported that autophagy can contribute to the aggressive-
ness of the cancers by facilitating metastasis [187–189]
(Fig. 2). The effect of autophagy on cancers is dependent
on multiple factors including tumor microenvironment,
cancer type and stage, and genetic background.

Autophagy suppresses tumorigenesis
Autophagy, the lysosome-mediated cellular self-
digestion, acts as a cellular quality-control mechan-
ism to sustain cell metabolism and its protein and
organelle quality control during starvation, eliminates
damaged proteins and organelles that accumulate
during stress, and suppress chronic tissue damage,
then prevent tumor initiation, especially in the early
stage of tumorigenesis [11, 180]. Several indirect evi-
dences indicate that autophagy acts as a tumor sup-
pressor (Fig. 2).

Defective autophagy contributes to tumorigenesis
Through the identification of Beclin1, an essential au-
tophagy gene, autophagy is first linked to human cancer.
The Beclin1, as a haploid-insufficient tumor suppressor,
is mono-allelically deleted in human hepatocellular car-
cinoma (HCC), breast, ovarian, and prostate cancers
[114, 115, 190, 191] and in mice tumor prone [192]. It is
reported that the expression of Beclin1 in cancer tissues
was down-regulated in 44 patients with hepatocellular
carcinoma, and it was concluded that autophagy might
inhibit tumorigenesis [190]. The spontaneous frequency
of malignancies is higher in the Beclin1+/− mouse model
[192, 193], indicating that autophagy is a tumor-
suppression mechanism [11, 25, 190, 194].
A number of studies on the ATG genes relevance to

human cancers showed that other ATG genes are also
oncogenically associated, including ATG2B, ATG5,
ATG9B, ATG12 and ATG16L1. The frameshift muta-
tions with mononucleotide repeats have been found in
ATG2B, ATG5, ATG9B and ATG12 genes in gastric
cancer and colorectal cancer, which may be involved in
cancer development by deregulating the autophagy
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process [195]. The homozygote deletion of ATG5 pre-
disposed to liver tumors with high penetrance mouse
model [196]; the somatic point mutations of ATG5 are
also identified in 135 patient samples of gastric cancer,
colorectal cancer, and hepatocellular carcinoma [197].
The compartment-specific expression of ATG16L1 in
epithelial cancer cells inhibited tumor growth [198].
Taken together, whether the expression of the intact

autophagy genes is downregulated in cancers or the
spontaneous frequency of cancer malignancies is in-
creased due to autophagy-related gene deficiency, indi-
cating that the intact autophagy functions as a cancer
suppression mechanism by limiting genome damage and
mutation and constraining tumor initiation.

Autophagy inhibits necrosis and inflammation
Autophagy is a central regulator of the inflammasome,
and the chronic inflammation is a common future of
early cancer development [199–202]. The oncogene acti-
vation can cause neoplasia and inflammation, and the in-
flammatory conditions can increase cancer risk. The
autophagy-deficient tumors display an increased level of

necrosis and inflammation, indicating that the intact au-
tophagy can inhibit neoplasia, inflammation and cancer
[203, 204]. Defective autophagy lead to tissue damage,
necrosis, chronic inflammation, and genetic instability,
which can increase the incidence of cancer by altering
the tumor microenvironment, elevating oxidative stress
and creating cancer-causing mutations [204, 205]. In
autophagy-defective cells and tissues, the failure to elim-
inate damaged proteins and organelles leads cellular dys-
function and death, and then stimulates an inflammation
condition, and creates ultimately a cancer-prone envir-
onment [206].
Among mammal ATG proteins, Beclin-1, ATG5,

ATG7, ATG12, ATG16L1 and LC3B are the most stud-
ied with respect to inflammation [207], and defects in
autophagy are linked to many inflammatory diseases
[208, 209] and cancer [210].

Accumulation of p62/SQSTM1 promotes tumorigenesis
The p62, also called sequestosome 1 (SQSTM1) in
humans, a multifunctional adaptor protein, is a selective
substrate of autophagy. In intact autophagy, the p62/

Fig. 2 Dual role of autophagy in tumorigenesis. Tumorigenesis begins with an oncogene mutation in the epithelial cell that makes the cell more
likely to divide. The genetically altered or abnormal cells and its descendants grow and divide uncontrolled and rapidly at Hyperplasia stage. At
Dysplasia stage, the overgrowing cells change their original form and behavior, have increased growth potential, and consist of more immature
cells than mature. In situ cancer, the cells grow rapidly, but do not go into the process of maturation, have lost their tissue identity, and grow
without regulation. In the malignant tumor (invasive cancer), the overgrowing cells invade neighboring areas and blood circulation systems from
the primary tumor site by rupturing basal membrane. Metastases occur when cancer cells reach to the distant parts through lymphatic system
and blood circulation. Autophagy plays dual roles during tumorigenesis including tumor-suppressing role during the early stage and cancer
promoting role during the late stage
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SQSTM1 possesses a short LC3 interaction region (LIR)
that facilitates direct interaction with LC3 and causes
p62 to be specifically degraded by autophagy, while de-
fective autophagy is a mechanism for p62 upregulation
commonly observed in human tumors, so the level of
p62 has been used as a marker for inhibition of autoph-
agy or defects in autophagic degradation [211–213].
The aberrant accumulation of p62 has been detected

in the cases of gastrointestinal cancer [214], prostate
cancer [215, 216], hepatocellular carcinoma [217–219],
breast cancer [220, 221], lung adenocarcinoma [222],
suggesting that p62 accumulation correlates with cancer
progression and autophagy suppresses tumorigenesis by
limiting p62 accumulation [213, 223, 224].

Autophagy mediates cancer promotion
Once the tumors progress to late stage, autophagy can
promote the survival and growth of the established tu-
mors by removing toxic oxygen radicals or damaged
proteins, maintaining mitochondrial function, sustain-
ing metabolism and survival in stress, and preventing
diversion of tumor progression to benign oncocytomas
[180–182]. Many investigations have shown that au-
tophagy is the major contributor for cancer cells sub-
stantially survival [225–227]. It is reported that
autophagy can contribute to the aggressiveness of the
cancers by facilitating metastasis [187–189]. Moreover,
autophagy as a cellular defense mechanism may reduce
the effect of treatments of most chemotherapeutic
agents (Fig. 2).

Autophagy prevents cancer cell damage
Autophagy is robustly activated in cancer cells under a
multitude of stress conditions, including starvation,
growth factor deprivation, hypoxia, damaging stimuli
and proteasome inhibition, so elevated levels of autoph-
agy have been observed in many tumor types, e.g. the es-
sential autophagy gene Beclin1 was upregulated in
colorectal cancer, gastric cancer, liver cancer, breast can-
cer, and cervical cancer [228–231], suggesting that the
enhancement of autophagy can promote tumorigenesis
and overexpression of the Beclin1 plays a crucial role in
tumor formation.
Autophagy functioning as a cancer promotion mech-

anism is mainly based on its role involved in removing
damaged mitochondria, inhibiting DNA damage, main-
taining genome stability, limiting inflammation, and fi-
nally preventing cancer cell damage under the
conditions of stress [14, 213, 232]. Normal mitochon-
drial function, e.g. mitochondrial respiration, is required
for tumorigenesis [233], t the accumulation of morpho-
logically abnormal mitochondria and mitochondrial dys-
function have been found in the autophagy-defective
tumors [196, 234–236], indicating that intact autophagy

can remove damaged mitochondria and contribute to
tumorigenesis. The activation of the DNA damage re-
sponse, gene amplification, DNA copy number variations
and an elevated mutation rate has been found in the
autophagy-deficient cancer cells [237]. Autophagy pre-
vents genome damage and promotes tumor cell survival
in a model of mammary cancer [194]. Autophagy is in-
duced in hypoxic tumor regions and is required for
tumor cell survival and for limiting inflammation [226].
(preventing cancer cell damage). All of these evidences
indicate that the survival function of autophagy can be
commandeered by tumors to prevent cell damage and
promote tumorigenesis under conditions of metabolic
stress.

Autophagy promotes cancer metastasis
During cancer progression, metastasis is an extremely
complex process that indicates a more advanced stage
and a poorer prognosis and accounts for most cancer-
related deaths [238]. The metastasis of primary tumor
can be divided into a series of stages including invasion
of tumor cells from the primary tumor site, intravasation
and survival in blood circulation systems, dissemination
of the malignant cancer cells through the circulation sys-
tems to reach a capillary bed and adhere to the vessel
walls, extravasation of the cancer cells at a distant site,
and finally colonization of disseminated tumor cells at
their destination organs [239–242].
Autophagy plays a complex and stage-specific role and

promotes multiple steps during cancer metastasis [243].
During the early stage of metastasis, the autophagy may
act as a suppressor of metastasis by preventing tumor ne-
crosis and restricting inflammatory cell infiltration [243];
on the other hand, in the advanced stages of metastasis,
the autophagy may act as a promoter of metastasis by pro-
moting dissemination of the malignant cancer cells in the
circulation [244], enhancing colonization of detached
metastatic cell in the destination organs [245], and indu-
cing metastatic cells to enter dormancy and survive in the
new environment [246].
Autophagy is upregulated during cancer metastasis.

Once the metastatic cancer cells successfully establish dis-
tant colonies in their destination organs, autophagy begins
to play a critical role and the autophagic flux is induced to
respond various environmental stress including hypoxia,
nutrient deprivation and detachment from the ECM [187,
240, 247, 248]. Using the autophagy marker, LC3B, vari-
ous studies have identified an association between in-
creased autophagy and metastasis in several types of
cancer including breast cancer metastasis [249, 250], mel-
anoma metastases [251], hepatocellular carcinoma [189],
and glioblastoma [252]. These evidences indicate that au-
tophagy promotes cancer metastasis and enhances the ag-
gressiveness of cancer cells [253].
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Autophagy inhibit cancer therapy
Cancer cells have common characteristics including in-
creased metabolic demands, high level cellular prolifera-
tion, evading growth suppressors, resisting cell death,
enabling replicative immortality, inducing angiogenesis,
activated invasion and metastasis, and enhanced cellular
stress, which require autophagy to be activated to main-
tain energy, enhance stress tolerance, limit damage, and
prevent death in these cells.
Autophagy plays a cytoprotective or pro-survival role

in cancer cells and can be induced by most cancer treat-
ments including radiation therapy [254–256], chemo-
therapy [257, 258], histone deacetylase inhibitors in
colon cancer cells [259], arsenic trioxide (As2O3) in ma-
lignant glioma cells [260, 261], Temozolomide (TMZ) in
malignant glioma cells [262], γ-irradiation in breast can-
cer, prostate cancer, colon cancer and malignant glioma
[263–265], resveratrol in ovarian cancer [266], TNFα in
breast cancer cells [267], IFNγ in Hepatocellular carcin-
oma (HCC) [268], imatinib lung carcinoma cell [269],
rapamycin in malignant glioma cells [270], and tamoxi-
fen in breast cancer and Glioblastoma [271, 272], and
the autophagy, in turn, functions as a cellular defense
and protection mechanism to prevent cancer cell death
upon treatment, enable a state of dormancy in residual
cancer cells post treatment, contribute to cancer recur-
rence and metastasis, and inhibit cancer therapy and
tumor cell killing [246, 273].
Given the pro-survival role, the inhibition of the au-

tophagy has been shown to enhance and increase the ef-
ficacy of anticancer therapy, implying that autophagy
inhibition is a potential valuable approach in combin-
ation with other anticancer therapeutic approaches to
enhance cancer treatment [181, 182].

Conclusions and perspectives
Autophagy, as a cell survival pathway, plays an import-
ant role in cancer, and can help to prevent bioenergetic
failure by metabolic stress and maintain protein and or-
ganelle quality and quantity, and contributes to all as-
pects of tumorigenesis, including tumor initiation,
progression and development, and maintenance of the
malignant state. Cancer cells divide relentlessly, and they
are also metabolically stressed. As cancer cells grow,
spread, and form solid tumors or flood the blood with
abnormal cells, they always face an acute problem in-
creasing hypoxia and nutrient deprivation, which may
promote their death and prevent their growth, progres-
sion, and development, and autophagy is essential for
surviving these stresses and maintaining tumorigenesis.
Autophagy also plays key roles in controlling the tumor
microenvironment, in suppressing tumor during the
early stage and promoting cancer during the late stage,
and in the therapeutic response.

Autophagy has a dual role both in progression and in-
hibition of cancer. Hitherto many data support a dy-
namic role of autophagy in cancer, both as a tumor
suppressor early in progression and as a cancer promo-
tor later in tumor maintenance and therapeutic resist-
ance. In the early tumorigenesis, autophagy, as a survival
pathway and quality-control mechanism, contributes to
normal cell physiology metabolism and provides bio-
logical materials and energy in response to stress, and as
a dynamic degradation and quality-control mechanism,
eliminates damaged proteins and organelles and pre-
vents tumor initiation. Once the tumors progress to late
stage and are established and subjected to the environ-
mental stresses including limited angiogenesis, nutrient
deprivation, and hypoxia, autophagy, as a dynamic deg-
radation and recycling system, contributes to the survival
and growth of the established tumors and promotes ag-
gressiveness of the cancers by facilitating metastasis.
Regulation of autophagy can be used as effective inter-

ventional strategies for cancer prevention and therapy by
preventing cancer development, limiting tumor progres-
sion, and increasing the efficiency of cancer treatment.
On the one hand, autophagy, as one type of pro-
grammed cell death, is ubiquitous in various cancer,
functions as a tumor suppressor pathway, facilitates the
degradation of oncogenic molecules, and finally prevents
development of cancers. So defective or inadequate
levels of autophagy can lead to cancer. Investigations
showed that all chemotherapeutic agents and radiother-
apies induce cancer metabolic stress and concomitant
inhibition of autophagy, indicating that the autophagy
regulation represents a significant direction in the devel-
opment of anticancer therapies. On the other hand, au-
tophagy, the type II programmed cell death, is involved
in several signaling pathways during tumorigenesis via
coordinating with apoptosis, the type I programmed cell
death. Under stress conditions such as hypoxic or low-
nutrition environments autophagy facilitates the survival
of tumor cells, and at same time, apoptosis prevents the
survival of cancer cells, indicating that autophagy and
apoptosis, as two catabolic pathways, are essential for or-
ganismal homeostasis and tumor microenvironment. In-
vestigations have now shown that autophagy and
apoptosis are interconnected and coordinated by several
molecular nodes of crosstalk, such as interaction of
Beclin1 with Bcl-2, UVRAG with Bif-1, and ATG12 with
the Mcl-1, etc.
So far, some standard cancer treatments have saved, or

at least prolonged, many lives. However, the most severe
clinical issue is the frequent tumors progression and
cancer recurrence after treatment, mainly due to thera-
peutic resistance. It can be sure that autophagy can fa-
cilitate the tumor cells survival and deal with anticancer
therapy. Therefore, in the near future, standard cancer
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treatment combining with regulation of autophagy activ-
ity, promoting or preventing by autophagy inducers or
inhibitors based on tumorigenesis and cancer stages, can
be considered as a potential anticancer therapy. How-
ever, further investigations should be done to under-
stand and clarify how autophagy contributes to the
development and treatment of cancer, how the autoph-
agy pathway can be targeted and regulated, and how the
activity of autophagy pathway can be monitored and
quantified during cancer prevention and therapy.
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