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Abstract

Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive
breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a
complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain
metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing
a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated
with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic
niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast
cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the
pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this
devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of
BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
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Introduction
Distant organ metastasis in breast cancer (BC) patients
accounts for 90% of deaths [1]. In the central nervous
system (CNS), the incidence of brain metastasis (BM) is
ten times higher than primary brain lesions [2]. BC is
the second most common cancer associated with BM
with an incidence of BM, approximately 15-30% of total
breast cancer cases [3]. Among different BC subtypes,
triple-negative (TN) and HER2-positive BCs are more
prone to BM [4]. Around 25% of BC cases show HER2
amplification, and out of these, 30-55% of patients develop
BM with a median survival of only 4-14 months [5, 6].
Furthermore, TNBC patients with ER-/PR-/ HER2- status
are at high risk of BM recurrence [7].
Despite improvements in BC therapy, the treatment of

patients with BM is still disappointingly challenging.

BMs are commonly associated with poor prognosis and
affect both cognitive and sensory functions of patients
and limit the quality of life (QOL) [8]. Several markers,
such as age, histology, ER/PR/HER2 status, and the
number of non-CNS metastatic sites, have been used to
predict BM from non-BM BC patients [9]. Owing to a
high level of variability, these predictive markers have
limitations.
In order to make progress in this field, there is an

urgent need to improve the understanding of the patho-
biology of BM, perhaps via first modeling the intricate
process of metastasis in the brain microenvironment.
The development of a BM is a multistep process, and
the metastatic cellular niche is highly dynamic and
heterogeneous [10, 11]. Moreover, the brain metastatic
cell population harbors a unique genetic and epigenetic
profile that distinguishes those cells from similar metas-
tases in other organs [12]. Previous reports suggested an
early onset of BM (22 months) after primary diagnosis
with TNBC patients as compared to HER2+(30 months)
and ER+/HER2-(63.5 months) BC patients [13].

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: wasim.nasser@unmc.edu
1Department of Biochemistry and Molecular Biology, University of Nebraska
Medical Center, Omaha, Nebraska, USA
4Fred and Pamela Buffett Cancer Center, University of Nebraska Medical
Center, Omaha, NE, USA
Full list of author information is available at the end of the article

Kanchan et al. Molecular Cancer           (2020) 19:29 
https://doi.org/10.1186/s12943-020-1140-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-020-1140-x&domain=pdf
http://orcid.org/0000-0003-2070-4972
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:wasim.nasser@unmc.edu


Interestingly, the BBB protects the normal brain, looses its
permeability partially or hetrogenously, and transforms
into a blood-tumor barrier (BTB) which enhances the
accessibily of therapeutic drugs to some extent, but not
completly [14]. However the therapeutic role of BTB per-
meability is not well defined. Smith et al., demonstrated
that BTB limits the uptake of chemotherapeutic drugs for
BC, such as doxorubicin and paclitaxel into the brain rela-
tive to other organs [14, 15], suggesting limitations of BTB
for the complete response of these drugs.
Growing evidence has demonstrated the role of miRNA

in different steps of the metastatic process, including in
BCBM, such as the epithelial to mesenchymal transition
(EMT) [16–19], local invasion [20–23], intravasation [24–
30], survival in circulation [31–33], extravasation [34], the
integrity of the BBB [35–40], niche formation [41, 42], and
colonization in the brain parenchyma [43–45]. MiRNAs
are 20-22 short nucleotide sequences that often negatively
regulate gene expression through the imperfect binding of
their seed sequences to the 3’UTR region of target genes
[46]. They can cleave or degrade target mRNA when bind-
ing with complete complementarity, and thereby inhibit
translation of the target [47]. Recent investigations have
revealed unique miR expression profiles in different can-
cer types at different stages, with compelling evidence sup-
portive of miR-based staging and typing [48, 49]. In
addition, miRNAs can regulate multiple genes and hence
multiple processes simultaneously [50]. Given their ability
to modulate the expression of multiple genes at a time,
miRs are viewed as attractive therapeutic targets for can-
cer metastasis, a process mediated by multiple deregulated
genes. This review discusses the functional role of miR-
NAs at different steps of BCBM in hopes of identifying
novel miRNA-based therapeutic candidates for the treat-
ment of this devastating process.

Molecular events leading to BM: the role of miRNA
BM is a complex, multi-step, selective process. BM initiates
by the dissemination of tumor cells from the primary site
to the circulation and known as circulating tumor cells
(CTCs). Prior to which these cells undergo EMT transition
to invade the extracellular matrix (ECM) at the primary
site. Then, to survive anoikis and immunosurveillance, pri-
mary tumor cells and CTCs secrete RNA and miRNA en-
capsulated in exosomes, which further facilitate the survival
of metastatic cancer cells at the metastatic site. These miR-
NAs also transform brain stroma and breach the BBB for
BM. Given the coordinated multi-step process that culmi-
nates in BM, miRs are perfectly poised to play a cardinal
role in BM establishment, given their inherent ability to
regulate multiple genes at a given time (Table 1). We have
discussed below the role of miRNA at different stages of
BM, starting from the primary site of dissemination to
brain colonization.

miRNA-mediated activation of EMT
Although the EMT is both highly conserved and vital for
normal developmental processes [78], it serves an essen-
tial role in metastasizing cancer cells [79]. In cancer
pathogenesis, EMT promotes the dissemination of the
primary tumor [80]. EMT transcription factors (TFs),
such as TWIST1, SNAIL1, and SLUG, are contributory
to BC metastatic potential and associated with poor
prognosis [81]. ADAM12, a long splice variant with a
transmembrane domain and member of the disintegrin
and metalloproteinase family [82], can be induced by
Twist1, thereby promoting tumor invasion via regulation
of invadopodia formation and focal adhesions [83]. MiR-
34a suppresses BC metastasis by downregulating EMT-
TFs (SLUG, TWIST1, and ZEB1/2) and NOTCH1
signaling [81]. Further, ADAM12 is a direct target of the
miR-29 and miR-200 families, both involved in BC pro-
gression [54]. Aside from regulating EMT-TFs, miRNAs
can also regulate cytoskeletal rearrangement in cancer
cells by targeting the expression of key molecules and
cell signaling pathways involved in cell adhesion [84].
MiR-8084, miR-708-3p, miR-96-182-183 cluster, miR-
484, miR-210, and miR-142-3p modulate the invasive
potential of BC cells by modulating EMT [16–19]. Re-
cently, it has been shown that miR-124, miR-199a/214,
miR-3178, miR-30a, miR-508-3p and miR-212-5p can
modulate the level of EMT markers and TFs regulating
the expression of E-cadherin in TNBC, a subtype that
commonly metastasizes to the brain [51–53, 85].

miRNA-mediated intravasation
Once breast tumor cells change their phenotype through
EMT-driven mechanisms, metastasizing tumor cells start
the process of metastasis by intravasation into nearby
capillaries to facilitate neovascularization for survival
[86]. To metastasize at distal sites, cancer cells begin
contacting endothelial cells via adhesion molecules and
protein receptors [86]. They then follow an amoeboid
motility pattern and squeeze themselves between endo-
thelial cells [87]. Some secretory miRNA can regulate
the integrity of the endothelium, and thereby the process
of intravasation. For instance, miR-105 that is secreted
by BC cells disrupts the endothelium by targeting
Zonula occludens protein-1(ZO-1), a tight junction
protein1 (TJP-1) [29], thus promoting BM. Deryugina
et al. discovered an alternative intravasation model
suggestive of intravasation within the interior core of a
primary tumor in parallel to stromal invasion [88].
Angiogenic factors and growth factors either released

by tumor cells or stromal cells individually or during
their mutual crosstalk contribute to intravasation [89].
These factors allow tumor cells to invade through the
basement membrane, adhere to the endothelial mem-
brane, and pass through endothelial gap junctions to
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Table 1 miRNAs mediated regulation of BCBM

miRNA Targets Regulation References

EMT

miR-8084 ING2, p53-BAX upregulated [16]

miR-484 PAX-5 upregulated [19]

miR-708-3p ZEB1, CDH2 and vimentin downregulated [17]

miR-210 E-cadherin (ORF), PAX-5 upregulated [19]

miR-142-3p Bach-1, CXCR4, MMP9, and VEGFR downregulated [18]

miR-199a/214 Slug downregulated [51]

miR-3178 Notch1 downregulated [52]

miR-212-5p Prrx2 downregulated [53]

miR-29,miR-30
miR-200 family

ADAM12-L downregulated [54]

Intravasation

miR-126 VEGF/PI3K/AKT axis, MAPK downregulated [30]

miR-520/373 ANGPTL4, PTHrP, PAI-1 downregulated [25]

miR-204 ANGPT1 and TGFβR2 downregulated [24]

miR-200 family IL-8 and CXCL1 downregulated [27]

miR-105 ZO-1 downregulated [29]

Intravascular Microenvironment

miR-141 Protection in circulation upregulated [31]

miR-183 DAP12/NK cells downregulated [32]

Extravasation in Brain Microenvironment

miR-7, let-7c, miR-21 FasL, SERPIN1 upregulated [55]

miR-200c FAP-1 downregulated [56]

miR-206 Cx43 downregulated [57]

miR-19a, miR-32,miR-124a, miR-130b, miR-148a, and miR-583 PCTH7 downregulated [58]

miR-125a/b-5p ET-1 downregulated [59]

miR-1266, miR-185 and miR-30c BCL2L1 downregulated [60]

miR-151-3p TWIST1 downregulated [61]

miR-17 ICAM-1and E-Selectin downregulated [62]

miR-126 and miR-1185 VCAM1 downregulated [63]

miR-483-5p ALCAM downregulated [64]

miR-21-3p L1CAM upregulated [34]

miR-212 HBEGF downregulated [65]

miR-655 COX2 downregulated [66]

miR-200b, 200c ST6GALNAC5 downregulated [67, 68]

BBB Regulation

miR-181c PDPK1 upregulated [69]

miR-143 PUMA upregulated [35]

miR-125a-5p ICAM-1 downregulated [38]

miR-1258 HPSE downregulated [40]

miR-210 Occludin, β-catenin upregulated [37]

Cross Talk and Niche Formation

miR-26a PTEN
ATM

upregulated [70, 71]

miR-19a PTEN upregulated [42]
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disseminate into the circulation [86]. Although no miRNA
has been reported to influence intravasation directly, they
can regulate angiogenic signals by targeting angiogenic
factors and protein kinases. A recent study discovered a
novel role of TGF-β by tumor-associated fibroblasts
(TAFs) in the organization of tumor blood capillaries.
TAFs enhanced vessel coverage by pericytes, which are
vascular cells that support capillaries [90]. In this regard,
mRNA profiling of miR-520/373 overexpressing meta-
static MDA-MB-231 cells elicited a strong downregulation
of TGF-β signaling. It has also been reported that miR-
520/373 are instrumental in reducing metastasis through
downregulating TGF-β dependent potent angiogenic fac-
tors such as plasminogen activator inhibitor-1 (PAI-1),
parathyroid hormone-related protein (PTHrP), and
angiopoietin-like 4 (ANGPTL4) [25]. In a separate study,
miR-204 was shown to suppress vascularization and
angiogenesis in vitro and in vivo through targeting pro-
angiogenic ANGPT1 and TGFβR2 in BC [24]. The miR-
200 family could also play a role in regulating angiogenesis
by directly targeting the pro-angiogenic cytokines IL-8
and CXCL1 in endothelial cells [27].

miRNA-mediated survival in the intravascular
microenvironment
When a primary tumor grows, circulating tumor cells
(CTCs) are shed and enter the circulation. Most CTCs are
phagocytosed or undergo apoptosis, leaving behind only a
few surviving CTCs to arrive at the targeted organ. Meta-
static tumors, as well as CTCs from the primary tumor,
may exhibit characteristics different from those of their
cell of origin. In order to survive, CTCs must overcome
anoikis and immune surveillance once they detach from
the primary tumor. One of the tools exploited by CTCs

after entering the circulation is platelet activation; by indu-
cing platelet aggregation, tumor cells are protected from
immune surveillance, undergo cell arrest within the vascu-
lature, and experience enhanced survival [91, 92]. The
CSCs phenotype of BC cells is associated with brain trop-
ism in TNBC patients [93–95]. Debeb et al. have shown
that overexpression of miR-141 in the MDA-MB-231 cell
line enhances its brain tropism in a tail vein injection
mouse model. Further, knockdown of miR-141 inhibited
the metastatic ability of inflammatory BC to the brain,
suggesting that miR-141 protects cells in the circulation
and helps with colonization in the brain [31].
Platelets also contribute to immune evasion by CTCs

from scavenging natural killer (NK) cells by enshrouding
CTCs and releasing TGFβ and platelet-derived growth
factor (PDGF) that directly inhibit the activity of NK cells
[96]. Platelet-derived microparticles (PMPs) are major re-
positories for miRs, and platelets can transfer miRNA con-
tents and modulate gene expression in CTCs [33]. PMP
encapsulated miR-183 can suppress NK cell activation,
possibly via the silencing of DAP12 a key accessory pro-
tein critical for surface NK receptor stabilization and
downstream signal transduction [32]. Platelets also con-
tribute to attenuate the early formulation of a metastatic
niche [97]. Thus, platelet-derived miRNA also helps in the
survival of CTCs after intravasation. The role of miRNA
released by CTCs and the intravascular microenvironment
in establishing a brain pre-metastatic niche formation
warrants further investigation.

Extravasation
Once CTCs are able to survive in circulation, BC cells
arrest in blood capillaries and start the process of ex-
travasation, a process coordinated by many oncogenes

Table 1 miRNAs mediated regulation of BCBM (Continued)

miRNA Targets Regulation References

miR-345 KISS1 upregulated [72]

miR-124, miR-155, miR-689 Associated with M1 phenotype of microglia upregulated [73]

miR-711 and miR-145 Associated with M2 phenotype of microglia upregulated [73]

miR-503 L1CAM
trigger M1–M2
polarization of microglia

upregulated [41]

Metabolic Reprogramming

miR-122 PKM2 , GLUT-1 upregulated [74]

miR-155 PIK3R1-PDK/AKT-FOXO3a-cMYC axis downregulated [75]

miR-7 RelA upregulated [76]

Colonization

miR-200 family (miR-200a,200b, 200c, miR-141, and miR-429) ZEB1 and ZEB2 upregulated [43, 44]

miR-147
ZEB1

upregulated

miR-126 IGFBP2, PITPNC1 and MERTK downregulated [77]
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[98]. Many pairs of ligand-receptor molecules contribute
to the process of extravasation, including selectins,
integrins, cadherins, CD44, and immunoglobulin super-
family receptors [99, 100].
Extravasation is a rate-limiting step for BCBM, as can-

cer cells must overcome the initial defenses imposed by
astrocytes and other protective factors in the brain
microenvironment [101]. Astrocytes that are mobilized
to the metastatic brain lesion at a very early stage of
colonization induce apoptosis through the FasL-
mediated pathway [102]. In recent studies, several miR-
NAs have been described to target various members of
the Fas-mediated apoptotic pathway. For example, miR-
7, let-7c, and miR-21 regulate the expression of FasL
[55], while miR-200c regulates the induction of apop-
tosis through CD95 by targeting FAP-1 [56]. Cancer
cells release protease inhibitors known as serpins to
combat the apoptotic effects exerted by astrocytes. MiR-
21 has been shown to inhibit Serpin1, a gene with novel
tumor-suppressive effects in gastric cancer [103]. How-
ever, its role in BM is unknown. Eventually, astrocytes
support CTCs survival in brain parenchyma via estab-
lishing connexins (Cx) gap junctions and promote BM
[104]. The expression of miR-206 is inversely correlated
with Cx43 levels and is associated with decreased
proliferation and migration [57]. PCDH7 in brain tropic
BCs contributes to establishing Cx43 gap junctions with
astrocytes and forms Ca++ channels [104]. A high
PCDH7 level in the brain tropic CSC population has
been reported and contributes to CSC extravasation, adap-
tation, and colonization in the new niche formation
through the PCDH7-PLCb-Ca2þ-CaMKII/S100A4 pathway
involving PCDH7-mediated tumor–astrocyte interaction
[95]. In addition, miR-19a, miR-32, miR-124a, miR-130b,
miR-148a, and miR-583 have been reported as potential
regulators of PCDH7 [58]. However, the role of these miR-
NAs in PCDH7 regulated BM has yet to be studied [95].
The production of IL6 and IL-8 by cancer cells re-

quires the establishment of gap junctions with astro-
cytes [105]. These cytokines influence both cell types
by inducing the expression of endothelin ligand (ET-
1) on astrocytes and endothelin receptors (ETAR and
ETBR) on cancer cells [101, 105]. ET-1 is regulated
through miR-125a/b-5p in endothelial cells [59]. In
addition, the expression of a few genes was found to
be dependent on such interaction [106]. Some of
them were validated in BM, such as TWIST1,
GSTA5, and BCL2L1 [106]. Interestingly, BCL2L1 is
regulated by miR-1266, miR-185, and miR-30c [60] in
prostate cancer. TWIST1 is regulated by miR-151-3p
in BC [61]. These miRNAs are involved in negative
regulation of the apoptotic pathway and upregulation
of invasion or migration respectively, but the role in
BM is not clear yet.

Emerging evidence shows that cell adhesion molecules
(CAMs) play an essential role in extravasation through a
cell-cell adhesion receptor. In an in vivo model of BM, a
subset of adhesion molecules, including E-selectin,
VCAM-1, ALCAM, ICAM-1, VLA-4, and a4 were found
to be upregulated in the cerebral endothelium when
injected intracardially. Conversely, the expression of their
ligands (PSGL-1, VLA-4, ALCAM, LFA-1, and VCAM-1)
was upregulated in brain tropic cancer cells [107], reveal-
ing a crucial role for these CAMs during the initial steps
of extravasation. MiRNAs post-transcriptionally regulate
CAMs. For instance, TGF-β induced ICAM-1, and E-
selectin expression is regulated by miR-17 [62]. MiR-126
and miR-1185 regulate endothelial expression of VCAM1
[63, 108]. ALCAM is reported as a target gene of miR-
483-5p [64].
Moreover, cancer cells can invade through the endo-

thelium by projecting invadopodia [109]. Invadopodia
are chemosensing protrusions that guide cancer cell
extravasation to promote brain tropism in metastasis
[110]. PAK1 (P21 (RAC1) Activated Kinase 1) is respon-
sible for guiding cancer cell extravasation in BCBM
[110]. PAK1 reduces the expression of miR-132 through
the PAK1/ATF2/miR-132 axis. L1CAM, an adhesion
molecule, mediates the spread of metastatic cells on the
vasculature and additionally mediates interactions
between cancer cells and endothelial cells in BM. The
depletion of L1CAM in cancer cells fails to co-opt brain
capillaries and hence is unsuccessful in promoting meta-
static outgrowth. Interestingly, miR-21-3p was reported
to be a positive regulator of L1CAM expression [34].
These studies strongly suggest that miRNAs can modu-
late the expression of various CAMs in cancer, as well as
endothelial cells, and thereby play a decisive role in the
establishment of metastasis at the distant metastatic site
via extravasation.
Reactive astrocytes have been shown to contribute to

the formation of a protumorigenic niche via a number of
mechanisms involving secreted molecules. In the BCBM
mouse model, Massague’s group has identified 17 genes
that are specifically correlated with BC-metastasis associ-
ated genes. Among these 17 genes, four genes, COX2,
EGFR ligand HBEGF, ANGPTL4, and the a2,6-sialyl-
transferase ST6GALNAC5 were identified as signature
molecules of BC metastasis to the brain parenchyma
[67]. COX2 is actively involved in BM by regulating the
expression of MMP-1 in BC patients, and high expres-
sion is reported in BC patients [111]. Interestingly,
COX2 expression is associated with BBB permeability .
COX2 induces a stem-like cell phenotype by upregulat-
ing miR-655 and miR-526b in BC, thereby rendering
cells more metastatic [66, 112]. MiR-212 directly targets
HBEGF and suppresses cell growth, migration, and inva-
sion [65]. ST6GALNAC5, a direct target of miR-200c, is
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a specific mediator of BCBM [67]. Conversely, the up-
regulation of ST6GALNAC5 in brain-tropic BC cells
showed a decrease in adhesive properties of the endothe-
lial component of a well-characterized human BBB
in vitro model [113]. ST6GALNAC5 can also regulate
the EMT process in BM and is a target of miR-200b
[68]. Several target genes actively participate in extrava-
sation within the brain parenchyma, although their regu-
lation in context of miRNA is not studied in BCBM.

Blood-brain barrier
The blood-brain barrier (BBB) is a semipermeable bar-
rier comprised of endothelial cells, astrocytes, and peri-
cytes, forming the neurovascular unit [114]. It remains
important to study the role of miRNAs in enhancing the
permeability of the BBB. Endothelial cells are intercon-
nected with each other via tight junctions, a functionally
important component of the BBB, controlling the free
flow of substances into the brain parenchyma. Most of
the solutes that are allowed to permeate the BBB, such
as glucose, macronutrients, and electrolytes, enter via
transporters present on the surface of endothelial cells.
Endothelial tight junctions facilitate the transmigration

of tumor cells through the BBB [115]. CD44, VEGF, and
CXCR4 contribute to the transendothelial migration
process by disturbing endothelial integrity [116]. Astro-
cytes are indispensable for the development and main-
tenance of the BBB [106]. The intracellular junctions of
brain endothelial cells form with tight junction proteins,
such as occludin, claudins, and ZO-1 proteins [117]. Dis-
ruption of intercellular junctions causes the breakdown
of the BBB and transform it into BTB [118, 119].
The priming of the pre-metastatic niche, or organo-

tropism, starts before cancer cells reach the metastatic
site from the primary tumors via paracrine routes. In
this context, miRNAs containing exosomes or extracel-
lular vehicles (EVs) have the ability to modify the brain
microenvironment, which leads to enhanced BM despite
the barrier function of the BBB [42, 120]. Recently,
miRNAs emerged as regulators of tight junction adhe-
sion proteins and their upstream and downstream sig-
naling pathways, playing an important role in
maintaining the integrity of the BBB. For instance, miR-
181c promotes the destabilization of the BBB through
the delocalization of actin fibers via the downregulation
of 3-phosphoinositide-dependent protein kinase-1
(PDPK1). PDPK1 degradation by miR-181c leads to the
downregulation of phosphorylated cofilin and a resultant
activated cofilin-induced modulation of actin dynamics
[69]. MiR-143 enhances the permeability of endothelial
cells through targeting p53 upregulated modulator of
apoptosis (PUMA), and consequently shows a reduction
of tight junction proteins (TJPs) [35]. Additionally, miR-
125a-5p has been shown to be an important player in

the maintenance of the integrity of the BBB. This
miRNA can directly regulate barrier function in an
in vitro BBB model and can reduce monocyte migration
through a BBB cell layer in vitro [38] (Fig. 1).
In BC, miR-1258 expression was directly associated

with heparanase expression. Heparanase is a prometa-
static enzyme present in BCBM cells that degrades hepa-
ran sulfate chains to affect the cytoskeleton and render
cells more capable of crossing the BBB [39, 40]. Re-
searchers demonstrated miR-1258 downregulates the
phosphorylation of Akt and EGFR signaling along with
the repression of MMP-9 and COX-2 protein expression
by direct targeting of HPSE [39, 40]. Watabe K et al. ob-
served high expression of miR-509 in primary tumors
whereas level was significantly downregulated in BM le-
sions. Consequently, the reduction of miR-509 in BM le-
sions induces the expression of two essential genes for
BM, RhoC and TNF-α, followed by upregulation of the
MMP9 level, which altogether augments the permeabil-
ity of BBB and penetration of tumor cells in the brain
[121]. MiR-210 suppresses the junction proteins and dis-
rupts the BBB in hypoxic-ischemic brain injury [37]. In
addition, high expression of miR-210 is associated with
poor survival in BC patients [36]. Exosomal profiling
done by Dario et al. showed significant upregulation of
miR-210 (2 to 6-fold increase) in three brain metastatic
BC cell-derived exosomes [122]. Therefore, it is plausible
that miR-210-containing exosomes released by the brain
may help BC cells breach the BBB.

Crosstalk of cancer cells with brain microenvironment
Once infiltrated into the brain tissue, cancer cells en-
counter a number of host cell types, including pericytes,
reactive glia, neural progenitor cells, neurons, and oligo-
dendrocytes [123]. Astrocytes and endothelial cells are
the first to encounter incoming metastatic cells. Once
normal astrocytes encounter cancer cells, they become
reactive astrocytes (RAs) due to a perceived disruption
to brain homeostasis. At the initial stages of BCBM, RAs
act as a primary host defense system by proficiently lim-
iting the survival of arriving metastatic cells [102],
whereas, at later stages, RAs have been actively involved
in promoting metastatic outgrowth via secretion of
miRNA containing exosomes [42]. Exosomes can suc-
cessfully form the pre-metastatic niche in the brain by
modulating tumor-stroma communications [74]. MiR-
NAs with gene regulatory functions have emerged as key
regulators of the tumor microenvironment [124]. For in-
stance, miR-26a is present in astrocytes and released
through exosomes or by endothelial cells. MiR-26 can
regulate the growth of brain tumors and radiosensitize
tumor cells by targeting PTEN and ATM, respectively
[70, 71]. Thus, miR-26a may play a key role in regulating
the brain tumor microenvironment.
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Zhang et al. (2015) discovered a complicated recipro-
cal mechanism between brain metastatic BC cells and
stromal cells (astrocytes and myeloid cells). In BCBM
patients, PTEN loss was observed when compared to
primary breast tumors. In addition, miR-19a in the miR-
17-92 cluster was identified as a candidate responsible
for mediating PTEN suppression from astrocytes to
tumor cells via exosomes. Reactive astrocytes secrete in-
terleukins and chemokines, such as CCL2 and CXCL12/
SDF1, respectively, playing a mitogenic role. Moreover,
human BCBM has higher levels of CCL2 than primary
tumors. Interestingly, PTEN has been shown to be in-
strumental in the regulation of BCBM, as a reduced ex-
pression of PTEN leads to enhanced CCL2-mediated
recruitment of IBA1+ microglial cells, and thereby estab-
lishment of the BM [42].
Astrocytes have also been shown to enhance meta-

static growth through enhancing the CXCL12/CXCR4-
MIR345-KISS1/KISS1R axis. A significant reduction in
KISS1 expression in BCBM patient’s primary tumors has

been noticed. Ilya V. Ulasov et al. identified that
CXCL12 secreted by astrocytes can induce miRNAs that
can directly target KISS1 mRNA in metastatic BC cells
and negatively regulate KISS1 expression. In this regard,
miR-345 was the only identified miR that directly targets
KISS1, which is induced via the treatment of CXCL12 or
CCL2 proteins [125–127]. They experimentally con-
firmed the binding of miR-345 in stably transfected
KISS1 3’UTR in MDA231Br cells with astrocyte condi-
tioned media treatment or in the presence of individual
recombinant CCl2 or CXCL12 proteins [72]. Interestingly,
the downregulation of KISS1 has a stimulating effect on
ATG5 expression associated with autophagosome matur-
ation. Finally, they revealed a paracrine loop between
KISS1 and the CXCL12-miR-345 that can promote BC
cell invasion and survival in the brain.
Microglia are also a crucial component of the brain

parenchyma; they constitute about 5-20% of the total
CNS population and they are the only brain resident
myeloid cells that play an important role in brain

Fig. 1. Schematic of miRNA regulatory blood-brain-barrier (BBB) tight junction (TJs) protein. a miR-181c promotes the destruction of the BBB
through the delocalization of actin fibers via the downregulation of 3 phosphoinositide-dependent protein kinase-1 (PDPK1). PDPK1 degradation
by miR-181c leads to the downregulation of phosphorylated cofilin and the resultant activated cofilin-induced modulation of actin dynamics [69].
b miR-1258 downregulates MMP-9 and COX-2 protein by directly targeting HPSE, hence protecting the BBB from destruction [40]. c miR-509
negatively regulates the expression of two essential genes for brain metastasis, RhoC and TNF-α, which enhance the permeability of the BBB
[121]. d miR-210 directly targets β- Catenin and Occudin to disrupt the integrity of the BBB [37]. e MiR-143 decreases the expression of TJs by
directly targeting p53 upregulated modulator of apoptosis (PUMA) and increases the permeability of human brain endothelial cells [35]
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homeostasis and immunosurveillance [128–130]. Micro-
glia release cytokines and interleukins that support can-
cer invasion and colonization of the parenchyma.
Microglia can differentiate from the proinflammatory
M1 phenotype to the immunosuppressive M2 phenotype
based on environmental factors [131]. Interestingly,
miRNA can modulate microglial polarization. For in-
stance, miR-124, miR-155, and miR-689 are associated
with the M1 phenotype, whereas miR-711 and miR-
145 are strongly associated with M2 polarization [73].
MiR-124 is a brain enriched miRNA highly present in
resting microglia, and its expression declines with
microglial activation [132]. However, the role of miR-
124 in BCBM is yet to be studied. Loss of XIST, a
long noncoding RNA in tumor cells, causes local im-
mune suppression by converting the microglia to the
M2 phenotype through the transport of exosomal
miR-503 from the tumor cells [41]. These studies
strongly suggest that miRNAs have the ability to
modulate microglia activation, and thereby modulate
the brain microenvironment and subsequently metas-
tasis partly via immune invasion (Fig. 2).

miRNAs and metabolic reprogramming in the brain
microenvironment
Adaptation in the pre-metastatic niche is of great
importance and starts before the arrival of CTCs to dis-
tant sites of metastasis to sustain their survival and
growth [133]. Modulation of the tumor microenviron-
ment by metabolic factors is a different aspect of cancer
cells and tumor microenvironment crosstalk. Metabolic
reprogramming is associated with the deregulation of
several pathways controlled by hypoxia-inducible factor
1 alpha, MYC, p53, and miRNAs. MiRNAs target meta-
bolic enzymes, oncogenes, and tumor suppressors
involved in metabolic reprogramming, becoming crucial
elements in the crosstalk of molecular pathways that
promote extravasation and metastasis. In BC, cancer-
associated stromal cells rely on glycolysis to provide en-
ergy metabolites to cancer cells through monocarboxyl-
ate transporters during disease progression [134].
Endothelial cells also rely on glycolytic metabolism to
support vessel sprouting for angiogenesis [134]. Emer-
ging evidences in the metabolic reprogramming of the
microenvironment identified a prerequisite metabolic

Fig. 2. Cross talk of the brain tumor microenvironment with BC cells. a Autocrine and paracrine role of miR-122 in the development of the pre-
metastatic niche via regulating glucose metabolism in cancer cells. MiR-122 downregulates the expression of pyruvate kinase isozymes, PKM2,
and glucose transporter 1 (GLUT1), and decreases ATP levels in BC cells. MiR-122 reduces glucose consumption in stromal cells and allows more
glucose to be accessible to cancer cells, hence facilitating the formation of the metastatic niche and cancer cell growth [74]. b CXCL12 or CCL2
secreted by astrocytes increases the level of miR-345 via CXCR4, which negatively regulates the expression of KISS1 and promotes invasion and
survival in the brain [72]. c MiR-19a mediates the suppression of PTEN in cancer cells secreted by activated astrocytes. Reactive astrocytes secrete
interleukins and chemokines, such as CCL2 and CXCL12/SDF1. Reduced expression of PTEN leads to enhanced CCL2-mediated recruitment of
IBA1+ myeloid cells, and thereby establishment of the brain metastasis (BM) [42]. miR-26a is present in astrocytes and released by astrocytes
through exosomes, or it can be secreted by HUVEC cells, but its role in brain niche formation is not clear [70, 71]. d Microglia release cytokines
and interleukins that support cancer cells to invade and colonize the parenchyma. In cancer microglia, it can transform from the immunogenic
phenotype (M1) to immunosuppressive phenotype and miRNA can modulate microglial polarization. MiR-124, miR-155, and miR-689 are
associated with the M1 phenotype, whereas MiR-711 and miR-145 are strongly associated with M2 polarization [128, 129]. Loss of XIST, a long
noncoding RNA in tumor cells, causes local immune suppression by converting the microglia to the M2 phenotype through the transport of
exosomal miR-503 from the tumor cells [41]
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condition required to sustain cancer cells in the brain
[135]. For example, brain metastatic cells switch to meta-
bolic reprogramming by upregulating the fructose-1, 6-
bisphosphatases (FBP2) based gluconeogenesis pathway
and amino acid oxidation to survive and grow in the low
glucose environment of the brain parenchyma [135].
Interestingly, Emily Wang’s group has studied the

autocrine and paracrine role of miR-122 in glucose me-
tabolism in primary BC and pre-metastatic niche devel-
opment and metastasis [74]. MiR-122 downregulates the
expression of pyruvate kinase isozymes, PKM2, and glu-
cose transporter 1 (GLUT1) and decreases ATP levels in
BC cells. They demonstrated that cancer cells secreted
miR-122, which downregulates glucose uptake in astro-
cytes as well as lung fibroblasts. Orthotopic xenograft
mice with stably overexpressed DCISMCF/miR-122
form smaller tumors than empty vectors. Collectively,
they showed that cancer cells could induce glucose re-
allocation in the pre-metastatic niche by repressing glu-
cose consumption in stromal cells and allowing more
glucose to be accessible to cancer cells, hence facilitating
metastatic cancer growth. MiR-122 partially exhibits this
effect and helps in metabolic reprogramming of the
tumor microenvironment by downregulating its meta-
bolic target genes PKM1/2 and GLUT1 in stromal cells
in vitro and in vivo. MiR-122 has potential as a predict-
ive marker and therapeutic target for BC metastasis [74].
Furthermore, Chang et al. recently demonstrated the

role of miR-155 in glucose metabolism in the TNBC sub-
type. Utilizing a BC mouse model with miR-155-/- or miR-
155+/- backgrounds, they unraveled the miR-155-PIK3R1-
PDK/AKT-FOXO3a-cMYC axis that mediates energy me-
tabolism in BC [75]. However, the metastatic potential of
miR-155 has not been studied in the context of BM. High
glucose uptake is a salient feature of cancer cells [136].
MiR-7 is highly expressed in the brain and promotes gly-
colysis, as evinced by an increased intracellular ATP/ADP
ratio, glucose consumption, and lactic acid production.
MiR-7 directly targets the expression of RelA, which regu-
lates the expression of the cell surface glucose transporter,
Glut3, hence promoting glycolysis [76, 137]. In human BC
cells, miR-7 suppresses the homing and migration poten-
tial of human endothelial cells; however, there is the possi-
bility that the opposite may be true and the brain tumor
microenvironment may deliver exosomes containing miR-
7 to increase the glucose uptake and survival of breast
tumor cells in the brain parenchyma. Therefore, its role in
the metabolic reprogramming of the brain microenviron-
ment in BCBM is obscure and needs to be studied in
detail.

Metastatic colonization
The major problem with the EMT concept is that the
appearance of the majority of human metastatic

histology samples resembles the epithelial phenotype
and usually looks like the primary tumor [138]. Evidence
from previous studies suggests that for successful
colonization and growth after extravasation to a second-
ary site to occur, cancer cells have to go through the
mesenchymal to epithelial transition (MET) [138]. Inter-
estingly, BCBM is dependent on cellular reprogramming
through the EMT to the MET. Yang and colleagues
(2012) have demonstrated that Twist1 reversibly regu-
lates the EMT during metastasis. They have also shown
that early metastatic colonies elicited strong positive
Ki67 expression with low Twist1 expression under re-
versible EMT conditions, while irreversible EMT re-
sulted in colonies with high Twist1 expression and low
Ki67 [139], suggesting that metastatic cancer cells must
revert to the epithelial phenotype by a MET in order to
grow at a secondary site.
In another study, epithelial markers, such as E-

cadherin, β-catenin, connexin 26, and connexin43, were
found to be upregulated in BC patients. In contrast,
mesenchymal markers FSP1 and vimentin were variably
altered in BC, suggesting a partial MET [140]. Shreds of
evidence show that miRNA participates in the process of
EMT to MET [141]. A well-documented example is the
miR-200 family. MiR-200s are associated with poor
prognosis of BC [142]. Recently, members of the miR-
200 family (miR-200a, miR-200b, miR-200c, miR-141,
and miR-429, containing similar consensus seed se-
quence) have been recognized as new epithelial markers
and negative regulators of EMT. The miR-200 family
members inhibit the EMT and promote MET transform-
ation in BC cells by directly targeting ZEB1 and ZEB2.
The miR-200 family regulates the MET and metastatic
colonization in BC, suggesting that flexible transitions
between EMT and MET, or epithelial-mesenchymal
plasticity, may be crucial at different stages of metastasis
[43–45].
Moreover, human BC metastases often show a higher

level of E-cadherin than their corresponding primary
tumor [140]. Korpal et al. suggested that miR-200s pro-
mote metastatic colonization of BC not only by influen-
cing cell-intrinsic epithelial traits through targeting of
the Zeb–E-cadherin axis but also by altering the tumor
cell-derived secretome through targeting of the Sec23
homolog A, Sec23a-mediated transport pathway. It ul-
timately targets two metastatic suppressors, insulin-like
growth factor binding protein 4 (IGFBP4) and tubule
interstitial nephritis antigen-like 1 [142].
In addition, CTCs increase the level of miR-200s in

BC patient serum and cerebrospinal fluid (CSF) with
BCBM [143, 144]. Although these studies suggest that
extracellular miR-200s are associated with BC metasta-
sis, they did not show that circulating miR-200 miRNAs
are functional [145]. Bisrat G. Debeb et al. generated a

Kanchan et al. Molecular Cancer           (2020) 19:29 Page 9 of 16



preclinical mouse model via tail vein injection of
epithelial-like inflammatory TNBC and HER2 positive
cells and mesenchymal-like lung metastatic cells. The
knockdown of miR-141 ceases the BM; however, ec-
topic expression of miR-141 enhances the brain
colonization of inflammatory metastatic cells in vivo.
Alternatively, ectopic expression of miR-141 in lung
metastatic cells was not sufficient for the onset of
BM, suggesting an epithelial phenotype is important
at the final step of BM [31]. High expression of ZEB1
and ZEB2 at a tumor invasion front in brain meta-
static tissues suggests a role of these EMT regulators
in facilitating BM [146]. MiR-126 is reported as a
tumor suppressor in various cancers [147–149]. It
regulates the migration of endothelial cells towards
the metastatic BC cells in vitro and in vivo [77].
Endogenous expression of miR-126 suppresses meta-
static colonization by targeting IGFBP2, PITPNC1,
and MERTK- novel pro-angiogenic genes and bio-
markers of human metastasis [77]. Silencing of miR-
126 in poorly metastatic CN34 BC cells results in in-
creased endothelial recruitment and metastatic brain
colonization [77]. Overall, the miRNAs are crucial at
multiple steps of breast cancer brain metastasis
(BCBM) (Fig. 3).

miRNA and BCBM therapeutics
Despite advances in therapy for BCBM, the exact mo-
lecular mechanism, and biomarkers for the diagnosis
and prognosis of patients are lacking [150]. Available
treatment options include local therapies, such as whole-
brain radiation therapy (WBRT), stereotactic radiosur-
gery (SRS), surgery, chemotherapy, and tyrosine kinase
inhibitors (TKIs) [151]. TKIs are promising anticancer
agents for HER2-positive BCBM, such as lapatinib,
which is a dual TKI that targets both HER2/ErbB2 and
EGFR. However, inhibition of kinases is not specific for
a single tyrosine kinase, results in reduced specificity
with high toxicity [152]. Due to specificity and toxicity
issues, monoclonal antibodies emerged as strong thera-
peutic tools and proved as a potent therapy for cancer
treatment. The current focus for TNBC patients is to
manipulate the anti-tumor immune response by block-
ing the activity of immune checkpoint inhibitors. Atezo-
lizumab, a PD-L1 blocking antibody in combination with
nab-paclitaxel improved the progression-free survival in
PD-L1 positive subgroup in an Impassion130 trial
(NCT02425891) [153]. In phase II, ongoing trial
(NCT03483012) TNBC patients with BM are treated
with SRS alone or in combination with Atezolizumab.
There is hope that SRS in combination with

Fig. 3. miRNAs function at multiple steps of breast cancer brain metastasis (BCBM). MiRNAs regulate key steps of BCBM, (a) breast cancer cell
intravasation and dissemination via EMT from the primary site, (b) survival in the circulation/vascular microenvironment, (c) breaching of blood-
brain barrier (BBB) integrity, (d) extravasation into brain parenchyma, (e) metabolic reprogramming into the brain microenvironment, and (f)
colonization and growth of cancer cells into brain

Kanchan et al. Molecular Cancer           (2020) 19:29 Page 10 of 16



atezolizumab, may enhance the immune response to BM
patients.
The enduring challenges in BCBM are to develop early

detection markers and novel targeted therapies that can
cross the BTB and improve the survival rate of BCBM
patients. Therefore, miRNAs are emerging as noninva-
sive, diagnostic, and prognostic markers in BM. The
miRNAs present in the blood plasma and CSF are at-
tractive biomarkers for BM, which provide the disease
severity, but also impart the prognostic value of the
treatment response [154]. Although a considerable num-
ber of miRNAs are found inside the cell, many miRNAs
are secretory, and their expression elevates or drops in
the brain lesions or BM. In this context, miRNA levels
can be used to monitor the disease burden, tumor re-
sponse, and differentiation between brain lesions and
metastatic brain tumors [155]. MiR-10 and miR-21 are
highly expressed in the cases of GBM and BCBM; how-
ever, the miR-200 family can be used to discriminate be-
tween GBM and BM [144]. Additionally, miR-223, miR-
711, miR-125, and miR-935 signatures were shown to
discriminate among medulloblastoma, GBM, breast, and
lung cancer BM [156].
Tumor suppressor miRNA with oncogenic targets may

enhance the efficacy of treatment in combination with
conventional chemotherapy, radiotherapy and immuno-
therapy in BCBM patients. For instance, miR-770-5p de-
creases the migration and invasive potential of HER+
breast cancer cells through inhibiting the translation of
downstream signaling of PI3K and MAPK, i.e., AKT and
ERK, pathways that mediate resistance to anti-HER2 ther-
apies. Additionally, miR-770-5p can increase the respon-
siveness of trastuzumab and reverse drug resistance [157].
miR-770 also suppresses the doxorubicin-resistance and
metastasis of TNBC cells [158, 159]. miR-326, a suppres-
sor of Hedgehog pathway, is inversely correlated with
multi drug resistance protein (MRP-1) expression in BC
patients and sensitize the response in doxorubicin and
etoposide (VP16) in resistant BC cells. miR-21 has been
shown to sensitize BC cells to topotecan and taxol [160].
miRNA-143-3p increase the sensitivity of TNBC to pacli-
taxel by inferenig with CIAPIN1 expression, a cytokine-
induced apoptosis inhibitor 1 protein [161]. miR-449 can
induce doxorubicin respone in TNBC by downregulating
cell cycle related genes [162]. Such combinations, which
are already tested in BC preclinical models have the po-
tential to be tested for BCBM. In addition, miRNA with
known function in BM such as miR-181c, miR-1258, miR-
509, miR-143, miR-122 and miR-19a could be utilized in
combination with radiotherapy, anti-HER2 therapies
(lapatinib or trastuzumab), chemotherapy or immunother-
apies for BM.
Since miRNA can target multiple sets of genes, it is an

excellent clinical choice for the heterogeneous

population of BM. In this context, miR-7 has been
shown to attenuate BC growth by downregulating both
EGFR and PKB signaling pathways [156]. MiR-7 also in-
hibits BCBM by inhibiting the self-renewal capacity of
BC stem-like cells by regulating the expression of KLF4
[163]. An additional example is let-7, which targets sev-
eral oncogenic pathways, including Ras, HMGA2, cyclin
d1/2/3, cyclin A, CDK4/6, c-Myc, DICER1, and Lin28,
which are responsible for stem cell self-renewal and che-
moresistance [164]. The current challenges with the de-
livery of miRNA into the brain are poor penetration of
miRNAs into tumor tissues due to the presence of BBBs,
instability of miRNA mimics or inhibitors in the blood
circulation, and neurotoxicity and immunotoxicity due
to an off-target effect. Therefore, miRNA can be conju-
gated to drug carrier systems or nanoparticles (NPs) for
targeting cancer cells. These miRNA delivery systems
have shown minimal toxicities and have the ability to
cross the BBB and successfully release the miRNA to
promote clinical advancement. Recently, numerous de-
livery systems have been developed to cross the BBB,
such as Cationic lipid nanoparticles (LNP) [165], Cat-
ionic Dendrimers PAMAM [166], Poly (lactic acid-co-
glycolic) acid (PLGA) nanoparticles [167], Magnetic
Nanoparticles [168], and Viral Vector Systems [169,
170]. Although water-soluble polymers, cationic lipids,
or liposome nanocarriers are less toxic than a viral vec-
tor, the delivery efficiency remains lower [171]. Since
leukocytes (including monocytes/macrophages, neutro-
phils, dendritic cells, and lymphocytes) or MSCs target
tumors and can migrate across physiological barriers like
the BBB, these cell types are increasingly utilized as car-
riers to transfer NPs to tumors [172]. As leukocytes/
MSCs follow the same pattern of migration as tumor
cells to cross the BBB, these cellular mechanisms can be
utilized effectively to deliver miRNA conjugated NPs to
the BMs. These NPs can be attached to the monocytes/
macrophages/MSCs for the delivery of miRNA through
various nanotechnology strategies [173].
Additionally, BBB-permeable NPs can be used to deliver

miRNAs into the metastatic sites. Recently, Galstyan et al.
have used BBB-permeable nano-immunoconjugates for
the successful inhibition of GBM growth using mouse
models [174]. They have used poly (β-L-malic acid) NPs
covalently attached to immune checkpoint antibodies for
systemic delivery directly into the brain. NPs have been
used to deliver anti-miR-132 that recover p120RasGAP in
the tumor endothelial cells, and have shown reduction in
tumor growth in an orthotopic xenograft mouse model of
BC [175]. If BBB permeable NPs are not available, regular
NPs containing miRNAs can be delivered through the
BBB using chemical modifications, partial opening by
ultrasound, microwave or electromagnetic field-based
thermal translocation of tight junction proteins [176].
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Conclusion and future perspective
Both the anatomy and physiology of the brain are very
complex; hence, the process of BCBM is enormously
complex too. Mechanistic and functional discoveries
could expedite the response of BM treatment. Each step
of BM is rate-limiting, and miRNA are instrumental in
the regulation of every step of metastasis since they are
upstream of oncogenes and tumor suppressor genes. All
the steps of BMs, starting from the dissociation from
primary sites through EMT related genes, survival into
the circulation by anoikis resistance genes, brain organo-
tropism, brain niche modulatory genes, and also brain
colonization related genes, are all regulated through
miRNAs. In the past few years, the focus on BMs has
significantly increased as several miRNAs were discov-
ered for initiating steps of metastasis. However, limited
research has been done to address questions like: how
does miRNA play a role in metastasizing cancer cells to
the brain? How can miRNAs breach the BBB? How do
cancer cells communicate with an entirely new environ-
ment of the brain niche via miRNA? How do astrocytes
overcome the defense mechanisms and facilitate the
survival of BC cells by altering the miRNA profile? How
do miRNAs modulate brain metabolism in favor of can-
cer cell survival? There are so many unanswered ques-
tions in the context of miRNA and BCBM. Therefore,
intense research is needed to tackle these problems, to
discover better treatment options, to improve BCBM
treatment efficacy.
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